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Abstract

In this paper, we deal with the following singular four-point boundary value problem

with p-Laplacian










(φp(u
′(t)))′ + q(t)f(t, u(t)) = 0, t ∈ (0, 1),

u(0) − αu′(ξ) = 0, u(1) + βu′(η) = 0,

where f(t, u) may be singular at u = 0 and q(t) may be singular at t = 0 or 1. By imposing

some suitable conditions on the nonlinear term f , existence results of at least two positive

solutions are obtained. The proof is based upon theory of Leray-Schauder degree and

Krasnosel’skii’s fixed point theorem.
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1 Introduction

Singular boundary value problems (BVPs) arise in a variety of problems in applied

mathematics and physics such as gas dynamics, nuclear physics, chemical reactions, stud-

ies of atomic structures, and atomic calculations [1]. They also arise in the study of
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positive radial solutions of a nonlinear elliptic equations. Such problems have been stud-

ied extensively in recent years, see, for instance, [2-8] and references therein. At the very

beginning, most literature in this area concentrated on singular two-point boundary value

problems. More recently, several authors begin to pay attention to singular multi-point

boundary value problems [9-17]. In the existing literatures, the following multi-point

boundary conditions

u(0) = 0, u(1) = βu(η); u(0) = αu(ξ), u(1) = 0;

u(0) = 0, u(1) =
m−2
∑

i=1
βiu(ηi); u(0) =

m−2
∑

i=1
αiu(ξi), u(1) = 0;

u′(0) = 0, u(1) =
m−2
∑

i=1
βiu(ηi); u(0) =

m−2
∑

i=1
αiu(ξi), u

′(1) = 0;

u′(0) = 0, u(1) = u(η); u(0) =
m−2
∑

i=1
αiu(ξi), u

′(1) =
m−2
∑

i=1
βiu

′(ηi);

u(0) = αu(ξ), u(1) = βu(η); u(0) =
m−2
∑

i=1
αiu(ξi), u(1) =

m−2
∑

i=1
βiu(ηi),

where α, β, αi, βi > 0, 0 < ξ, η, ξi, ηi < 1(i = 1, 2, · · · ,m− 1), have been studied.

However, to our knowledge, there are few papers investigating the singular four-point

boundary value problem. The aim of the present paper is to fill this gap.

In this paper, we establish sufficient conditions which guarantee the existence theory

for single and multiple positive solutions to the following singular four-point BVP










(φp(u
′(t)))′ + q(t)f(t, u(t)) = 0, t ∈ (0, 1),

u(0) − αu′(ξ) = 0, u(1) + βu′(η) = 0,
(1.1)

where φp(s) = |s|p−2s, p > 1, (φp)
−1 = φq,

1
p

+ 1
q

= 1, α > 0, β > 0, 0 < ξ < η < 1.

f(t, u) may be singular at u = 0 and q(t) may be singular at t = 0 or 1.

Existence results for one solution are obtained by using the existence principle guar-

anteed by the property of Leray-Schauder degree, and for two solutions by using a fixed

point theorem in cones. In order to obtain the positivity of solution, u(0) ≥ 0, u(1) ≥ 0 is

required. While note the boundary conditions u(0) = αu′(ξ), u(1) = −βu′(η), so we need

to ensure u′(ξ) ≥ 0, u′(η) ≤ 0. Hence it is vital that the maximum of this solution must

be achieved between ξ and η. To this end, we need to establish some suitable conditions

on the nonlinear term f (see (H4)), in course of that, we overcome more difficulties since

the singularity of the nonlinear term f .

Throughout, we always suppose the following conditions are satisfied:

(H1a) q ∈ C(0, 1) ∩ L
1[0, 1] with q(t) ≥ 0, q(t) 6≡ 0 on any subinterval of [0, 1] and

nondecreasing on (0, 1);
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(H1b) q ∈ C(0, 1) ∩ L
1[0, 1] with q(t) ≥ 0, q(t) 6≡ 0 on any subinterval of [0, 1] and

nonincreasing on (0, 1);

(H2) f : [0, 1] × (0,+∞) → (0,+∞) is a continuous function;

(H3) 0 < f(t, u) ≤ f1(u) + f2(u) on [0, 1] × (0,+∞) with f1 > 0 continuous, nonin-

creasing on (0,+∞) and
∫ L

0 f1(u)du < +∞ for any fixed L > 0; f2 ≥ 0 is continuous on

[0,+∞); f2

f1
nondecreasing on (0,+∞);

(H4) There exists R > 0 such that

∫ ξ

0
q(t)N(t)dt ≤ Γ

∫ η

ξ

q(t)n(t)dt,

∫ 1

η

q(t)N(t)dt ≤ Γ

∫ η

ξ

q(t)n(t)dt,

where Γ = (min{ α
1−η

+ ξ
1−η

, β
ξ

+ 1−η
ξ

})p−1, n(t) = inf
u∈(0,R]

{f(t, u), t ∈ [ξ, η]}, N(t) =

sup
u∈(0,R]

{f(t, u), t ∈ [0, ξ] ∪ [η, 1]};

(H5) For each constant H > 0, there exists a function ψH continuous on [0, 1] and

positive on (0, 1) such that f(t, u) ≥ ψH(t) on (0, 1) × (0,H] ;

(H6)
∫ ξ

0 f1(k1s)q(s)ds +
∫ 1
η
f1(k2(1 − s))q(s)ds < +∞ for any k1 > 0, k2 > 0.

2 Preliminaries

Consider the Banach spaceX = C[0, 1] with the maximum norm ||u|| = maxt∈[0,1] |u(t)|.
By a positive solution u(t) to BVP(1.1) we mean that u(t) satisfies (1.1), u ∈ C

1[0, 1],

(φp(u
′))′ ∈ C(0, 1) ∩ L

1[0, 1] and u(t) > 0 on (0, 1).

We suppose F : [0, 1]×R → (0,+∞) is continuous, q ∈ C(0, 1) ∩L
1[0, 1] with q(t) ≥ 0

on (0, 1) and q(t) 6≡ 0 on any subinterval of [0, 1]. For any x ∈ X, we consider the following

BVP










(φp(u
′(t)))′ + q(t)F (t, x(t)) = 0, t ∈ (0, 1),

u(0) − αu′(ξ) = a, u(1) + βu′(η) = a,

(2.1)

where a is a fixed positive constant. Then we have

Lemma 2.1. ([18]) For any x ∈ X, BVP (2.1) has a unique solution u(t) which can be

expressed as

u(t) =



















αφq(

∫ σ

ξ

q(s)F (s, x(s))ds) +

∫ t

0
φq(

∫ σ

s

q(τ)F (τ, x(τ))dτ)ds + a, 0 ≤ t ≤ σ,

βφq(

∫ η

σ

q(s)F (s, x(s))ds) +

∫ 1

t

φq(

∫ s

σ

q(τ)F (τ, x(τ))dτ)ds + a, σ ≤ t ≤ 1,

(2.2)
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where σ is the unique solution of the equation υ1(t) − υ2(t) = 0, 0 < t < 1, in which

υ1(t) = αφq(

∫ σ

ξ

q(s)F (s, x(s))ds) +

∫ t

0
φq(

∫ σ

s

q(τ)F (τ, x(τ))dτ)ds,

υ2(t) = βφq(

∫ η

σ

q(s)F (s, x(s))ds) +

∫ 1

t

φq(

∫ s

σ

q(τ)F (τ, x(τ))dτ)ds.

(2.3)

Lemma 2.2. For any x ∈ X, assume that

∫ ξ

0
q(t)F (t, x(t))dt ≤ Γ

∫ η

ξ

q(t)F (t, x(t))dt (2.4)

and
∫ 1

η

q(t)F (t, x(t))dt ≤ Γ

∫ η

ξ

q(t)F (t, x(t))dt, (2.5)

where Γ = (min{ α
1−η

+ ξ
1−η

, β
ξ

+ 1−η
ξ
})p−1. If u(t) is a solution of BVP (2.1), then

(i) u(t) is concave on [0, 1];

(ii) There exists σ ∈ [ξ, η] such that u′(σ) = 0, u(σ) = ||u||; u(t) ≥ a for t ∈ [0, 1], u(t)

is nondecreasing on [0, ξ] and nonincreasing on [η, 1];

(iii) u(t) ≥ ω(t)||u|| for t ∈ [0, 1], where ω(t) = min{1
η
t, 1

1−ξ
(1 − t)}.

Proof. Suppose u(t) is a solution to BVP(2.1), then

(i) (φp(u
′(t)))′ = −q(t)F (t, x(t)) ≤ 0, so φp(u

′(t)) is nonincreasing on [0, 1]. Therefore,

u′(t) is nonincreasing on [0, 1] which implies the concavity of u(t).

(ii) From Lemma 2.1, we know that there exists σ ∈ (0, 1) such that u′(σ) = 0. Now

we show that σ ∈ [ξ, η]. If not, then there exists σ ∈ (0, ξ) such that u′(σ) = 0. By Lemma

2.1 and (2.4), we have

u(σ) = αφq(

∫ σ

ξ

q(s)F (s, x(s))ds) +

∫ σ

0
φq(

∫ σ

s

q(τ)F (τ, x(τ))dτ)ds

<

∫ ξ

0
φq(

∫ ξ

0
q(τ)F (τ, x(τ))dτ)ds

≤ ξφq(Γ

∫ η

ξ

q(τ)F (τ, x(τ))dτ)

≤ βφq(

∫ η

ξ

q(τ)F (τ, x(τ))dτ) + (1 − η)φq(

∫ η

ξ

q(s)F (s, x(s))ds)

≤ βφq(

∫ η

σ

q(s)F (s, x(s))ds) +

∫ 1

σ

φq(

∫ s

σ

q(τ)F (τ, x(τ))dτ)ds

= u(σ)

which is a contradiction. So, σ 6∈ (0, ξ). Similarly, σ 6∈ (η, 1). The concavity of u(t)

guarantees that u(t) is nondecreasing on [0, ξ] and nonincreasing on [η, 1]. By the boundary

conditions, we have u(0) = αu′(ξ) + a ≥ a, u(1) = −βu′(η) + a ≥ a. Therefore, for any

t ∈ [0, 1], u(t) ≥ 0 since u(t) is concave on [0,1].
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(iii) Since u(t) is nondecreasing on [0, σ] and nonincreasing on [σ, 1] for σ ∈ [ξ, η], we

have
u(t)

t
≥ u(σ)

σ
≥ 1

η
||u||, t ∈ [0, σ],

u(t)

1 − t
≥ u(σ)

1 − σ
≥ 1

1 − ξ
||u||, t ∈ [σ, 1].

Let ω(t) = min{1
η
t, 1

1−ξ
(1 − t)}, it follows that

u(t) ≥ ω(t)||u||, t ∈ [0, 1].

The proof is completed.

We shall consider the following boundary value problem











(φp(u
′(t)))′ + q(t)F (t, u(t)) = 0, t ∈ (0, 1),

u(0) − αu′(ξ) = a, u(1) + βu′(η) = a.

(2.6)

Define an operator T : X → X by

(Tu)(t) =



















αφq(

∫ σ

ξ

q(s)F (s, u(s))ds) +

∫ t

0
φq(

∫ σ

s

q(τ)F (τ, u(τ))dτ)ds + a, 0 ≤ t ≤ σ,

βφq(

∫ η

σ

q(s)F (s, u(s))ds) +

∫ 1

t

φq(

∫ s

σ

q(τ)F (τ, u(τ))dτ)ds + a, σ ≤ t ≤ 1.

(2.7)

We have the following result:

Lemma 2.3. ([18], Lemma 3.1) T : X → X is completely continuous.

Now we state an existence principle which plays an important role in our proof of

existence results for one solution.

Lemma 2.4. (Existence principle) Assume that there exists a constant M > a independent

of λ, such that for λ ∈ (0, 1), ||u|| 6= M , where u(t) satisfies











(φp(u
′(t)))′ + λq(t)F (t, u(t)) = 0, t ∈ (0, 1),

u(0) − αu′(ξ) = a, u(1) + βu′(η) = a.

(2.7)λ

Then (2.7)1 has at least one solution u(t) with ||u|| ≤M .

Proof. For any λ ∈ [0, 1], define an operator

Nλu(t) =



















λαφq(

∫ σ

ξ

q(s)F (s, u(s))ds) +

∫ t

0
φq(

∫ σ

s

q(τ)λF (τ, u(τ))dτ)ds + a, 0 ≤ t ≤ σ,

λβφq(

∫ η

σ

q(s)F (s, u(s))ds) +

∫ 1

t

φq(

∫ s

σ

q(τ)λF (τ, u(τ))dτ)ds + a, σ ≤ t ≤ 1.
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By Lemma 2.3, Nλ : X → X is completely continuous. It can be verified that a solution

of BVP (2.7)λ is equivalent to a fixed point of Nλ in X. Let Ω = {u ∈ X : ||u|| < M},
then Ω is an open set in X. If there exists u ∈ ∂Ω such that N1u = u, then u(t) is a

solution of (2.7)1 with ||u|| ≤M . Thus the conclusion is true. Otherwise, for any u ∈ ∂Ω,

N1(u) 6= u. If λ = 0, for u ∈ ∂Ω, (I − N0)u(t) = u(t) − N0u(t) = u(t) − a 6≡ 0 since

||u|| = M > a. For λ ∈ (0, 1), if there is a solution u(t) to BVP (2.7)λ, by the assumption,

one gets ||u|| 6= M , which is a contradiction to u ∈ ∂Ω.

In a word, for any u ∈ ∂Ω and λ ∈ [0, 1], Nλu 6= u. Homotopy invariance of Leray-

Schauder degree deduce that

Deg{I −N1,Ω, 0} = Deg{I −N0,Ω, 0} = 1.

Hence, N1 has a fixed point u in Ω. And BVP (2.7)1 has a solution u(t) with ||u|| ≤ M .

The proof is completed.

To obtain two positive solutions of BVP (1.1), we need the following well-known fixed

point theorem of compression and expansion of cones [19].

Theorem 2.5. (Krasnosel’skii [19, p.148]) Let X be a Banach space and P (⊂ X) be a

cone. Assume that are Ω1, Ω2 are open subsets of X with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let

T : Ω2\Ω1 ∩ P → P be a continuous and compact operator such that either

(i)‖Tx‖ 6 ‖x‖, ∀x ∈ ∂Ω1 ∩ P and ‖Tx‖ > ‖x‖, ∀x ∈ ∂Ω2 ∩ P ; or

(ii)‖Tx‖ 6 ‖x‖, ∀x ∈ ∂Ω2 ∩ P and ‖Tx‖ > ‖x‖, ∀x ∈ ∂Ω1 ∩ P .

Then T has a fixed point theorem in (Ω2 \ Ω1) ∩ P .

3 Existence of positive solutions

First we give some notations.

Denote

G(c) =
∫ c

0 [f1(u) + f2(u)]du, I(c) =
∫ c

0 φq(t)dt = (p−1
p

)c
p

p−1 for c > 0.

Clearly, G(c) is increasing in c, I−1(c) exists and I−1(c) = ( p
p−1)

p−1

p c
p−1

p . Since p >

1, ( p
p−1)

p−1

p > 1, we have I−1(uυ) ≤ I−1(u)I−1(υ) for any u > 0, υ > 0. For c < 0, it is

easy to see that I(−c) = I(c).

We now give the main results for BVP (1.1) in this paper.

Theorem 3.1. Suppose (H1a)-(H6) hold. Furthermore, we assume that
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(H7) there exists r > 0 such that

r

Mβ,η(r)
> 1,

where

Mβ,η(r) = φq(I
−1(G(r)))[βφq(I

−1(q(η))) +

∫ 1

0
φq(I

−1(q(t)))dt].

Then BVP (1.1) has a positive solution u(t) with ||u|| ≤ r.

Proof. From (H7), we choose r > 0 and 0 < ε < r such that

r

ε+Mβ,η(r)
> 1. (3.1)

Let n0 ∈ {1, 2, 3, · · · } satisfying that 1
n0

≤ ε. Set N0 = {n0, n0 + 1, n0 + 2, · · · }.
In what follows, we show that the following BVP











(φp(u
′(t)))′ + q(t)f(t, u(t)) = 0, t ∈ (0, 1),

u(0) − αu′(ξ) =
1

m
, u(1) + βu′(η) =

1

m

(3.2)

has a solution for each m ∈ N0.

In order to obtain a solution of BVP (3.2) for each m ∈ N0, we consider the following

BVP










(φp(u
′(t)))′ + q(t)f∗(t, u(t)) = 0, t ∈ (0, 1),

u(0) − αu′(ξ) =
1

m
, u(1) + βu′(η) =

1

m
,

(3.2)m

where

f∗(t, u) =











f(t, u), u ≥ 1

m
,

f(t,
1

m
), u ≤ 1

m
.

Clearly, f∗ ∈ C([0, 1] × R, (0,+∞)).

To obtain a solution of BVP (3.2)m for each m ∈ N0, by applying Lemma 2.4, we

consider the family of BVPs










(φp(u
′(t)))′ + λq(t)f∗(t, u(t)) = 0, t ∈ (0, 1),

u(0) − αu′(ξ) =
1

m
, u(1) + βu′(η) =

1

m
,

(3.2)λm

where λ ∈ [0, 1]. Let u(t) be a solution of (3.2)λm. From (H4) and Lemma 2.2, we observe

that u(t) is concave, u(t) ≥ 1
m

on [0,1] and there exists σ̂ ∈ [ξ, η] such that u(σ̂) = ||u||,
u′(σ̂) = 0, u′(t) ≥ 0, t ∈ [0, σ̂] and u′(t) ≤ 0, t ∈ [σ̂, 1].

For t ∈ [σ̂, 1] and λ ∈ (0, 1), in view of (H3), we have

0 ≤ −(φp(u
′(t)))′ = λq(t)f∗(t, u(t)) = λq(t)f(t, u(t)) ≤ q(t)[f1(u(t)) + f2(u(t))]. (3.3)
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Multiplying (3.3) by −u′(t), for t ∈ [σ̂, 1], it follows that

(φp(u
′(t)))′φq(φp(u

′(t))) ≤ q(t)[f1(u(t)) + f2(u(t))](−u′(t)). (3.4)

Integrating (3.4) from σ̂ to t (t ≥ σ̂), by (H1) and the fact that G(c) is increasing on c, we

obtain
∫ φp(u′(t))

0
φq(z)dz ≤ q(t)

∫ u(σ̂)

u(t)
[f1(z) + f2(z)]dz

= q(t)[G(u(σ̂)) −G(u(t))]

≤ q(t)G(u(σ̂)),

this implies

I(−φp(u
′(t))) = I(φp(u

′(t))) ≤ q(t)G(u(σ̂)),

0 ≤ −u′(t) ≤ φq(I
−1(q(t)))φq(I

−1(G(u(σ̂)))), (3.5)

therefore,

0 ≤ −u′(η) ≤ φq(I
−1(q(η)))φq(I

−1(G(u(σ̂)))).

Integrating (3.5) from σ̂ to 1, by the boundary condition of (3.2)λm, we have

u(σ̂) ≤ 1

m
+ φq(I

−1(G(u(σ̂))))[βφq(I
−1(q(η))) +

∫ 1

0
φq(I

−1(q(t)))dt]

≤ ε+ φq(I
−1(G(u(σ̂))))[βφq(I

−1(q(η))) +

∫ 1

0
φq(I

−1(q(t)))dt].

Hence,
u(σ̂)

ε+ φq(I−1(G(u(σ̂))))[βφq(I−1(q(η))) +
∫ 1
0 φq(I−1(q(t)))dt]

≤ 1,

i.e.,
u(σ̂)

ε+Mβ,η(u(σ̂))
≤ 1. (3.6)

Due to (3.1) and (3.6), we have u(σ̂) = ||u|| 6= r. Further, Lemma 2.4 implies that

(3.2)m has at least a solution um ∈ C1[0, 1] and (φp((u
m)′))′ ∈ C(0, 1) ∩ L1[0, 1] with

||um|| ≤ r (independent of m) for any fixed m. From Lemma 2.2, we note that um(t) ≥
1
m
> 0. So f∗(t, um(t)) = f(t, um(t)). Therefore, um(t) is a solution to BVP (3.2).

Using Arzelà-Ascoli theorem, we shall show that BVP (1.1) has at least a positive

solution u(t) which satisfies lim
m→∞

um(t) = u(t) for t ∈ (0, 1). Note that

0 <
1

m
≤ um(t) ≤ r, t ∈ [0, 1].

(H5) implies that there is a continuous function ψr : (0, 1) → (0,+∞)(independent of m)

satisfying

f(t, um(t)) ≥ ψr(t), t ∈ (0, 1),

EJQTDE, 2009 No. 42, p. 8



hence,

−(φp(u
m(t))′)′ ≥ ψr(t)q(t), t ∈ (0, 1). (3.7)

For anym ∈ N0, by Lemma 2.2, there exists tm ∈ [ξ, η] such that um(tm) = ||um||, (um)′(tm) =

0, (um)′(t) ≥ 0 for t ∈ [0, tm] and (um)′(t) ≤ 0 for t ∈ [tm, 1].

If t ∈ [0, ξ], integrating (3.7) from t to tm, we obtain

φp((u
m)′(t)) ≥

∫ tm

t

q(s)ψr(s)ds. (3.8)

Integrating (3.8) from 0 to t, we have

um(t) ≥ 1

m
+

∫ t

0
φq(

∫ tm

s

q(τ)ψr(τ)dτ)ds

≥
∫ t

0
φq(

∫ ξ

s

q(τ)ψr(τ)dτ)ds,

further,

um(ξ) ≥
∫ ξ

0
φq(

∫ ξ

s

q(τ)ψr(τ)dτ)ds = θ1 > 0.

Since um(t) is concave in [0, ξ], we have

um(t)

t
≥ um(ξ)

ξ
⇒ um(t) ≥ um(ξ)

ξ
t ≥ θ1

ξ
t. (3.9)

If t ∈ [η, 1], integrating (3.7) from tm to t, we obtain

−φp((u
m)′(t)) ≥

∫ t

tm
q(s)ψr(s)ds. (3.10)

Integrating (3.10) from t to 1, we have

um(t) ≥ 1

m
+

∫ 1

t

φq(

∫ s

tm
q(τ)ψr(τ)dτ)ds

≥
∫ 1

t

φq(

∫ s

tm
q(τ)ψr(τ)dτ)ds,

therefore,

um(η) ≥
∫ 1

η

φq(

∫ s

η

q(τ)ψr(τ)dτ)ds = θ2 > 0.

Since um(t) is concave in [η, 1], we get

um(t)

1 − t
≥ um(η)

1 − η
⇒ um(t) ≥ um(η)

1 − η
(1 − t) ≥ θ2

1 − η
(1 − t). (3.11)

If t ∈ [ξ, η], in view of concavity of um(t), we have

um(t) ≥ min{um(ξ), um(η)} ≥ θ, (3.12)

where θ = min{θ1, θ2}.
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Let

δ(t) =































θ

ξ
t, t ∈ [0, ξ],

θ, t ∈ [ξ, η],

θ

1 − η
(1 − t), t ∈ [η, 1],

(3.13)

where θ = min{θ1, θ2}.
By (3.9), (3.11), (3.12) and (3.13), for any m ∈ N0, we have

um(t) ≥ δ(t), t ∈ [0, 1].

At the same time, it follows from (H3) and (H6) that

0 ≤ −(φp(u
m)′(t))′ = q(t)f(t, um(t)) ≤ q(t)[f1(u

m(t)) + f2(u
m(t))]

≤ q(t)f1(δ(t)) + max
0≤τ≤r

f2(τ)q(t).

Thus,

|φp((u
m)′(t))| ≤

∫ 1

0
q(s)f1(δ(s))ds + max

0≤τ≤r
f2(τ)

∫ 1

0
q(s)ds

and

|(um)′(t)| ≤ φq(

∫ 1

0
q(s)f1(δ(s))ds + max

0≤τ≤r
f2(τ)

∫ 1

0
q(s)ds) < +∞. (3.14)

Therefore, {um(t)}m∈N0
is equi-continuous on [0,1]. Furthermore, from the fact that

0 < um(t) ≤ r, t ∈ [0, 1],

we have {um(t)}m∈N0
is uniformly bounded on [0,1].

The Arzelà-Ascoli theorem guarantees that there is a subsequence N
∗ ⊂ N0, a function

u ∈ C
1[0, 1] satisfying um(t) → u(t) uniformly on [0, 1] and tm → σ as m → +∞ in N

∗.

From the definition of um(t), we have

um(t) =



















αφq(

∫ tm

ξ

q(s)f(s, um(s))ds) +

∫ t

0

φq(

∫ tm

s

q(τ)f(τ, um(τ))dτ)ds +
1

m
, 0 ≤ t ≤ tm,

βφq(

∫ η

tm

q(s)f(s, um(s))ds) +

∫ 1

t

φq(

∫ s

tm

q(τ)f(τ, um(τ))dτ)ds +
1

m
, tm ≤ t ≤ 1.

(3.15)

Letm→ +∞ in N
∗ in (3.15), by the continuity of f and Lebesgue’s dominated convergence

theorem, we get

u(t) =



















αφq(

∫ σ

ξ

q(s)f(s, u(s))ds) +

∫ t

0
φq(

∫ σ

s

q(τ)f(τ, u(τ))dτ)ds, 0 ≤ t ≤ σ,

βφq(

∫ η

σ

q(s)f(s, u(s))ds) +

∫ 1

t

φq(

∫ s

σ

q(τ)f(τ, u(τ))dτ)ds, σ ≤ t ≤ 1,
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hence,










(φp(u
′(t)))′ + q(t)f(t, u(t)) = 0, t ∈ (0, 1),

u(0) − αu′(ξ) = 0, u(1) + βu′(η) = 0.

From δ(t) ≤ um(t) ≤ r, t ∈ [0, 1], we have δ(t) ≤ u(t) ≤ r, t ∈ [0, 1]. So u(t) >

0, t ∈ (0, 1) and −(φp(u
′(t)))′ = q(t)f(t, u) ≤ q(t)f1(δ(t)) + max0≤τ≤r f2(τ)q(t) ∈ L

1[0, 1].

Therefore, (φp(u
′(t)))′ ∈ L

1[0, 1] which means u(t) is a positive solution to BVP (1.1).

The proof is completed.

Theorem 3.2. Suppose (H1b)-(H6) hold. Furthermore, we assume that

(H8) there exists r > 0 such that

r

Mα,ξ(r)
> 1,

where

Mα,ξ(r) = φq(I
−1(G(r)))[αφq(I

−1(q(ξ))) +

∫ 1

0
φq(I

−1(q(t)))dt].

Then BVP (1.1) has a positive solution u(t) with ||u|| ≤ r.

Theorem 3.3. Suppose (H1a)-(H7) hold. Furthermore, we assume that

(H9) there exists a fixed constant δ ∈ (0, 1
2 ) with [ξ, η] ⊂ [δ, 1 − δ], and µ ∈ C[δ, 1 − δ]

with µ > 0 on [δ, 1 − δ] such that

q(t)f(t, u) ≥ µ(t)[f1(u) + f2(u)] on [δ, 1 − δ] × (0,+∞);

(H10) there exists R > r such that

2Rφq(f1(ω1(δ)R))

φq[f1(R)f1(ω1(δ)R) + f1(R)f2(ω1(δ)R)]
≤ b0,

where

b0 = min{α, β}min{1, 22−q}φq(

∫ η

ξ

µ(s)ds),

ω1(δ) = min{δ
η
,

δ

1 − ξ
}.

Then BVP (1.1) has a positive solution u1(t) with r < ||u1|| ≤ R.

Proof. Let

K = {u ∈ X : u(t) ≥ 0, u(t) is concave, u(t) ≥ ω(t)||u||, t ∈ [0, 1]}.

Obviously, K is a cone of X. Since r < R, denote open subsets Ω1 and Ω2 of X:

Ω1 = {u ∈ X : ||u|| < r}, Ω2 = {u ∈ X : ||u|| < R}.
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Let A : K ∩ (Ω̄2 \ Ω1) → X be defined by

(Au)(t) =



















αφq(

∫ σ

ξ

q(s)f(s, u(s))ds) +

∫ t

0
φq(

∫ σ

s

q(τ)f(τ, u(τ))dτ)ds, 0 ≤ t ≤ σ,

βφq(

∫ η

σ

q(s)f(s, u(s))ds) +

∫ 1

t

φq(

∫ s

σ

q(τ)f(τ, u(τ))dτ)ds, σ ≤ t ≤ 1.

(3.16)

It is easy to verify that the fixed points of operator A are the positive solutions of BVP

(1.1). So it suffices to show that A has at least one fixed point.

First we prove A : K ∩ (Ω̄2 \ Ω1) → K. If u ∈ K ∩ (Ω̄2 \ Ω1), differentiating (3.16) for

t, we obtain

(Au)′(t) =















φq(

∫ σ

t

q(τ)f(τ, u(τ))dτ), 0 ≤ t ≤ σ,

− φq(

∫ t

σ

q(τ)f(τ, u(τ))dτ), σ ≤ t ≤ 1

and

(Au)′′(t) =















− (q − 1)(

∫ σ

t

q(τ)f(τ, u(τ))dτ)q−2q(t)f(t, u(t)), 0 < t ≤ σ,

− (q − 1)(

∫ t

σ

q(τ)f(τ, u(τ))dτ)q−2q(t)f(t, u(t)), σ ≤ t < 1.

(3.17)

In view of (3.16) and (3.17), note that (Au)′′(t) ≤ 0 for any t ∈ (0, 1), and Au(0) ≥
0, Au(1) ≥ 0. Therefore, Au(t) is concave and Au(t) ≥ 0 on [0, 1]. By Lemma 2.2, we

have Au(t) ≥ ω(t)||Au||. Consequently, Au ∈ K, i.e., A : K ∩ (Ω̄2 \ Ω1) → K.

By Lemma 2.3, we have that A : K ∩ (Ω̄2 \ Ω1) → K is completely continuous.

Now we shall show that

||Au|| < ||u|| for u ∈ K ∩ ∂Ω1. (3.18)

Let u ∈ K ∩ ∂Ω1, then ||u|| = r. As in the proof of (3,7), we have

||Au|| = (Au)(σ)

≤ φq(I
−1(G(r)))[βφq(I

−1(q(η))) +

∫ 1

0
φq(I

−1(q(t)))dt]

= Mβ,η(r)

< r = ||u||.

Consequently, ||Au|| < ||u||. So (3.18) holds.

Furthermore, we give that

||Au|| ≥ ||u|| for u ∈ K ∩ ∂Ω2. (3.19)
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Let u ∈ K ∩ ∂Ω2, so ||u|| = R and u(t) ≥ ω(t)R for t ∈ [0, 1]. In particular, u(t) ∈
[ω1(δ)R,R] for t ∈ [δ, 1 − δ], where ω1(δ) = min{ δ

η
, δ

1−ξ
} (δ is the same as in (H9)). By

(H3), (H7) and (H8), we obtain

||Au|| =(Au)(σ)

=
1

2
[αφq(

∫ σ

ξ

q(s)f(s, u(s))ds) +

∫ σ

0
φq(

∫ σ

s

q(τ)f(τ, u(τ))dτ)ds

+ βφq(

∫ η

σ

q(s)f(s, u(s))ds) +

∫ 1

σ

φq(

∫ s

σ

q(τ)f(τ, u(τ))dτ)ds]

≥1

2
[αφq(

∫ σ

ξ

q(s)f(s, u(s))ds) +

∫ σ

δ

φq(

∫ σ

s

q(τ)f(τ, u(τ))dτ)ds

+ βφq(

∫ η

σ

q(s)f(s, u(s))ds) +

∫ 1−δ

σ

φq(

∫ s

σ

q(τ)f(τ, u(τ))dτ)ds]

≥1

2
φq(f1(R))φq[1 +

f2(ω1(δ)R)

f1(ω1(δ)R)
][αφq(

∫ σ

ξ

µ(s)ds) +

∫ σ

δ

φq(

∫ σ

s

µ(τ)dτ)ds

+ βφq(

∫ η

σ

µ(s)ds) +

∫ 1−δ

σ

φq(

∫ s

σ

µ(τ)dτ)ds]

≥1

2
φq(f1(R))φq[1 +

f2(ω1(δ)R)

f1(ω1(δ)R)
]min{α, β}min{1, 22−q}φq(

∫ η

ξ

µ(s)ds)

≥R = ||u||.

Consequently, ||Au|| ≥ ||u||. So (3.19) holds. By Theorem 2.5, we can obtain that A has

a fixed point u1 ∈ K ∩ (Ω̄2 \Ω1) with r < ||u1|| ≤ R and u1(t) ≥ ω(t)r for t ∈ [0, 1]. Thus

u1(t) > 0 for t ∈ (0, 1). The proof is completed.

Theorem 3.4. Suppose (H1a)-(H7), (H9) and (H10) hold. Then BVP (1.1) has two

positive solutions u(t), u1(t) with ||u|| ≤ r < ||u1|| ≤ R.

Theorem 3.5. Suppose (H1b)-(H6) and (H8)-(H10) hold. Then BVP (1.1) has two positive

solutions u(t), u1(t) with ||u|| ≤ r < ||u1|| ≤ R.

4 Example

In this section, we give an explicit example to illustrate our main result.

Example 4.1. Consider four-point boundary value problem of second order differential

equation














u′′ +
a√

1 − t
(
σ(t)

u
1

4

+ t) = 0, 0 < t < 1,

u(0) − u′(
1

4
) = 0, u(1) + u′(

3

4
) = 0,

(4.1)

where σ(t) = max{0, (t − ξ)(η − t)}, a > 0 is a constant.

Conclusion: BVP (4.1) has at least one positive solution.
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Proof. Obviously, p = 2, α = 1, β = 1, ξ = 1
4 , η = 3

4 in BVP(4.1). Comparing to

Theorem 3.1, we verify (H1a)-(H7) as follows:

(H1a) q(t) = a√
1−t

∈ C(0, 1) ∩ L
1[0, 1], q(t) > 0 and nonincreasing on (0, 1);

(H2) f(t, u) = σ(t)

u
1
4

+ t is a continuous function on [0, 1] × (0,+∞);

(H3) 0 < f(t, u) = σ(t)

u
1
4

+ t ≤ 1

u
1
4

+ 1 + u4 = f1(u) + f2(u), where f1(u) = 1

u
1
4

> 0

continuous, nonincreasing on (0,+∞) and
∫ L

0 f1(u)du < +∞ for any fixed L > 0; f2(u) =

u4 + 1 > 0 is continuous on [0,+∞); f2

f1
= u

1

4 + u
17

4 nondecreasing on (0,+∞);

(H4) Let R = 1, so N(t) = sup
u∈(0,1]

f(t, u) = t for t ∈ [0, 1
4 ], n(t) = inf

u∈(0,1]
f(t, u) =

(t− 1
4 )(3

4 − t) + t for t ∈ [14 ,
3
4 ], then

∫ 1

4

0
q(t)N(t)dt = a

∫ 1

4

0

t√
1 − t

dt
.
= 0.034295227a,

∫ 3

4

1

4

q(t)n(t)dt = a

∫ 3

4

1

4

(t− 1
4)(3

4 − t) + t√
1 − t

dt
.
= 0.4124355660a,

Γ =
13

3
, Γa

∫ 3

4

1

4

(t− 1
4)(3

4 − t) + t√
1 − t

dt
.
= 1.787220786a

so a
∫

1

4

0
t√
1−t

dt ≤ Γa
∫

3

4

1

4

(t− 1

4
)( 3

4
−t)+t√

1−t
dt;

(H5) For each constant H > 0, there exists a function ψH(t) = t that is continuous on

[0, 1] and positive on (0, 1) satisfying f(t, u) ≥ ψH(t) on (0, 1) × (0,H];

(H6) Clearly,
∫

1

4

0
1

4
√

k1s
√

1−s
ds < +∞,

∫ 1
3

4

1
4
√

k2(1−s)
√

1−s
ds < +∞, for any k1 > 0, k2 >

0;

(H7) When r > 0,

φq(r) = r, I−1(r) =
√

2r,

G(r) =

∫ r

0
[f1(s) + f2(s)]ds =

∫ r

0
[

1

s
1

4

+ 1 + s4]ds =
4

3
r

3

4 + r +
1

5
r5,

Mβ,η(r) = φq(I
−1(G(r)))[βφq(I

−1(q(η))) +

∫ 1

0
φq(I

−1(q(t)))dt]

=

√

8

3
r

3

4 + 2r +
2

5
r5(2 +

4

3

√
2)
√
a,

let r = 0.1, a = 10−4, so r
Mβ,η(r)

.
= 3.134308209 > 1.

Therefore, By Theorem 3.1, we obtain that BVP (4.1) has at least one positive solution.
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