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Abstract

Problem of the type−∆pu = f(u) + h(x) in (a, b) with u = 0 on
{a, b} is solved under nonresonance conditions stated with respect to the first
eigenvalue and the first curve in the Fučik spectrum of(−∆p,W

1,p
0 (a, b)),

only on a primitive off .

Keywords: One-dimensional p-Laplacian, Fučik spectrum, Nonresonance, Time-
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1 Introduction

This paper is mainly concerned with the following quasilinear two-point bound-
ary value problem

(P ) =















−(ϕp(u
′))′ = f(u) + h(x) in (a, b)

u = 0 on {a, b}

whereϕp : R −→ R is defined byϕp(s) = |s|p−2s, with p ∈]1, +∞],
f : R −→ R, is a continuous function andh ∈ L1(a, b).

1AMS subject classification: 34B15
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We denote by
∑

the set of couples of positive numbers(µ+, µ−) such that the
homogeneous problem

(PP) =















−(ϕp(u
′))′ = µ+ϕp(u

+) − µ−ϕp(u
−) in (a, b)

u = 0 on {a, b}

has a nontrivial solutionu. Hereu+ = max(u, 0), u− = u+ − u. The set
∑

is called the Fučik spectrum of the p-Laplacian operator−∆p on W 1,p
0 (a, b).

Denote respectively byλ1 andλ2 the first and the second eigenvalue of−∆p on
W 1,p

0 (a, b). It is well known that
∑

is composed of two trivial linesλ1 × R and
R× λ1, and of a sequence of hyperbolic-like curves (cf [2],[6]).The first curveC1

passes throughλ2 and is the set

C1 = {(µ+, µ−) ∈ R
2, 1/(µ+)1/p + 1/(µ−)1/p =

b − a

πp
}

whereπp = 2(p − 1)1/p
∫ 1

0
ds

(1−sp)1/p .

Let us denote byF the primitive off defined byF (s) =
∫ s

a
f(t) dt. In some

previous works (see for instance [1],[3],[4], [10] ) many authors have proved the
solvability of (P) whenh ∈ L∞(a, b) under various nonresonance assumptions on
either the nonlinearityf , or on the primitiveF , or on bothf andF . As far as non-
resonance conditions are considered at the right ofλ1, the Dolph-type condition:

λ1 < lim inf
s→±∞

f(s)

|s|p−2s
≤ lim sup

s→±∞

f(s)

|s|p−2s
≤ λ2 (1)

is sufficient to yield solvability of (P) whenh ∈ L∞(a, b) ( See [1]). It was
observed in a recent work in [3], that weaker conditions withrespect to the first
curve in the Fučik spectrum such as

λ1 < lim sup
s→±∞

pF (s)

|s|p
≤ lim sup

s→±∞

f(s)

|s|p−2s
≤ µ± (2)

and

lim inf
s→+∞

or
s→−∞

pF (s)

|s|p
< µ+( or µ−) (3)

coupled with
lim

|s|→+∞
sgn(s)f(s) = +∞
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yield the same conclusion. Adapting an example given in [5],one can observe
that assumption (3) cannot be relaxed to

lim inf
s→+∞

or
s→−∞

f(s)

|s|p−2s
< µ+( or µ−)

Our purpose in the present paper is to weaken nonresonance conditions (2)
and (3) at the light of a recent contribution in [11] forp = 2. Indeed, in [11] the
solvability of (P) whenp = 2 occurs under assumptions such as

lim
|s|→+∞

sgn(s)f(s) = +∞ (4)

lim inf
s→±∞

2F (s)

s2
> µ1 (5)

and

lim inf
s→+∞

2F (s)

s2
= µ, lim sup

s→−∞

2F (s)

s2
= ν (6)

whereµ1 is the first eigenvalue of−∆, onH1
0 (a, b) and(µ, ν) is such that

π√
µ

+ π√
ν

> b − a. It is worth noticing that the roles ofs at infinity in (6) are in-
terchangeable. Clearly, assumption such as (6 )improves (3) in the particular case
of p = 2 and the question naturally arises to know whether similar assumption
can be extended to the p-Laplacian. The aim of this work is to investigate such a
problem and as a result of this investigation we have the following.

Theorem 1.1.Assume that
(h1) lim

|s|→+∞
sgn(s)f(s) = +∞

(h2) lim inf
s→±∞

pF (s)
|s|p > λ1

(h3) lim inf
s→+∞

pF (s)
|s|p = µ, lim sup

s→−∞

pF (s)
|s|p = ν

or lim inf
s→−∞

pF (s)
|s|p = µ, lim sup

s→+∞

pF (s)
|s|p = ν

with 1/µ1/p + 1/ν1/p > b−a
πp

Then problem (P) is solvable for anyh ∈ L1(a, b).

As a consequence of our main result we have the following

Corollary 1.1. Assume that
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lim
|s|→+∞

sgn(s)f(s) = +∞

lim inf
s→±∞

pF (s)
|s|p > λ1

and lim inf
s→+∞

pF (s)
|s|p < λ2, lim sup

s→−∞

pF (s)
|s|p ≤ λ2

or lim inf
s→+∞

pF (s)
|s|p ≤ λ2, lim sup

s→−∞

pF (s)
|s|p < λ2

Then problem (P) is solvable for anyh ∈ L1(a, b).

Needless to mention that the limits at∞ are interchangeable.
Thus, our result improves [3] in what concerns the conditions with respect to the
first curve in the Fučik spectrum.
The proof of Theorem 1-1 is given in section 4. Basically, it uses time-mapping
estimates to yield the needed a-priori bounds for a suitableparametrized problem
related to (P) and combines topological degree argument to conclude . Our section
2 is devoted to the establishment of general properties for quasilinear differential
equations useful for the proof of our main result. In section3 we have given new
estimate results for the time-mapping related to the p-Laplacian and accordingly
improved some estimate results stated in [10]. Those estimates play a central role
in the proof of Theorem 1-1.

2 General properties

Here we give general results for a large class of parametrized quasilinear prob-
lem of the form

(Qγ) =







−(ϕp(u
′))′ = f̂(x, u, γ) + γh(x) in (a, b), γ ∈ [0, 1]

u = 0 on {a, b}

We assume thath ∈ L1(a, b) andf̂ : [a, b] × R × [0, 1] −→ R is a function satis-
fying the following:
(i) sign condition:sgn(s)f̂(x, s, γ) ≥ −c for a positive constantc, for a.e. x ∈
[a, b] and forγ ∈ [0, 1];
(ii) L1-Carathéodory condition:̂f(x, ., γ) is continuous for a.e.x ∈ [a, b], γ ∈
[0, 1], f̂(., s, γ) is measurable fors ∈ R andγ ∈ [0, 1]; moreover for eachR > 0,
there isΓR ∈ L1(a, b) such that|f̂(x, s, γ)| ≤ ΓR(x) for all |s| ≤ R, a.e.
x ∈ [a, b], and forγ ∈ [0, 1]. Solutions to(Qγ) are intended in the sense that
u ∈ C1[a, b], ϕp(u

′) is absolutely continuous andu satisfies(Qγ).

For any solutionu of (Qγ) we set here and henceforth the following
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Definition 2.1. We denote byx∗ the first point of maximum ofu andx∗ the last
point of minimum ofu.

Definition 2.2. For anyK such that0 < K ≤ max u, we denote

α0 = max{x ∈ [a, x∗), u(x) = 0}

β0 = min{x ∈ (x∗, b], u(x) = 0}

αK = min{x ∈ [α0, x
∗], u(x) = K}

βK = max{x ∈ [x∗, β0, ], u(x) = K}

Definition 2.3. For anyK ′ such that0 > K ′ ≥ min u, we denote

α′
0 = max{x ∈ [a, x∗), u(x) = 0}

β ′
0 = min{x ∈ (x∗, b], u(x) = 0}

α′
K ′ = min{x ∈ [α′

0, x∗], u(x) = K ′}

β ′
K ′ = max{x ∈ [x∗, β

′
0, ], u(x) = K ′}

Writing the first equation in(Qγ) in the planar system

ϕp(u
′) = y(x) − γH̃(x) (7)

y′(x) = −f̃ (x, u(x), γ) (8)

with f̃(x, s, γ) = f̂(x, s, γ) + c and H̃(x) =
∫ x

a
(h(t) − c) dt, we derive the

following.

Lemma 2.1. A positive constantL exists such that any solutionu of (Qγ) satisfy-
ing max u > L, fulfills the following conditions: there exist uniquely determined
real numbersρ and ρ̄, with α0 < ρ ≤ x∗ ≤ ρ̄ < β0 such that

(i)
y(x) > ‖H̃‖∞ on [α0, ρ)

|y(x)| ≤ ‖H̃‖∞ on [ρ, ρ̄]

y(x) < −‖H̃‖∞ on (ρ̄, β0]

(ii) u is strictly increasing on[α0, ρ], strictly decreasing on[ρ̄, β0] and

max u − L ≤ u(x) ≤ max u on [ρ, ρ̄]

If furthermore
lim

s→+∞
f̂(x, s, γ) = +∞

uniformly for (γ ∈ [0, 1], and a.e.x ∈ [a, b]), then for anyK > 0 such that
K ≤ max u we have

EJQTDE, 2009 No. 57, p. 5



(iii)
lim

K→+∞
(αK − αK−L) = lim

K→+∞
(βK−L − βK) = 0

Remark 2.1. A dual version of Lemma (2.1)involvingα′
0, β

′
0, α

′
K ′, β ′

K ′ can be ob-
tained in the case thatu is a solution of the planar system withmin u < −L
and

lim
s→−∞

f̂(x, s, γ) = −∞

uniformly (forγ ∈ [0, 1] and a.e.x ∈ [a, b]). In this casef̃ andH̃ in the planar
system are writteñf(x, s, γ) = f̂(x, s, γ) − c, H̃(x) =

∫ x

a
(h(t) + c) dt.

Proof of Lemma 2.1
The proof of Lemma 2.1 in the particular casep = 2 is given in [11]. We give
here the general case for anyp > 1. So, let us considerα0, β0, x

∗ as set in the
definitions 2.1, 2.2. Sincey′(x) = −f̃(x, u(x), γ), from the sign condition on̂f ,
we have thaty is strictly decreasing on(α0, β0) and accordingly

y(α0) > y(x∗) > y(β0)

Moreoveru′(x∗) = 0, and then (7) yields

|y(x∗)| = |ϕp(0) + γH̃(x∗)| ≤ ‖H̃‖∞

Let [ρ, ρ̄] ⊂ [α0, β0] be the maximal interval containingx∗ and such that

|y(x)| ≤ ‖H̃‖∞ (9)

Clearly, for such an interval, part (i) of Lemma 2.1 holds.
Sinceϕp is a bijection onR, one can write (7) on the form

u′(x) = ϕ−1
p (y(x) − γH̃(x))

And then using the monotoniciity ofϕp and (9), we have fors ∈ [ρ, ρ̄]

|u′(x)| = |ϕ−1
p (y(x) − γH̃(x))| ≤ ϕ−1

p (2‖H̃‖∞)

Accordingly, forx′ andx′′ in [ρ, ρ̄], we get

|u(x′′) − u(x′)| ≤ |

∫ x′′

x′

u′(x) dx| ≤ (b − a)ϕ−1
p (2‖H̃‖∞).

Consequently we get

‖u‖∞ − (b − a)ϕ−1
p (2‖H̃‖∞) ≤ u(x′′) ≤ ‖u‖∞ for all x′′ ∈ [ρ, ρ̄].
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So by settingL = (b − a)ϕ−1
p (2‖H̃‖∞), we have part (ii) of the lemma.

To deal with part (iii) of the lemma, we note that sincelim
s→+∞

f̂(x, s, γ) = +∞

uniformly for γ ∈ [0, 1], and a.e.x ∈ [a, b]), for anyk > 0, one can choosevk > 0
large enough such that

f̂(x, s, γ) ≥ k for all s ≥ vk, γ ∈ [0, 1], anda.e. x ∈ [a, b].

ChooseK with K ≥ vk + L whereL = (b − a)ϕ−1
p (2‖H̃‖∞).

Let’s consider any solution of(Qγ) such thatmax u ≥ K.
SinceK − L ≤ u(x) ≤ K whenx ∈ [αK−L, αK ], we have

f̃(x, u(x), γ) ≥ k, for all x ∈ [αK−L, αK ], andγ ∈ [0, 1] (10)

and then

y(x) = y(αK) +

∫ x

αK

y′(t) dt

=

∫ αK

x

f̃(t, u(t), γ) dt on [αK−L, αK ].

Sincemax u ≥ K, we haveαK ∈ [α0, x
∗] and then by using part (i) of the lemma

and condition (10) we have

y(x) ≥ −‖H̃‖∞ + k(αK − x).

And then

u′(x) = ϕ−1
p (y(x) − γH̃(x)) ≥ ϕ−1

p (−2‖H̃‖∞ + k(αK − x)) on [αK−L, αK ].

Next, we derive from the integration ofu′ on [αK−L, αK ] the following inequality

L = u(αK) − u(αK−L) ≥

∫ αK

αK−L

ϕ−1
p (−2‖H̃‖∞ + k(αK − x)) dx (11)

To go further with the integral in the left hand-side of (11),let us set

Ψ∗
p(s) =

∫ s

0

ϕ−1
p (ξ) dξ.

A simple computation shows that

ϕ−1
p (s) = s|s|

2−p
p−1 for all s ∈ R andp ∈]1, +∞[ and thenΨ∗

p(s) = p−1
p
|s|

p
p−1 for all s ∈

R andp ∈]1, +∞[. ClearlyΨ∗
p is an even strictly increasing function onR+. Let

us denote byΨ∗−1
p (s) its positive inverse function onR+.

Ψ∗−1
p (s) = (

p

p − 1
)

p−1

p
s

p−1

p , s ∈ R+.
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On the other hand, the function

x 7→ Ψ∗
p(−2‖H̃‖∞ + k(αK − x))

is differentiable with respect tox and so

d

dx
[Ψ∗

p(−2‖H̃‖∞ + k(αK − x))] = −kϕ−1
p (−2‖H̃‖∞ + k(αK − x)) (12)

Combining (11)and (12), we get

L ≥ −
1

k
[Ψ∗

p(−2‖H̃‖∞ + k(αK − x))]αK
αK−L

and then

kL + Ψ∗
p(2‖H̃‖∞) ≥ Ψ∗

p(−2‖H̃‖∞ + k(αK − αK−L)).

Now, using the positive inverse ofΨ∗
p, one has

αK − αK−L ≤
Ψ∗−1

p (kL + Ψ∗
p(2‖H̃‖∞) + 2‖H̃‖∞

k
(13)

One can easily see that the right hand-side of inequality (13) is equivalent tok−1/p

at infinity. So whenK tends to+∞, k tends to+∞, and then

lim
K→+∞

(αK − αK−L) = 0.

A similar argument on[βK , βK−L] leads to

lim
K→+∞

(βK−L − βK) = 0.

So Lemma (2.1) is proved.�

Remark 2.2. WhenK = max u, thenαK = βK = x∗ and then from (iii ) of
Lemma(2.1) we havelim

u∗→+∞
(βmax u−L − αmax u−L) = 0.

Lemma 2.2. Let u be a changing sign solution of(Qγ) for γ ∈ [0, 1] and letA,
be a positive real number such thatmax u < A or min u > −A uniformly with
respect toγ ∈ [0, 1]. Then a constantM ( depending only onA ) exists such that
‖u‖∞ < M .
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Proof Let us consider only the casemax u < A, the second casemin u >
−A of course can be proved similarly. Thus, suppose on the contrary that there
exist a sequence(γn) ∈ [0, 1] denote(γ) for sake of simplicity of notation, and
corresponding solutionsun of (Qγ), with max un < A andmin un tending to
−∞. Then, from the sign condition and theL1-Carathéodory condition on̂f we
have

f̂(x, un, γ) ≤ cχ{un<0} + ΓA.χ{0≤un<A} = Γ(x)

where for any setE, χE denote its characteristic function. Choose two points
x∗

n andx∗n such thatun(x
∗
n) = maxun andun(x∗n) = min un. We can suppose

without loss of generality thatx∗
n > x∗n. Setũn = un − ūn with (x∗

n − x∗n)ūn =
∫ x∗

n

x∗n
un(x) dx. Then after the multiplication of the first equation in(Qγ) with ũn

and its integration over[x∗n, x∗
n], we have

∫ x∗

n

x∗n

|ũ′
n(x)|p dx =

∫ x∗

n

x∗n

[f̂(x, un, γ)−Γ(x)]ũn(x) dx+

∫ x∗

n

x∗n

[γh(x)+(x)]ũn(x) dx

≤ ||ũn||∞
{

∫ x∗

n

x∗n

[−f̂(x, un, γn) + Γ(x)] dx + ||h||1 + ‖Γ‖1

}

.

But
∫ x∗

n

x∗n

[−f̂(x, un, γn) + γh(x)] dx = 0

and then we have
∫ x∗

n

x∗n

|ũ′
n(x)|p dx ≤ 2[||h||1 + ||Γ||1]||ũn||∞ (14)

From the Hölder inequality we have

(

∫ x∗

n

x∗n

|ũ′
n(x)| dx)p ≤ (b − a)p−1

∫ x∗

n

x∗n

|ũ′
n(x)|p dx.

Combining the above inequality and (14), we get

(max ũn − min ũn) ≤ 2(b − a)p−1[||h||1 + ||Γ||1]||ũn||∞ (15)

Since||ũn||
p
∞ ≤ (max ũn − min ũn), inequality (15) yields

||un||∞ ≤ 2
1

p−1 (b − a)[||h||1 + ||Γ||1]
1

p−1 .

So the sequence (ũn) is bounded and hence(un) is bounded. This is a contradic-
tion to the fact thatmin un tends to−∞. �
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3 Time-mapping and auxiliary functions

3.1 Time-mapping estimates

Let’s consider the initial value problem

(I) =







−(ϕp(u
′))′ = g(u) on R

u(0) = s, u′(0) = 0

Whereg : R → R is a continuous function satisfyingsgn(s)g(s) > −c for c > 0
andG(s) → +∞.
The functionτg defined by

τg(s) = 2cpsgn(s)

∫ s

0

dξ

[G(s) − G(ξ)]1/p
for s in R

with G(s) =
∫ s

0
g(ξ) dξ, cp = 1

p∗1/p andp∗ = p
p−1

is the time-mapping associated
to (I).
Under the assumptionssgn(s)g(s) > −c for c > 0 and G(s) → +∞ when
|s| → +∞, τg(s) is well defined for|s| large enough. By adapting arguments
developed in [12] for the casep = 2, one can easily derive that fors large enough
(I) admits a periodic solutionuswith ||us||∞ = s and τg(s) is the value of the
half period. Time-mapping enables to provide a-priori estimates for solutions of
boundary value problems ( cf [7], [10], [11], [12]). Here, wegive new results
on the time-mapping estimates extending and even improvingsome results in [7],
[10], [11], [12].

Lemma 3.1. Assume that there exist positive real numbersk± andk± such that

lim sup
s→±∞

pG(s)/|s|p = k± (resp.lim inf
s→±∞

pG(s)/|s|p = k±)

then

lim inf
s→±∞

τg(s) ≥ πp/(k±)
1/p

(resp.lim sup
s→±∞

τg(s) ≤ πp/(k±)1/p)

Proof.
One can notice that under the assumptionsgn(s)g(s) > −c for c > 0 and the
fact thatk± k± are greater than0, G(s) → +∞ when|s| → +∞ so thatτg(s) is
well defined fors large enough. Let’s limit the proof of the lemma to the cases
lim sup
s→−∞

pG(s)/|s|p = k−, (resp.lim inf
s→−∞

pG(s)/|s|p = k−), the other cases being

similar.
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Fors < 0 and for anyξ such that|s|p > |ξ|p, we have

lim sup
s→−∞

pG(s)

|s|p − |ξ|p

= lim sup
s→−∞

pG(s)/|s|p × lim
s→−∞

|s|p

|s|p − |ξ|p
= k−

and then

lim sup
s→−∞

[

pG(s)

|s|p − |ξ|p
−

pG(ξ)

|s|p − |ξ|p

]

= k−.

So forǫ > 0, there is a real numbers0 < 0 such that fors < s0 we have

G(s) − G(ξ) ≤ 1/p(k− + ǫ)(|s|p − |ξ|p).

Recalling the expression ofτg(s) and taking into account inequality above, we get

τg(s) ≥ 2cp

∫ s0

s

dξ

[G(s) − G(ξ)]1/p

≥
2cpp

1/p

(k− + ǫ)1/p

∫ s0

s

dξ

[|s|p − |ξ|p]1/p
.

Settingz = ξ/s, one has

τg(s) ≥
2(p − 1)1/p

(k− + ǫ)1/p

∫ 1

0

dz

[1 − zp]1/p
=

πp

(k− + ǫ)1/p
for all s < s0 < 0.

Thus
lim inf
s→−∞

τ(s) ≥
πp

(k−)1/p
.

For the caselim inf
s→−∞

pG(s)/|s|p = k−, we have

∀ǫ > 0, there is a real numbers0 < 0 such that fors < s0

G(s) − G(ξ) ≥ 1/p(k− − ǫ)(|s|p − |ξ|p), for all s < ξ < 0.

So, forǫ sufficiently small such thatk− − ǫ > 0, we have

τg(s) ≤
2cpp

1/p

(k− − ǫ)1/p

∫ s0

s

dξ

[|s|p − |ξ|p]1/p
.

And by a simple computation as previously done we get

lim sup
s→−∞

τg(s) ≤
πp

(k−)1/p
. �

EJQTDE, 2009 No. 57, p. 11



3.2 Auxiliary functions related to the time-mapping

Let us consider the following parametrized problem

(Pγ) =







−(ϕp(u
′))′ = g(u, γ) + γh(x) in (a, b), γ ∈ [0, 1]

u = 0 on {a, b}

whereh ∈ L1(a, b) and g(., γ) : R −→ R is a continuous function for any
γ ∈ [0, 1]. (Pγ) is a particular type of problem(Qγ) where the nonlinearitŷf
does not depend onx. We assume thatg satisfies the following sign condition:

lim
|s|→+∞

sgn(s)g(s, γ) = +∞ uniformly with respect toγ ∈ [0, 1]. From this sign

condition, one can find a positive constantc such thatsgn(s)g(s, γ) > c for all
γ ∈ [0, 1]. Let us set

H̃(x) =

∫ x

a

(h(t) − c) dt G̃γ(s) =

∫ x

a

g̃(ξ, γ) dξ,

for eachγ ∈ [0, 1], and wherẽg(s, γ) = g(s, γ) + c for s ≥ 0 and g̃(s, γ) =
g(s, γ) − c for s ≤ 0 The planar system equivalent to the first equation in(Pγ) is
written

ϕp(u
′) = y(x) − γH̃(x) (16)

y′(x) = −g̃(u(x), γ) (17)

for x ∈ (a, b) andγ ∈ [0, 1]. It is clear that the planar system (16), (17) is a
particular case of the planar system (7), (8) and hence Lemma(2.1) is valid for
any solution of (16), (17) as well.
For any solutionu of (16), (17), let us consider the functionTǫ whereǫ = ±1 and
defined by

Tǫ(x) =
p − 1

p
|y(x) + ǫ||H̃||∞|

p
p−1 + G̃γ(u(x)) on [a, b]

with γ ∈ [0, 1] andp > 1. One can easily see that

T ′
ǫ(x) = y′(x)[|y(x) + ǫ||H̃||∞|

2−p
p−1 (y(x) + ǫ||H̃||∞) − u′(x)].

Recalling part (i) of Lemma (2.1), we derive that:
for ǫ = −1

T ′
−1(x) =

{

y′(x)[(y(x) − ||H̃||∞)
1

p−1 − u′(x)] on [α0, ρ]

−y′(x)[(−y(x) + ||H̃||∞)
1

p−1 + u′(x)] on [ρ, β0]
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for ǫ = 1

T ′
1(x) =

{

y′(x)[(y(x) + ||H̃||∞)
1

p−1 − u′(x)] on [α0, ρ̄]

−y′(x)[(−y(x) − ||H̃||∞)
1

p−1 + u′(x)] on [ρ̄, β0]

So recalling again part (i) of Lemma (2.1), one can easily check that

T ′
−1(x) ≥ 0 on [α0, ρ] T ′

1(x) ≤ 0 on [ρ, β0] (18)

Accordingly we have

T−1(x) ≤ T−1(ρ) = G̃γ(u(ρ)) ≤ G̃γ(max u) on [α0, ρ] (19)

T1(x) ≤ T1(ρ̄) = G̃γ(u(ρ̄)) ≤ G̃γ(max u) on [ρ̄, β0]

Taking into account the expressions ofT−1(x) andT1(x) and recalling again (i) of
Lemma 2.1, we get

u′(x) ≤ ϕ−1
p [2||H̃||∞ + (p∗)

p−1

p (G̃γ(max u) − G̃γ(u(x)))
p−1

p ] on [α0, ρ]

−u′(x) ≤ ϕ−1
p [2||H̃||∞ + (p∗)

p−1

p (G̃γ(max u) − G̃γ(u(x)))
p−1

p ] on [ρ̄, β0]

Next, by settingξ = u(x), we get

(β0 − α0) ≥ (β0 − ρ̄) + (ρ − α0) ≥

cp

∫ u(ρ̄)

0

dξ

ϕ−1
p [2cp

p−1||H̃||∞ + (G̃γ(max u) − G̃γ(u(x)))
p−1

p ]
(20)

+cp

∫ u(ρ)

0

dξ

ϕ−1
p [2cp

p−1||H̃||∞ + (G̃γ(max u) − G̃γ(u(x)))
p−1

p ]

From Lemma (2.1),u(ρ) andu(ρ̄) are greater thanmax u − L and then writing
max u = s in (20), one has

(β0 − α0) ≥ 2cp

∫ s−L

0

dξ

ϕ−1
p [2cp

p−1||H̃||∞ + (G̃γ(s) − G̃γ(ξ))
p−1

p ]
(21)

for s > L.
Considering the functionsT−1 andT1 respectively on[α′

0, ρ
′] and [ρ̄′, β ′

0] where
α′

0, ρ
′, ρ̄′, β ′

0 are the equivalents ofα0, ρ, ρ̄, β0 in the dual version of Lemma (2.1),

EJQTDE, 2009 No. 57, p. 13



and arguing as above withmin u playing the role ofmax u, we get

(β ′
0 − α′

0) ≥ (β ′
0 − ρ̄′) + (ρ′ − α′

0) ≥

cp

∫ 0

u(ρ̄′)

dξ

ϕ−1
p [2cp

p−1||H̃||∞ + (G̃γ(min u) − G̃γ(u(x)))
p−1

p ]

+cp

∫ 0

u(ρ′)

dξ

ϕ−1
p [2cp

p−1||H̃||∞ + (G̃γ(min u) − G̃γ(u(x)))
p−1

p ]

Next, writingmin u = s and taking into account the fact that from the dual version
of Lemma (2.1),u(ρ′) andu(ρ̄′) are lower thanmin u + L, one has

(β ′
0 − α′

0) ≥ 2cp

∫ 0

s+L

dξ

ϕ−1
p [2cp

p−1||H̃||∞ + (G̃γ(s) − G̃γ(ξ))
p−1

p ]
(22)

for s < −L.

In conclusion we have

(β0 − α0) + (β ′
0 − α′

0) ≥

2cpσ
∑

σ∈{−1,1}

∫ s−σL

0

dξ

ϕ−1
p [2cp

p−1||H̃||∞ + (G̃γ(s) − G̃γ(ξ))
p−1

p ]
(23)

for |s| > L.
ThusTǫ provides lower estimates for the length of the intervals[α0, β0] and[α′

0, β
′
0].

Let us now deal with upper estimates provide byTǫ.
Going back to (18) and to the expressions ofT1(x) andT−1(x) we derive that

T1(x) ≥ T1(x
∗) ≥ G̃γ(max u) on [α0, x

∗]

T−1(x) ≥ T−1(x
∗) ≥ G̃γ(max u) on [x∗, β0]

and hence

u′(x) ≥ ϕ−1
p [−2||H̃||∞ + (p∗)

p−1

p (G̃γ(max u) − G̃γ(u(x)))
p−1

p ] (24)

on [α0, x
∗]

−u′(x) ≥ ϕ−1
p [−2||H̃||∞ + (p∗)

p−1

p (G̃γ(max u) − G̃γ(u(x)))
p−1

p ] (25)

on [x∗, β0]

From part (ii) of Lemma (2.1), one has[α0, αmax u−L] ⊂ [α0, x
∗] and[βmax u−L, β0] ⊂

[x∗, β0]. So let us consider inequalities in (24)and (25) respectively on[α0, αmax u−L]
and[βmax u−L, β0] and let us assume that the following is satisfied (we will show
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farther in section 4 that such a condition is indeed satisfiedunder suitable condi-
tion ):

−2||H̃||∞ + (p∗)
p−1

p (G̃γ(max u) − G̃γ(u(x)))
p−1

p > 0 (26)

on [α0, αmax u−L] ∪ [βmax u−L, β0].

Then, we derive after the change of variableξ = u(x) in (24) and (25), that

(β0 − βmax u−L) + (αmax u−L − α0) ≤

2cp

∫ max u−L

0

dξ

ϕ−1
p [−2cp

p−1||H̃||∞ + (G̃γ(max u) − G̃γ(ξ))
p−1

p ]
. (27)

Arguing in a similar way, one can show that

(β ′
0 − β ′

minu+L) + (α′
min u+L − α′

0) ≤

2cp

∫ 0

minu+L

dξ

ϕ−1
p [−2cp

p−1||H̃||∞ + (G̃γ(min u) − G̃γ(ξ))
p−1

p ]
. (28)

Now, let us set

Tγ(s) = 2cpsgn(s)

∫ s−sgn(s)L

0

dξ

ϕ−1
p [K + (G̃γ(s) − G̃γ(ξ))

p−1

p ]

with |s| > L andK > 0.

τγ(s) = 2cpsgn(s)

∫ s

0

dξ

[G̃γ(s) − G̃γ(ξ)]
1

p

with |s| > 0.

One can easily see that according to (21), (22)

(β0 − α0) ≥ Tγ(max u) for max u > L (29)

(β ′
0 − α′

0) ≥ Tγ(min u) for min u < −L (30)

with K = 2||H̃||∞
On the other hand, the following lemma shows thatτγ(s) is a good approximation
of Tγ(s) for s large enough.

Lemma 3.2. Assume that lim
|s|→+∞

g(s, γ) = +∞ uniformly with respect toγ. As-

sume that at least one of the functionsTγ(s) andτγ(s) is uniformly bounded with
respect toγ. Then

lim
s→±∞

[Tγ(s) − τγ(s)] = 0 uniformly with respect toγ.
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Proof Without loss of generality, we can suppose that it isTγ(s) which is
bounded uniformly with respect toγ. Furthermore the proof will be given only
for the cases → +∞, the cases → +∞ can be dealed similarly. So, let us
consider

Tγ(s) = 2cp

∫ s−L

0

dξ

ϕ−1
p [K + (G̃γ(s) − G̃γ(ξ))

p−1

p ]

for s > L

τγ(s) = 2cp

∫ s

0

dξ

[G̃γ(s) − G̃γ(ξ)]
1

p

for s > 0.

We observe thatK > 0 implies

ϕ−1
p [K + (G̃γ(s) − G̃γ(ξ))

p−1

p ] ≥ ϕ−1
p [G̃γ(s) − G̃γ(ξ))

p−1

p ] = [G̃γ(s) − G̃γ(ξ)]
1

p

for 0 < ξ < s, and thusτγ(s) ≥ Tγ(s) for s > L.
So, it suffices to show that for anyǫ > 0, τγ(s) − Tγ(s) < ǫ for s large enough.

Since lim
s→+∞

g̃(s, γ) = +∞ uniformly with respect toγ, for anyA > 0 there

exists a real numberd > 0 such that

g̃(ξ, γ) ≥ A for ξ ≥ d andγ ∈ [0, 1] (31)

and

G̃γ(d) > G̃γ(ξ) for 0 ≤ ξ < d andγ ∈ [0, 1]. (32)

Chooses such thats > d + L with L > 0,

τγ(s)−Tγ(s) ≥ I = 2cp

∫ s−L

0

ϕ−1
p [K + (G̃γ(s) − G̃γ(ξ))

p−1

p ] − [G̃γ(s) − G̃γ(ξ)]
1

p dξ

ϕ−1
p [K + (G̃γ(s) − G̃γ(ξ))

p−1

p ][G̃γ(s) − G̃γ(ξ)]
1

p

Let us split the integral I as follows

I = 2cp

[
∫ d

0

+

∫ s−L

d

]

= 2cp[I1 + I2].

Dealing with the first term of this decomposition, we get by using the monotonic-
ity of ϕ−1

p

I1 ≤

∫ d

0

dξ

[G̃γ(s) − G̃γ(ξ)]
1

p

≤

∫ d

0

dξ

[G̃γ(s) − G̃γ(d)]
1

p
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Tendings to infinity, we notice that the right-hand side integral tends to zero. So
for s large enough we have

2cpI1 <
ǫ

2
.

To deal with the second termI2,we write it as follows

I2 = 2cp

∫ s−L

0

ϕ−1
p [K + (G̃γ(s) − G̃γ(ξ))

p−1

p ] − ϕ−1
p [(G̃γ(s) − G̃γ(ξ))

p−1

p ] dξ

ϕ−1
p [K + (G̃γ(s) − G̃γ(ξ))

p−1

p ][G̃γ(s) − G̃γ(ξ)]
1

p

In order to estimateI2 the following inequalities will be useful.

Claim 1.

(i) A positive constantD exists such that for any real numbersa, b

|a − b|p ≤ D(|a|p−2a − |b|p−2b)(a − b) for p ≥ 2

(ii) If a, b are non negative reals numbers then

(a + b)p − bp ≤ pa(a + b)p−1 for p > 1

and
(a + b)p − bp ≤ pabp−1 for 0 < p < 1

Proof.
For the case (i), on can refer to [9].
In order to prove (ii), let us consider the function

r(y) = (y + b)p for 0 ≤ y ≤ a.

Obviouslyr is derivable and its derivative functionr′(y) = p(y + b)p−1 is increas-
ing on [0,a]. So,

r(a) − r(0) = ar′(ξ) ≤ pa(a + b)p−1 for 0 < ξ < a

Thus(a + b)p − bp ≤ pa(a + b)p−1.
The second inequality in (ii) follows similarly and thus claim (1) is proved.�

Now, let’s go ahead with the proof of the Lemma (3.2). Using (i) of claim (1)

with a = ϕ−1
p [K + (G̃γ(s) − G̃γ(ξ))

p−1

p ] andb = ϕ−1
p [(G̃γ(s) − G̃γ(ξ))

p−1

p ] we
have

ϕ−1
p [K + (G̃γ(s) − G̃γ(ξ))

p−1

p ] − ϕ−1
p [(G̃γ(s) − G̃γ(ξ))

p−1

p ] ≤ (DK)
1

p−1
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for p ≥ 2.
For 1 < p < 2, we have 1

p−1
> 1 and then we can apply the first inequality in (ii)

of claim (1) with 1
p−1

playing the role ofp, a = K, b = (G̃γ(s) − G̃γ(ξ))
p−1

p .
Thus, we have

[K + (G̃γ(s) − G̃γ(ξ))
p−1

p ]
1

p−1 − [(G̃γ(s) − G̃γ(ξ))
p−1

p ]
1

p−1

≤
1

p − 1
K[K + (G̃γ(s) − G̃γ(ξ))

p−1

p ]
2−p
p−1 ,

that is

ϕ−1
p [K + (G̃γ(s) − G̃γ(ξ))

p−1

p ] − ϕ−1
p [(G̃γ(s) − G̃γ(ξ))

p−1

p ]

≤
1

p − 1
K[K + (G̃γ(s) − G̃γ(ξ))

p−1

p ]
2−p
p−1 for 1 < p < 2.

In conclusion:
For p > 2,

2cpI2 ≤ 2cp(DK)
1

p−1

∫ s−L

d

dξ

ϕ−1
p [K + (G̃γ(s) − G̃γ(ξ))

p−1

p ][G̃γ(s) − G̃γ(ξ)]
1

p

≤
(DK)

1

p−1

[L min g̃(ξ, γ)ξ∈[s−L,L]]
1/p

× Tγ(s) ≤
(DK)

1

p−1

[LA]

1/p

Tγ(s).

SinceTγ is uniformly bounded with respect toγ, by choosing A large enough we
have2cpI2 ≤ ǫ/2.
For 1 < p < 2

2cpI2 ≤
2cpK

p − 1

∫ s−L

d

[K + (G̃γ(s) − G̃γ(ξ))
p−1

p ]
2−p
p−1 dξ

ϕ−1
p [K + (G̃γ(s) − G̃γ(ξ))

p−1

p ][G̃γ(s) − G̃γ(ξ)]
1

p

≤
2cpK

p − 1

∫ s−L

d

[K/(G̃γ(s) − G̃γ(ξ))
p−1

p + 1]
2−p
p−1 dξ

ϕ−1
p [K + (G̃γ(s) − G̃γ(ξ))

p−1

p ][G̃γ(s) − G̃γ(ξ)]
p−1

p

≤
2cpK

p − 1
[

K

[L min g̃(ξ, γ)ξ∈[s−L,L]]
p−1

p

+ 1]
2−p
p−1 ×

1

[L min g̃(ξ, γ)ξ∈[s−L,L]]
1/p

×

∫ s−L

d

dξ

ϕ−1
p [K + (G̃γ(s) − G̃γ(ξ))

p−1

p ]
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≤
K

p − 1

[

K

(LA)
p−1

p

+ 1

]
2−p
p−1

×
1

(LA)
p−1

p

× Tγ(s).

Here again, forA large enough, we have2cpI2 < ǫ/2 and finally, we get
2cp(I1+I2) < ǫ for s large enough, that isτγ(s)−Tγ(s) < ǫ for s large enough.�

An analogous of Lemma (3.2) holds whenK is a negative real number. In
order to state it let us start define

T̃γ(s) = 2cpsgn(s)

∫ s−sgn(s)L

0

dξ

ϕ−1
p [K + (G̃γ(s) − G̃γ(ξ))

p−1

p ]
with |s| > L(33)

andK a negative real number.

τ̃γ(s) = 2cpsgn(s)

∫ s−sgn(s)L

0

dξ

[G̃γ(s) − G̃γ(ξ)]
1

p

with |s| > L (34)

It is worth noticing that according to (27) and (28)

(β0 − βmax u−L) + (αmax u−L − α0) ≤ T̃γ(max u − L) (35)

(β ′
0 − β ′

min u+L) + (α′
minu+L − α′

0) ≤ T̃γ(min u + L) (36)

with K = −2||H̃||∞.

Lemma 3.3. Assume that lim
|s|→+∞

g(s, γ) = +∞ uniformly with respect toγ and

that at least one of the functions̃Tγ(s) andτ̃γ(s) is uniformly bounded with respect
to γ. Moreover, suppose that the following condition is satisfied:

(c1) K + (G̃γ(s) − G̃γ(ξ))
p−1

p > 0 for ξ ∈ [0, s − L], with s > 0

or

c2) K + (G̃γ(s) − G̃γ(ξ))
p−1

p > 0 for ξ ∈ [s + L, 0], with s < 0.

Then respectively
lim

s→+∞
[T̃γ(s)−τ̃γ(s)] = 0 or lim

s→−∞
[T̃γ(s)−τ̃γ(s)] = 0 uniformly with respect toγ.

Proof. The proof is not too different of that of Lemma (3.2).We willsketch it
below. Suppose that̃Tγ(s) is uniformly bounded with respect toγ and let’s give
the proof whens → +∞ (the other cases being similar).
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SinceT̃γ(s) > τ̃γ(s) for s > L, we shall just have to prove that for anyǫ > 0,
T̃γ(s) − τ̃γ(s) < ǫ for s sufficiently large.

T̃γ(s)−τ̃γ(s) = 2cp

∫ s−L

0

([G̃γ(s) − G̃γ(ξ)]
1

p − ϕ−1
p [K + (G̃γ(s) − G̃γ(ξ))

p−1

p ]) dξ

[G̃γ(s) − G̃γ(ξ)]
1

p ϕ−1
p [K + (G̃γ(s) − G̃γ(ξ))

p−1

p ]

= 2cp

[
∫ d

0

+

∫ s−L

d

]

= 2cp[Ĩ1 + Ĩ2]

with d as in (31)and (32). And then

Ĩ1 ≤

∫ d

0

dξ

ϕ−1
p [K + (G̃γ(s) − G̃γ(d))

p−1

p ]
.

So fors large enough, we have2cpĨ1 < ǫ/2.
To estimatẽI2 in the casep ≥ 2, we proceed similarly as in the proof of Lemma
(3.2) by using (i)of claim (1) to yield

ϕ−1
p [(G̃γ(s) − G̃γ(ξ))

p−1

p ] − ϕ−1
p [K + (G̃γ(s) − G̃γ(ξ))

p−1

p ] ≤ (−DK)
1

p−1

and next

2cpĨ2 ≤
(−DK)

1

p−1

[LA]

1/p

τ̃γ(s).

Hence2cpĨ2 ≤ ǫ/2 for s large enough andp ≥ 2.
In the case1 < p < 2, following the same way as in Lemma (3.2), we apply the
(ii) of claim(1) by writing the numerator ofI2 in the form

ϕ−1
p [−K + K + (G̃γ(s) − G̃γ(ξ))

p−1

p ] − ϕ−1
p [K + (G̃γ(s) − G̃γ(ξ))

p−1

p ]

and by settinga = −K, b = K + (G̃γ(s) − G̃γ(ξ))
p−1

p ; and then we obtain

2cpĨ2 ≤ −2cp
K

p − 1

∫ s−L

d

(ϕ−1
p [K + (G̃γ(s) − G̃γ(ξ))

p−1

p ])2−p dξ

ϕ−1
p [K + (G̃γ(s) − G̃γ(ξ))

p−1

p ][G̃γ(s) − G̃γ(ξ)]
1

p

≤ −2cp
K

(p − 1)(ϕ−1
p [K + (L min g̃(ξ, γ)ξ∈[s−L,L])

p−1

p ])p−1

∫ s−L

d

dξ

[G̃γ(s) − G̃γ(ξ)]
1

p

So

2cpĨ2 ≤ −
K

(p − 1)(ϕ−1
p [K + (L min g̃(ξ, γ)ξ∈[s−L,L])

p−1

p ])p−1
τ̃γ(s)
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≤ −
K

(p − 1)(ϕ−1
p [K + (LA)

p−1

p ])p−1
τ̃γ(s)

whereA is as in (31). Sincẽτγ(s) is uniformly bounded with respect toγ, we
have2cpĨ2 < ǫ/2 for s large enough and theñTγ(s) − τ̃γ(s) < ǫ for s sufficiently
large.�

4 Proof of the Theorem.

Let us consider the following parametrized problem

(Sγ) =







−(ϕp(u
′))′ = (1 − γ)θϕp(u) + γ[f(u) + h(x)] in (a, b)

u = 0 on {a, b}

whereγ ∈ [0, 1] andθ is such thatλ1 < θ < min(µ−, µ+).
Notice that the function defined by :(s, γ) 7→ (1 − γ)θϕp(s) + γf(s) is a partic-
ular case of the function̂f and accordingly under the assumptions of Lemma
(2.1)(respectively Lemma (2.2)), the conclusions of Lemma(2.1)(respectively
Lemma (2.2)) are also valid for(Sγ) as well.
Under the assumptions(h1), (h3) of the theorem the following lemmas hold.

Lemma 4.1. Under assumption(h1) and the first part of assumption(h3), that is

lim
|s|→+∞

sgn(s)f(s) = +∞

lim inf
s→+∞

pF (s)

|s|p
= µ, lim sup

s→−∞

pF (s)

|s|p
= ν

with

1/µ1/p + 1/ν1/p >
b − a

πp

(i) there exists a sequenceSn → +∞ such that ifu solves(Sγ) for someγ ∈ [0, 1]
andu changes sign, thenmax u 6= Sn for everyn and everyγ ∈ [0, 1].
(ii) When(h1) and the second part of(h3) hold, there exists a sequenceTn → −∞
such that ifu solves(Sγ) for someγ ∈ [0, 1] andu changes sign, thenmin u 6= Tn

for everyn and everyγ ∈ [0, 1].

Proof.
We prove only the first statement, the proof of the second one being similar. First
let us denote byg the function :(s, γ) 7→ (1 − γ)θϕp(s) + γf(s). According to
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(h1) lim
|s|→+∞

sgn(s)g(s, γ) = +∞ uniformly with respect toγ and hence there is

a positive constantc such thatsgn(s)g(s, γ) ≥ −c for all s ∈ R and allγ ∈ [0, 1].
Let G̃γ be the primitive such that

G̃γ(s) =

{ ∫ s

0
(g(t) + c) dt for s > 0

∫ s

0
(g(t) − c) dt for s < 0.

For such aG̃γ we associate the functioñH defined by

H̃(x) =

{ ∫ x

a
(h(t) − c) dt x ∈ [a, b] when G̃γ operates on[0, +∞[

∫ x

a
(h(t) + c) dt x ∈ [a, b] when G̃γ operates on] −∞, 0].

From the first part of(h3), we have

lim inf
s→+∞

pG̃γ(s)

|s|p
≤ µ, (37)

lim sup
s→−∞

pG̃γ(s)

|s|p
≤ ν (38)

Chooseµ′ > µ such that the pair (µ′, ν) still lies belowC1, that is

1/µ′1/p
+ 1/ν1/p >

b − a

πp

.

For such aµ′ we have

lim sup
s→+∞

(µ′ s
p

p
− G̃γ(s)) = +∞

Hence, there exists an increasing sequencesn → +∞ so that for eachn

p(G̃(sn) − G̃(s)) ≤ µ′(sp
n − sp) (39)

for all s ∈ [0, sn[ with sn > L = (b − a)ϕ−1
p (2||H̃||∞)

ChooseSn as a tail sequence of the sequencesn and suppose that with such a
Sn, Lemma 4.1 is false. Then, one can find a subsequence ofsn still denoted by
sn, and solutionsun of (Sγ) for γ = γn ∈ [0, 1] satisfyingmax un = sn → +∞,
and hence according of Lemma (2.2),min un → −∞. Let’s show below that
such a sequence solutions leads to a contradiction. So, let’s consider the real num-
bers (α0, ρ, ρ̄, β0) and (α′

0, ρ
′, ρ̄′, β ′

0) corresponding to the sequence solutionsun

as respectively in Lemma (2.1) and in its dual version. For the sake of simplicity
we will keep the notations,α0, ρ, ρ̄, β0 andα′

0, ρ
′, ρ̄′, β ′

0, however those numbers
depend onn . Recalling inequality (29), that is(β0 − α0) ≥ Tγ(max un) for
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max un > L and using Lemma 3.2, we get
∀ǫ > 0, (β0 − α0) ≥ τγ(Sn) − ǫ for Sn large enough.
Next, combining (39) and inequality above, we get

(β0 − α0) ≥
2cpp

1/p

µ′1/p

∫ Sn

0

dξ

[Sp
n − |ξ|p]1/p

for Sn large enough.
And finally

lim inf
n→+∞

(β0 − α0) ≥
πp

(µ′)1/p
(40)

To complete the proof, we need to estimate(β ′
0 − α′

0). Recalling (30), we have
(β ′

0 − α′
0) ≥ Tγ(min un) for |minun| large enough and using again Lemma 3.2,

we get
∀ǫ > 0, (β ′

0 − α′
0) ≥ τγ(min un) − ǫ

for , |min un| large enough.
But, combining condition (38) and results in Lemma (3.1), weobtain

lim inf
n→+∞

(β ′
0 − α′

0) ≥ lim inf
n→+∞

τγ(min un) ≥
πp

(ν)1/p

(41)

So, putting (40), (41) together yields

b − a ≥ lim inf
n→+∞

(β0 − α0) + lim inf
n→+∞

(β ′
0 − α′

0) > b − a.

This is a contradiction so Lemma 4.1 is proved.�

The following lemma provides a-priori bounds for solutionsof (Sγ) having a
constant sign.

Lemma 4.2. Assume that

lim
|s|→+∞

sgn(s)f(s) = +∞

and that condition(h2) holds, that islim inf
|s|→+∞

pF (s)
|s|p > λ1.

Then, there are two constantsK > 0, K ′ < 0 such that there is no nonnegative
solution or respectively no non-positive solutionu of (Sγ) for someγ ∈ [0, 1] such
thatmax u ≥ K or respectivelymin u ≤ K ′.
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Proof.
We give the proof only in the case of non negative solution, the case of non positive
solution being similar.
Condition(h2) gives

lim inf
s→+∞

pG̃γ(s)

|s|p
= k+ > λ1 (42)

and accordingly from Lemma (3.1)

lim sup
s→+∞

τγ(s) ≤
πp

k+
1/p

< b − a.

But sinceτ̃γ(s) ≤ τγ(s) for s > L we also have

lim sup
s→+∞

τ̃γ(s) ≤
πp

k+
1/p

< b − a. (43)

Suppose now that Lemma (4.2) is false, then we can find a sequence of non nega-
tive solutions(un) for someγ ∈ [0, 1] such thatmax un → +∞. Let us show that
such an assertion is absurd. So let us write the lengthb− a = β0 − α0 as follows:

b − a = (β0 − βmax un−L) + (αmax u−L − α0) + (βmax un−L − αmax u−L) (44)

Since lim
s→+∞

sgn(s)g(s, γ) = +∞ uniformly with respect toγ, we have according

to Lemma 2.1

lim
n→+∞

(βmax un−L − αmax u−L) = 0 (45)

In order to use (35) for estimating(β0 − βmax un−L) + (αmax u−L − α0), we will
prove here that inequality (26) previously admitted, that is

−2||H̃||∞+(p∗)
p−1

p (G̃γ(max u)−G̃γ(u(x)))
p−1

p > 0 on [α0, αmax u−L]∪[βmax u−L, β0]

is effectively achieved under (42).
Indeed, under (42) we have the following: forǫ > 0, there is a positive real
numbers0 > 0 such that fors > s0

G̃γ(s) − G̃γ(ξ) ≥ 1/p(k+ − ǫ)(sp − ξp) for 0 < ξ < s.

So forn sufficiently large we havemax un − L > s0 and then

G̃γ(max un) − G̃γ(un(x)) ≥ 1/p(k+ − ǫ)((maxun)p − (un(x))p)
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for 0 < un(x) < max un − L.
So, forǫ sufficiently small, we get

G̃γ(max un) − G̃γ(un(x)) > 1/pλ1((maxun)p − (un(x))p) (46)

for 0 < un(x) < max un − L.
But 0 < un(x) < max un − L, implies

(max un)p − un
p(x) ≥ Lp with L = (b − a)ϕ−1

p (2||H̃||∞) (47)

Then, taking into account (46) and (47) we have

−2||H̃||∞ + (p∗)
p−1

p (G̃γ(max u) − G̃γ(u(x)))
p−1

p
≥

−2||H̃||∞ + (
p∗

p
)

p−1

p λ1

p−1

p Lp−1 =

−2||H̃||∞ + (
1

p − 1
)

p−1

p (
πp

b − a
)p−1 × (b − a)p−1[ϕ−1

p (2||H̃||∞)]p−1 =

2||H̃||∞

(

(πp)
p−1

(p − 1) p−1

p

− 1

)

.

Noticing that

πp = 2(p − 1)1/p

∫ 1

0

ds

(1 − sp)1/p
≥ 2(p − 1)1/p

for p > 1, we get

2||H̃||∞

(

(πp)
p−1

(p − 1) p−1

p

− 1

)

≥ 2||H̃||∞
(

2p−1 − 1
)

> 0

for p > 1.
In conclusion, it is proved that

−2||H̃||∞ + (p∗)
p−1

p (G̃γ(max u) − G̃γ(u(x)))
p−1

p > 0

on [α0, αmax u−L] ∪ [βmax u−L, β0]

which is of course inequality (26).
Hence, we can estimate(β0 − βmax un−L) + (αmax u−L − α0) by using (35) and
then we have(β0 − βmax un−L) + (αmax un−L − α0) ≤ T̃γ(max un) with K equals
−2||H̃||∞ in T̃γ . Since inequality (26) implies condition(c1) of Lemma (4.1) with
K = −2||H̃||∞, we have
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(β0 − βmax un−L) + (αmax un−L − α0) ≤ τ̃γ(max un) + ǫ

for all ǫ > 0 and formax un large enough. Thus, combining (43),(44),(45) with
the above inequality, one obtains

b − a ≤ lim sup
n→+∞

τ̃γ(max un) + ǫ < b − a + ǫ

for all ǫ > 0.
This is a contradiction and then Lemma (4.2) is proved.�

We are now ready to introduce the functional analysis framework in which
invariance of topological degree property will be used to conclude the proof of the
theorem.
So, let us denote by

L : L1(a, b) → C1[a, b]

the operator which sendsl ∈ L1(a, b) on the unique solution of

(E1) =







−(ϕp(u
′))′ = l in (a, b)

u(a) = u(b) = 0

It is known thatL is an odd and continuous operator (see [6]) and due to the
compact embedding

J : C1[a, b] → C0[a, b], J ◦ L : L1(a, b) → C0[a, b]

is completely continuous. Moreover, for eachγ ∈ [0, 1], denote by
Kγ : C0[a, b] → L1(a, b) the operator defined byKγ(u) = g(., u, γ) with Kγ(u)(x) =
g(x, u, γ) = (1 − γ)θϕp(u) + γ[f(u) + h(x)]. ClearlyKγ is continuous and map
bounded sets into bounded sets, hence for eachγ ∈ [0, 1], the operator

Tγ = J ◦ L ◦ Kγ : C0[a, b] → C0[a, b]

is completely continuous and its fixed points are exactly thesolutions of(Sγ).
Moreover,forγ = 0, K0 is an odd operator . Now let us built a suitable open
bounded subsetΩ of C0[a, b] on which the degree ofTγ , γ ∈ [0, 1] is different
of zero. The construction ofΩ involves some constants provided by the different
Lemmas (2.2), (4.1) (4.2). We consider first our theorem in the case that condi-
tions (h1), (h2) and the first part of(h3) are satisfied. So, choose a constantK
according to Lemma (4.2). Next, forn large enough, choose an elementSn de-
notedS of the sequence(Sn) such thatS > K. For any possible changing sign
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solutionu of (Sγ) for someγ ∈ [0, 1] such thatmax u < S, Lemma (2.2) provides
with positive real numbers such thatmin u > −M. Take−R = min(−M, K ′)
for a fixedM whereK ′ < 0 is chosen according to Lemma (4.2).

Ω =
{

u ∈ C0[a, b],−R < u(x) < S, ∀x ∈ [a, b]
}

The setΩ is such thatTγ(u) 6= u for everyu ∈ ∂Ω andγ ∈ [0, 1]. Hence, by
the homotopy invariance of the topological degree

deg(I − T1, Ω, 0) = deg(I − T0, Ω, 0)

whereI is the identity operator inC0[a, b].

Claim 2. deg(I − T0, Ω, 0) 6= 0

Proof
By definition ofTγ , γ ∈ [0, 1], u − T0u = 0 if only if u is a solution of

(E2) =

{

−(ϕp(u
′))′ = θϕp(u) in (a, b)

u(a) = u(b) = 0

But sinceλ1 < θ < min(µ, ν), u = 0 is the unique solution of(E2). MoreoverT0

is odd, therefore by the Borsuk theorem

deg(I − T0, Br, 0) 6= 0

whereBr is the open ball of centerO and raduisr in C0[a, b]. Taker such that
Br ⊂ Ω, then0 /∈ (I − T0)

−1(Ω̄ r Br) and from the excision property of the
degree, we havedeg(I − T0, Ω, 0) = deg(I − T0, Br, 0) 6= 0. �

Consequentlydeg(I − T1, Ω, 0) 6= 0 and by the existence property of the
topological degreeT1 has a fixed point inΩ which in turn is precisely a solution
of (P). In the context that it is the conditions(h1), (h2) and the second part of(h3)
which are satisfied, we construct ourΩ with parametersS andR as follow: we fix
−R = Tn with Tn < K ′ < 0 for n large enough, whereTn is as in Lemma (4.1).
Next, we chooseS = max(M, K) for a fixedM whereM is as in Lemma (2.2).
A similar argument of topological degree as above yields again the solvability of
(P) in this latter case. This completes the proof of the theorem.�

Remark 4.1. It is worth noticing that the establishment of Lemma (2.1) does not
involve the boundary conditions so that Lemma (2.1) can be usefully employed in
dealing with other boundary conditions. The time-mapping estimates in Lemma
(3.1) and the auxiliary functions estimates in Lemma (3.2) and Lemma (3.3) are
many tools which can be combined with others in order to extend to the one-
dimensional p- Laplacian(p > 1), many others results previously obtained for
the Laplacian.
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