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ON Ψ-BOUNDED SOLUTIONS FOR
NON-HOMOGENEOUS MATRIX LYAPUNOV

SYSTEMS ON R

M. S. N. MURTY AND G. SURESH KUMAR

Abstract. In this paper we provide necesssary and sufficient con-
ditions for the existence of at least one Ψ-bounded solution on R for
the system X ′ = A(t)X +XB(t) + F (t), where F (t) is a Lebesgue
Ψ-integrable matrix valued function on R. Further, we prove a re-
sult relating to the asymptotic behavior of the Ψ-bounded solutions
of this system.

1. Introduction

The importance of matrix Lyapunov systems, which arise in a num-
ber of areas of control engineering problems, dynamical systems, and
feedback systems are well known. This paper deals with the linear
matrix differential system

(1.1) X ′ = A(t)X + XB(t) + F (t)

where A(t), B(t) and F (t) are continuous n×n matrix-valued functions
on R . The basic problem under consideration is the determination of
necessary and sufficient conditions for the existence of a solution with
some specified boundedness condition. A Clasical result of this type,
for system of differential equations is given by Coppel [4, Theorem 2,
Chapter V].

The problem of Ψ-boundedness of the solutions for systems of ordi-
nary differential equations has been studied in many papers, [1, 2, 3, 5,
9, 10]. Recently [11, 7], extended the concept of Ψ-boundedness of the
solutions to Lyapunov matrix differential equations. In [6], the author
obtained necessary and sufficient conditions for the non homogenous
system x′ = A(t)x + f(t), to have at least one Ψ-bounded solution on
R for every Lebesgue Ψ-integrable function f on R.

The aim of present paper is to give a necessary and sufficient con-
dition so that the nonhomogeneous matrix Lyapunov system (1.1) has
at least one Ψ-bounded solution on R for every Lebesgue Ψ-integrable
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matrix function F on R. The introduction of the matrix function Ψ
permits to obtain a mixed asymptotic behavior of the components of
the solutions. Here, Ψ is a continuous matrix-valued function on R.
The results of this paper include results of Diamandescu [6], as a par-
ticular case when B(t) = On.

2. Preliminaries

In this section we present some basic definitions, notations and re-
sults which are useful for later discussion.

Let R
n be the Euclidean n-space. For u = (u1, u2, u3, . . . , un)T ∈ R

n,
let ‖u‖ = max{|u1|, |u2|, |u3|, . . . , |un|} be the norm of u. Let R

n×n be
the linear space of all n×n real valued matrices. For a n×n real matrix
A = [aij ], we define the norm |A| = sup‖u‖≤1 ‖Au‖. It is well-known
that

|A| = max
1≤i≤n

{
n

∑

j=1

|aij|}.

Let Ψk : R → R−{0} (R−{0} is the set of all nonzero real numbers),
k = 1, 2, . . . n, be continuous functions, and let

Ψ = diag[Ψ1, Ψ2, . . . , Ψn].

Then the matrix Ψ(t) is an invertible square matrix of order n, for all
t ∈ R.
Definition 2.1. [8] Let A ∈ R

m×n and B ∈ R
p×q then the Kronecker

product of A and B written A ⊗ B is defined to be the partitioned
matrix

A ⊗ B =









a11B a12B . . . a1nB

a21B a22B . . . a2nB

. . . . . .

am1B am2B . . . amnB









is an mp × nq matrix and is in R
mp×nq.

Definition 2.2.[8] Let A = [aij ] ∈ R
m×n, then the vectorization oper-

ator
V ec : R

n×n → R
n2

, defined and denote by

Â = V ecA =













A.1

A.2

.

.

A.n













, where A.j =













a1j

a2j

.

.

amj













(1 ≤ j ≤ n) .
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Lemma 2.1. The vectorization operator V ec : R
n×n → R

n2

, is a linear
and one-to-one operator. In addition, V ec and V ec−1 are continuous
operators.

Proof. The fact that the vectorization operator is linear and one-to-one
is immediate. Now, forA = [aij ] ∈ R

n×n, we have

‖V ec(A)‖ = max
1≤i,j≤n

{|aij|} ≤ max
1≤i≤n

{

n
∑

j=1

|aij |
}

= |A| .

Thus, the vectorization operator is continuous and ‖V ec‖ ≤ 1.
In addition, for A = In (identity n × n matrix) we have

‖V ec(In)‖ = 1 = |In| and then,‖V ec‖ = 1.
Obviously, the inverse of the vectorization operator,

V ec−1 : R
n2 → R

n×n, is defined by

V ec−1(u) =















u1 un+1 . . . un2−n+1

u2 un+2 . . . un2−n+2

. . . . . .

. . . . . .

. . . . . .

un u2n . . . un2















.

Where u = (u1, u2, u3, ....., un2)T ∈ R
n2

.

We have|V ec−1(u)| = max
1≤i≤n

{

n−1
∑

j=0

|unj+i|
}

≤ n. max
1≤i≤n

{|ui|} = n. ‖u‖.

Thus, V ec−1 is a continuous operator. Also, if we take u = V ecA in
the above inequality, then the following inequality holds

|A| ≤ n‖V ecA‖,
for every A ∈ R. �

Regarding properties and rules for Kronecker product of matrices we

refer to [8].

Now by applying the Vec operator to the nonhomogeneous matrix
Lyapunov system (1.1) and using Kronecker product properties, we
have

(2.1) X̂ ′(t) = H(t)X̂(t) + F̂ (t),
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where H(t) = (BT ⊗ In) + (In ⊗ A) is a n2 × n2 matrix and F̂ (t) =
V ecF (t) is a column matrix of order n2. System (2.1) is called the
Kronecker product system associated with (1.1).
The corresponding homogeneous system of (2.1) is

(2.2) X̂ ′(t) = H(t)X̂(t).

Definition 2.3. A function γ : R → R
n is said to be Ψ- bounded on

R if Ψγ is bounded on R

(

i.e., sup
t∈R

‖Ψ(t)γ(t)‖ < +∞
)

.

Extend this definition for matrix functions.
Definition 2.4. A matrix function F : R → R

n×n is said to be Ψ
bounded on R if the matrix function ΨF is bounded on R
(

i.e., sup
t∈R

|Ψ(t)F (t)| < ∞
)

.

Definition 2.5. A function γ : R → R
n is said to be Lebesgue Ψ -

integrable on R if γ is measurable and Ψγ is Lebesgue integrable on R
(

i.e.,
∞
∫

−∞

‖Ψ(t)γ(t)‖dt < ∞
)

.

Extend this definition for matrix functions.
Definition 2.6. A matrix function F : R → R

n×n is said to be
Lebesgue Ψ integrable on R if F is measurable and ΨF is Lebesgue
integrable on R
(

i.e.,
∞
∫

−∞

|Ψ(t)F (t)|dt < ∞
)

.

Now we shall assume that A and B are continuous n × n matrices
on R and F is a Lebesgue Ψ-integrable matrix function on R.

By a solution of (1.1), we mean an absolutely continuous matrix
function W (t) satisfying the equation (1.1) for all most all t ∈ R.

The following lemmas play a vital role in the proof of main result.
Lemma 2.2. The matrix function F : R → R

n×n is Lebesgue Ψ-
integrable on R if and only if the vector function V ecF (t) is Lebesgue
In ⊗ Ψ - integrable on R.

Proof. From the proof of Lemma 2.1, it follows that

1

n
|A| ≤ ‖V ecA‖

Rn
2 ≤ |A| ,

for every A ∈ R
n×n.

Put A = Ψ(t)F (t) in the above inequality, we have

(2.3)
1

n
|Ψ(t)F (t)| ≤ ‖(In ⊗ Ψ(t)).V ecF (t)‖

Rn
2 ≤ |Ψ(t)F (t)| ,
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t ∈ R, for all matrix functions F (t). Lemma follows from (2.3). �

Lemma 2.3. The matrix function F (t) is Ψ - bounded on R if and
only if the vector function V ecF (t) is In ⊗ Ψ - bounded on R.

Proof. The proof easily follows from the inequality (2.3). �

Lemma 2.4. Let Y (t) and Z(t) be the fundamental matrices for the
systems

(2.4) X ′(t) = A(t)X(t),

and

(2.5) X ′(t) = BT (t)X(t), t ∈ R

respectively. Then the matrix Z(t) ⊗ Y (t) is a fundamental matrix of
(2.2).

Proof. Consider

(Z(t) ⊗ Y (t))′ = (Z ′(t) ⊗ Y (t)) + (Z(t) ⊗ Y ′(t))
= (BT (t)Z(t) ⊗ Y (t)) + (Z(t) ⊗ A(t)Y (t))
= (BT (t) ⊗ In)(Z(t) ⊗ Y (t)) + (In ⊗ A(t))(Z(t) ⊗ Y (t))
= [BT (t) ⊗ In + In ⊗ A(t)](Z(t) ⊗ Y (t))
= H(t)(Z(t) ⊗ Y (t)),

for all t ∈ R.
On the other hand, the matrix Z(t) ⊗ Y (t) is a nonsingular matrix

for all t ∈ R (because X(t) and Y (t) are nonsingular matrices for all
t ∈ R). �

Let the matrix space R
n×n be represented as a direct sum of three

subspaces X−, X0, X+ such that a solution W (t) of (1.1) is Ψ-bounded
on R if and only if W (0) ∈ X0 and Ψ-bounded on R if and only
if W (0) ∈ X− ⊕ X0. Also, let P−, P0, P+ denote the corresponding
projection of R

n×n onto X−, X0, X+ respectively.
Then the vector space R

n2

represents a direct sum of three sub spaces
S−, S0, S+ such that a solution Ŵ (t) = V ecW (t) of (2.1) is In ⊗ Ψ-

bounded on R
n2

if and only if Ŵ (0) ∈ S0 and In ⊗ Ψ-bounded on

R if and only if Ŵ (0) ∈ S− ⊕ S0 and also Q−, Q0, Q+ denote the

corresponding projection of R
n2

onto S−, S0, S+ respectively.
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Theorem 2.1. Let A(t), B(t) and F (t) be continuous matrix functions
on R. If Y (t) and Z(t) are the fundamental matrices for the systems
(2.4) and (2.5), then

X̂(t) =

t
∫

−∞

(Z(t) ⊗ Y (t))P−(Z−1(s) ⊗ Y −1(s))F̂ (s)ds

+

t
∫

0

(Z(t) ⊗ Y (t))P0(Z
−1(s) ⊗ Y −1(s))F̂ (s)ds

(2.6) −
∞

∫

t

(Z(t) ⊗ Y (t))P+(Z−1(s) ⊗ Y −1(s))F̂ (s)ds

is a solution of (2.1) on R.

Proof. It is easily seen that X̂ is the solution of (2.1) on R. �

The following theorems are useful in the proofs of our main results.

Theorem 2.2. [6] Let A be a continuous n × n real matrix on R and
let Y be the fundamental matrix of the homogeneous system x′ = A(t)x
with Y (0) = In. Then the nonhomogeneous system

(2.7) x′ = A(t)x + f(t)

has at least one Ψ-bounded solution on R for every Lebesgue Ψ-integra-
ble function f : R → R

n on R if and only if there exists a positive
constant K such that
(2.8)

|Ψ(t)Y (t)P−Y −1(s)Ψ−1(s)| ≤ K for t > 0, s ≤ 0

|Ψ(t)Y (t)(P0 + P−)Y −1(s)Ψ−1(s)| ≤ K for t > 0, s > 0, s < t

|Ψ(t)Y (t)P+Y −1(s)Ψ−1(s)| ≤ K for t > 0, s > 0, s ≥ t

|Ψ(t)Y (t)P−Y −1(s)Ψ−1(s)| ≤ K for t ≤ 0, s < t

|Ψ(t)Y (t)(P0 + P+)Y −1(s)Ψ−1(s)| ≤ K for t ≤ 0, s ≥ t, s < 0

|Ψ(t)Y (t)P+Y −1(s)Ψ−1(s)| ≤ K for t ≤ 0, s ≥ t, s ≥ 0.

Theorem 2.3. [6] Suppose that:
(1) the fundamental matrix Y (t) of x′ = A(t)x satisfies:

(a) condition (2.8) is satisfied for some K > 0;
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(b) the following conditions are satisfied:
(i) lim

t→±∞
|Ψ(t)Y (t)P0| = 0;

(ii) lim
t→−∞

|Ψ(t)Y (t)P+| = 0;

(iii) lim
t→+∞

|Ψ(t)Y (t)P−| = 0;

(2) the function f : R → R
n is Lebesgue Ψ-integrable on R.

Then, every Ψ-bounded solution x of (2.7) is such that

lim
t→±∞

‖Ψ(t)x(t)‖ = 0.

3. Main result

The main theorms of this paper are proved in this section.

Theorem 3.1. If A and B are continuous n × n real matrices on R,
then (1.1) has at least one Ψ-bounded solution on R for every Lebesgue
Ψ-integrable matrix function F : R → R

n×n on R if and only if there
exists a positive constant K such that
(3.1)

|(Z(t) ⊗ Ψ(t)Y (t))Q−(Z−1(s) ⊗ Y −1(s)Ψ−1(s))| ≤ K,

for t > 0, s ≤ 0

|(Z(t) ⊗ Ψ(t)Y (t))(Q0 + Q−)(Z−1(s) ⊗ Y −1(s)Ψ−1(s))| ≤ K,

for t > 0, s > 0, s < t

|(Z(t) ⊗ Ψ(t)Y (t))Q+(Z−1(s) ⊗ Y −1(s)Ψ−1(s))| ≤ K,

for t > 0, s > 0, s ≥ t

|(Z(t) ⊗ Ψ(t)Y (t))Q−(Z−1(s) ⊗ Y −1(s)Ψ−1(s))| ≤ K,

for t ≤ 0, s < t

|(Z(t) ⊗ Ψ(t)Y (t))(Q0 + Q+)(Z−1(s) ⊗ Y −1(s)Ψ−1(s))| ≤ K,

for t ≤ 0, s ≥ t, s < 0

|(Z(t) ⊗ Ψ(t)Y (t))Q+(Z−1(s) ⊗ Y −1(s)Ψ−1(s))| ≤ K,

for t ≤ 0, s ≥ t, s ≥ 0.

Proof. Suppose that the equation (1.1) has atleast one Ψ - bounded
solution on R for every Lebesgue Ψ - integrable matrix function
F : R → R

n×n.
Let F̂ : R → R

n2

be a Lebesgue In ⊗ Ψ - integrable function on R.
From Lemma 2.2, it follows that the matrix function F (t) = V ec−1F̂ (t)
is Lebesgue Ψ - integrable matrix function on R. From the hypothesis,
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the system (1.1) has at least one Ψ - bounded solution W (t) on R. From

Lemma 2.3, it follows that the vector valued function Ŵ (t) = V ecW (t)
is a In ⊗ Ψ- bounded solution of (2.1) on R.

Thus, system (2.1) has at least one In ⊗ Ψ - bounded solution on R

for every Lebesgue In ⊗ Ψ - integrable function F̂ on R.
From Theorem 2.2, there is a positive constant K such that the

fundamental matrix S(t) = Z(t)⊗Y (t) of the system (2.2) satisfies the
condition

|(In ⊗ Ψ(t))S(t)Q−S−1(s)(In ⊗ Ψ−1(s))| ≤ K,

for t > 0, s ≤ 0

|(In ⊗ Ψ(t))S(t)(Q0 + Q−)S−1(s)(In ⊗ Ψ−1(s))| ≤ K,

for t > 0, s > 0, s < t

|(In ⊗ Ψ(t))S(t)Q+S−1(s)(In ⊗ Ψ−1(s))| ≤ K,

for t > 0, s > 0, s ≥ t

|(In ⊗ Ψ(t))S(t)Q−S−1(s)(In ⊗ Ψ−1(s))| ≤ K,

for t ≤ 0, s < t

|(In ⊗ Ψ(t))S(t)(Q0 + Q+)S−1(s)(In ⊗ Ψ−1(s))| ≤ K,

for t ≤ 0, s ≥ t, s < 0

|(In ⊗ Ψ(t))S(t)Q+S−1(s)(In ⊗ Ψ−1(s))| ≤ K,

for t ≤ 0, s ≥ t, s ≥ 0.

Putting S(t) = Z(t) ⊗ Y (t) and using Kronecker product properties,
(3.1) holds.

Conversly suppose that (3.1) holds for some K ≥ 0.
Let F : R → R

n×n be a lebesgue Ψ - integrable matrix function
on R. From Lemma 2.2, it follows that the vector valued function
F̂ (t) = V ecF (t) is a Lebesgue In ⊗ Ψ - integrable function on R.

From Theorem 2.2, it follows the differential system (2.1) has at least
one In ⊗ Ψ - bounded solution on R. Let w(t) be this solution.

From Lemma 2.3, it follows that the matrix function
W (t) = V ec−1w(t) is a Ψ - bounded solution of the equation (1.1) on

R (because F (t) = V ec−1F̂ (t)).
Thus the matrix Lyapunov system (1.1) has at least one Ψ - bounded

solution on R for every Lebesgue Ψ - integrable matrix function F on
R. �
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In a particular case, we have the following result.

Theorem 3.2. If the homogeneous system ( F = O in (1.1)) has
no nontrivial Ψ-bounded solution on R, then the system (1.1) has a
unique Ψ-bounded solution on R for every Lebesgue Ψ-integrable matrix
function F : R → R

n×n on R if and only if there exists a positive
constant K such that
(3.2)

|(Z(t) ⊗ Ψ(t)Y (t))Q−(Z−1(s) ⊗ Y −1(s)Ψ−1(s))| ≤ K for s < t

|(Z(t) ⊗ Ψ(t)Y (t))Q+(Z−1(s) ⊗ Y −1(s)Ψ−1(s))| ≤ K for t ≤ s

Proof. In this case, Q0 = O. The proof is simple by putting Q0 = O in
Theorem 3.1. �

Next, we prove a theorem in which we will see that the asymptotic
behavior of solutions to (1.1) is determined completely by the asymp-
totic behavior of the fundamental matrices Y (t) and Z(t) of (2.4) and
(2.5) respectively.

Theorem 3.3. Suppose that:
(1) the fundamental matrices Y (t) and Z(t) of (2.4) and (2.5) satisfies:

(a) condition (3.1) is satisfied for some K > 0;
(b) the following conditions are satisfied:

(i) lim
t→±∞

||(Z(t) ⊗ Ψ(t)Y (t))Q0|| = 0;

(ii) lim
t→−∞

||(Z(t) ⊗ Ψ(t)Y (t))Q+|| = 0;

(iii) lim
t→+∞

||(Z(t) ⊗ Ψ(t)Y (t))Q−|| = 0;

(2) the matrix function F : R → R
n×n is Lebesgue Ψ-integrable on R.

Then, every Ψ-bounded solution X of (1.1) is such that

lim
t→±∞

|Ψ(t)X(t)| = 0.

Proof. Let X(t) be a Ψ - bounded solution of (1.1). From Lemma

2.3, it follows that the function X̂(t) = V ecX(t) is a In ⊗ Ψ- bounded
solution on R of the differential system (2.1). Also from Lemma 2.2,

the function F̂ (t) is Lebesgue In ⊗ Ψ - integrable on R. From the
Theorem 2.2, it follows that

lim
t→±∞

∥

∥

∥
(In ⊗ Ψ(t)) X̂(t)

∥

∥

∥
= 0.

Now, from the inequality (2.3) we have

|Ψ(t)X(t)| ≤ n
∥

∥

∥
(In ⊗ Ψ(t)) X̂(t)

∥

∥

∥
, t ∈ R
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and, then
lim

t→±∞
|Ψ(t)X(t)| = 0.

�

The next result follows from Theorems 3.2 and 3.3.

Corollary 3.4. Suppose that

(1) the homogeneous system ( F = O in (1.1)) has no nontrivial
Ψ-bounded solution on R;

(2) the fundamental matrices Y (t) and Z(t) of (2.4) and (2.5) sat-
isfies:
(i) the condition (3.2) for some K > 0.
(ii) lim

t→−∞
||(Z(t) ⊗ Ψ(t)Y (t))Q+|| = 0;

(iii) lim
t→+∞

||(Z(t) ⊗ Ψ(t)Y (t))Q−|| = 0;

(3) the matrix function F : R → R
n×n is Lebesgue Ψ-integrable on

R.

Then (1.1) has a unique solution X on R such that

lim
t→±∞

‖Ψ(t)X(t)‖ = 0.

Note that Theorem 3.3 is no longer true if we require that the func-
tion F be Ψ-bounded on R (more, even lim

t→±∞
|Ψ(t)F (t)| = 0), instead of

the condition (3) in the above Theorem. This is shown in the following
example.

Example. Consider (1.1) with A(t) = I2, B(t) = −I2 and

F (t) =

[
√

1 + |t| 1
1+|t|

1 1

]

.

Then, Y (t) =

[

et 0
0 et

]

, Z(t) =

[

e−t 0
0 e−t

]

are the fundamental ma-

trices for (2.4) and (2.5) respectively. Consider

Ψ(t) =

[

1
1+|t|

0

0 1
(1+|t|)2

]

.

Therefore, Q− = I2, Q+ = O2 and Q0 = O2. The conditions (3.1) are
satisfied with K = 1. In addition, the hypothesis (1b) of Theorem 3.3
is satisfied. Because

Ψ(t)F (t) =

[

1√
1+|t|

1
(1+|t|)2

1
(1+|t|)2

1
(1+|t|)2

]

,
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the matrix function F is not Lebesgue Ψ-integrable on R, but it is Ψ-
bounded on R, with lim

t→±∞
|Ψ(t)F (t)| = 0. The solutions of the system

(1.1) are

X(t) =

[

p(t) + c1 q(t) + c2

t + c3 t + c4

]

,

where

p(t) =

{

−2
3
(1 − t)3/2, t < 0

2
3
(1 + t)3/2, t ≥ 0

and

q(t) =

{

− ln(1 − t), t < 0

ln(1 + t), t ≥ 0 .

It is easily seen that lim
t→±∞

‖Ψ(t)X(t)‖ = +∞, for all c1, c2, c3, c4 ∈ R.

It follows that the solutions of the system (1.1) are Ψ-unbounded on
R.

Remark. If in the above example, F (t) =

[

0 1
1+|t|

1 1

]

, then
∫ +∞

−∞
‖Ψ(t)F (t)‖dt = 2. On the other hand, the solutions of (1.1) are

X(t) =

[

c1 q(t) + c2

t + c3 t + c4

]

,

where

q(t) =

{

− ln(1 − t), t < 0

ln(1 + t), t ≥ 0 .

We observe that the asymptotic properties of the components of the so-
lutions are not the same. The first row first column element is bounded
and the remaining elements are unbounded on R. However, all solu-
tions of (1.1) are Ψ-bounded on R and lim

t→±∞
‖Ψ(t)X(t)‖ = 0. This

shows that the asymptotic properties of the components of the solu-
tions are the same, via the matrix function Ψ. This is obtained by
using a matrix function Ψ rather than a scalar function.

Acknowledgement. The authors would like to thank the anonymous
referee for his valuable suggestions which helped to improve the quality
of the presentation.
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Fizice, vol. VI (1968) 41-55.

[3] Constantin, A.: Asymptotic properties of solutions of differential equations,
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