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Three point boundary value problem for singularly perturbed
semilinear differential equations

Rébert Vrabel’

Abstract

In this paper, we investigate the problem of existence and asymptotic behavior of
solutions for the nonlinear boundary value problem

ey +ky=f(t,y), te{ab), k<0, 0<e<<l1

satisfying three point boundary conditions. Our analysis relies on the method of lower
and upper solutions.
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1 Introduction
We will consider the three point problem
ey +ky=f(t,y), te{a,b), k<0, 0<e<<l1 (1.1)

y'(a) =0, yb)—y(c)=0, a<c<b. (1.2)

This is a singularly perturbed problem because the order of differential equation drops
when € becomes zero. The situation in the present case is complicated by the fact
that there is an inner point in the boundary conditions, in contrast to the ”standard”
boundary conditions as the Dirichlet problem, Neumann problem, Robin problem,
periodic boundary value problem ([2, 3]), for example.

We apply the method of upper and lower solutions and some estimates to prove

the existence of a solution for problem (1.1), (1.2) which converges uniformly to the
solution of reduced problem (i.e. if we let € — 0% in (1.1)) on every compact set of
interval (a, b) for e — 0.
As usual, we say that o € C?((a,b)) is a lower solution for problem (1.1), (1.2) if
ea (t) + kac(t) > f(t,a(t)) and .(0) = 0, a.(b) — ac(c) < 0 for every t € {a,b).
An upper solution . € C?({a, b)) satisfies e (t) + kBc(t) < f(t, Bc(t)) and B.(0) = 0,
Be(b) — Be(c) > 0 for every t € {a,b).

Lemma 1 (cf. [1]). If ae, Be are lower and upper solutions for (1.1), (1.2) such that
ae < B, then there exists solution y. of (1.1), (1.2) with ae < ye < Se.
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Denote D(u) = {(t,y)] a<t<b,|y—u(t) <d(t)}, where d(t) is the positive
continuous function on {a, b) such that

d(t) = 1) fora<t<b
L Ju) —u(e)|+6 forb—2 <t

§ is a small positive constant and u € C? is a solution of reduced problem ku = f(t, u).

2 Existence and asymptotic behavior of solutions
Theorem 1. Let f € CY(D(u)) satisfies the condition

af(t
’%‘ <w< —k forevery (t,y)€ D(u). (hyperbolicity condition)
Y

Then there exists €y such that for every ¢ € (0,¢) the problem (1.1), (1.2) has a
unique solution satisfying the inequality

De(t) — Ce < ye(t) — (u(t) + ve(t)) < —0c(t) + Cy/e for /(a) <0 (2.1)
and

De(t) — Cve < ye(t) — (u(t) +ve(t)) < —0(t) + Ce for w'(a) >0 (2.2)
on {a,b) where

eﬁ(pb) _ e\/g(bft) +e\/§(c7t) _ eﬁ(tfc)
/_% (eﬁ(afc) _ eﬁ(afb) +e\/§(c7a) _ e\/?(b*a))’

eV E(t=a) /2 (a—1)

ve(t) = (a)-

Ae t = b) — : )
%e(?) [ul®) =~ u(e)l (e\/?(a_c) _ eV E(ab) o/ E(ema) eﬁ(b—a))
m = —k —w and C, C be the positive constants.

Proof. The functions v, (t) and 9.(t) on {(a,b) satisfy:

1. ev! —mo. =0, vl(a) = —u/(a), ve(b) —v(c) =0, ve <0 for v'(a) <0 and v >0
for u/(a) >0

2. e —mb. =0, ¥L(a) =0, 0c(b) — Dc(c) = —|u(d) — u(c)], v <O0.

For u/(a) < 0 we define the lower solutions by
ae(t) = u(t) + ve(t) + 0 (t) — T

and the upper solutions by

Be(t) = u(t) + ve(t) — 0c(t) + e

( for w/(a) > 0 we proceed analogously).

Here I'. = % and I, = ‘/_%A where A, A be the constants which shall be defined

below. o < 3 on {(a,b) and satisfy the boundary conditions prescribed for the lower
and upper solutions of (1.1), (1.2).
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Now we show that ea (t) + kac(t) > f(t,ac(t)) and €8/ (t) + kB(t) < f(t, Bc(¢)).
Denote h(t,y) = f(t,y) — ky. By the Taylor theorem we obtain
Oh(t,0.(t .
Bt (1)) = ht, ae(8)) — B(t,u(t)) = %(uﬁ(t) +ou(t) - To)
where (t,0.(t)) is a point between (¢, a.(t)) and (t,u(t)), and (¢,6.(t)) € D(u) for
sufficiently small e. Hence

ea(t) — h(t, ac(t)) > eu” + ev (t) + €0l (t) — m(ve(t) + 6 () — Te) > —elu”’| + eA.
If we choose a constant A such that A > |u”(t)], ¢t € (a,b) then ea! (t) > h(t, a.(t))

in (a, b).
The inequality for G.(t)) :

Oy ¢
<8h(t(,395(t)) _ m) ’Ug(t) + mf‘e _ GU”
Y
Let L = max{|u”(t)| |t € (a,b)} and denote 0. = % Then eBl(t) < h(t, Bc(t)) if
ml'e e > (%ﬁ“” - m> uc(t)

Ve(A-viL) = (%@“” - m> Vel (o)

A> L+ (%‘Z“” - m) [7(0)].

Thus, from the inequalities m < %@e(t)) < m+ 2w in D(u) and v.(t) < 0 follows
that it is sufficient to choose a constant A such that

R > /e L1 @]
A>\/eL+2 T

The existence of a solution for (1.1), (1.2) satisfying the above inequality follows from
Lemma 1.

Remark 1. Theorem 1 implies that y.(t) = u(t) + O(y/€) on every compact subset of
{a,b) and lim. ye(b) = u(c). Boundary layer effect occurs at the point b in the case,
e—0

when u(c) # u(b).
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