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Abstract

This paper is concerned with the following retarded Liénard equation

x′′(t) + f1(x(t))(x′(t))2 + f2(x(t))x′(t) + g1(x(t)) + g2(x(t − τ(t))) = e(t).

We prove a new theorem which ensures that all solutions of the above Liénard

equation satisfying given initial conditions are bounded. As one will see, our

results improve some earlier results even in the case of f1(x) ≡ 0.
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1 Introduction

The study on boundedness of solutions to all kinds of Liénard equations has been

of interest for many mathematicians (cf. [2, 3, 5–7, 9, 10] and references therein).
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Recently, the authors in [7] studied the boundedness of solutions to the following

Liénard equation with a deviating argument:

x′′(t) + f(x(t))x′(t) + g1(x(t)) + g2(x(t − τ(t))) = e(t), (1.1)

where f , g1 and g2 are continuous functions on R, τ(t) ≥ 0 is a bounded continuous

function on R, and e(t) is a bounded continuous function on R
+ = [0, +∞). Under

the condition

(A0) There exists a constant d > 1 such that d|u| ≤ sgn(u)ϕ(u) for all u ∈ R, where

ϕ(u) =

∫

u

0

[f(x) − 1]dx.

and other assumptions, the authors in [7] established a theorem which ensures that

all solutions of (1.1) are bounded. Very recently, in [8], the assumption (A0) is

weakened into

(A1) |u| < sgn(u)ϕ(u) for all u ∈ R.

In this paper, we will study the following more general equation:

x′′(t) + f1(x(t))(x′(t))2 + f2(x(t))x′(t) + g1(x(t)) + g2(x(t − τ(t))) = e(t), (1.2)

where f1, f2, g1 and g2 are continuous functions on R, τ(t) ≥ 0 is a bounded

continuous function on R, and e(t) is a bounded continuous function on R
+ =

[0, +∞). Under weaker assumption than (A0) and (A1) (see Remark 2.4), we prove

that all solutions of (1.2) are bounded, and thus improve the results in [7, 8] even

in the case of f1(x) ≡ 0.

2 Main results

Throughout the rest of this paper, we denote

F (x) = exp

(
∫

x

0

f1(u)du

)

;
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and assume that there is a constant λ > 0 satisfying

sgn(u)

∫

u

0

F 2(x)dx ≤ λ|u|, u ∈ R. (2.1)

Moreover, assume that there exist a constant ε > 0 and two nondecreasing functions

G, Φ defined on R
+ such that

λε < lim inf
u→±∞

sgn(u)
∫

u

0
F (x)f2(x)dx

|u|
− 1, (2.2)

|g1(u) − εφ(u)| ≤ Φ(|u|), |g2(u)| ≤ G(|u|), ∀u ∈ R, (2.3)

and

lim sup
x→+∞

Φ(x) + G(x)

x
< ε, (2.4)

where

φ(x) =

∫

x

0

F (u)[f2(u) − εF (u)]du.

Denote

y = F (x)
dx

dt
+ φ(x).

Then Eq. (1.2) is transformed into the following system:














dx(t)

dt
=

−φ(x(t)) + y(t)

F (x(t))
,

dy(t)

dt
= F (x(t))

{

− εy(t) − [g1(x(t)) − εφ(x(t))] − g2(x(t − τ(t))) + e(t)
}

.

(2.5)

In addtion, in this paper, C([−h, 0], R) denotes the space of continuous functions

α : [−h, 0] → R with the supremum norm ‖ · ‖, where h = sup
t∈R

τ(t) ≥ 0. It is well

known (cf. [1, 4]) that for any given continuous initial function α ∈ C([−h, 0], R)

and a number y0, there exists a solution of (2.5) on an interval [0, T ) satisfying

the initial conditions and (2.5) on [0, T ). If the solution remains bounded, then

T = +∞. We denote such a solution by x(t) = x(t, α, y0), y(t) = y(t, α, y0).

Definition 2.1. [2, 7] Solutions of (2.5) are called uniformly bounded if for each

B1 > 0 there is a B2 > 0 such that (α, y0) ∈ C([−h, 0], R) × R and ‖α‖ + |y0| ≤ B1

implies that |x(t, α, y0)| + |y(t, α, y0)| ≤ B2 for all t ∈ R
+.

Theorem 2.2. Suppose that (2.1)–(2.4) hold. Then, solutions of (2.5) are uniformly

bounded.
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Proof. Let x(t) = x(t, α, y0), y(t) = y(t, α, y0) be a solution of (2.5). Without loss of

generality, one can assume that x(t), y(t) is defined on R
+ since the following proof

gives that x(t), y(t) are bounded.

By (2.2) and (2.4), there is a constant M > 0 such that

sgn(u)
∫

u

0
F (x)f2(x)dx

|u|
> 1 + λε, |u| ≥ M, (2.6)

and
Φ(x) + G(x) + e

x
< ε, x ≥ M, (2.7)

where e = sup
t∈R+

|e(t)|. It follows from (2.6) and (2.1) that

sgn(u)φ(u)

|u|
=

sgn(u)
∫

u

0
F (x)f2(x)dx

|u|
−

sgn(u)
∫

u

0
εF 2(x)dx

|u|
> 1, |u| ≥ M. (2.8)

We denote

V (t) = max
−h≤s≤t

{max{|x(s)|, |y(s)|}}, t ≥ 0.

For any given t0 ≥ 0, we consider five cases.

Case (i): V (t0) > max{|x(t0)|, |y(t0)|}.

By the continuity of x(t) and y(t), there exists δ1 > 0 such that

max{|x(t)|, |y(t)|} < V (t0), ∀t ∈ (t0, t0 + δ1).

Thus, one can conclude

V (t) = V (t0), ∀t ∈ (t0, t0 + δ1).

Case (ii): V (t0) = max{|x(t0)|, |y(t0)|} < M.

Also, by the continuity of x(t) and y(t), there exists δ2 > 0 such that

max{|x(t)|, |y(t)|} < M, ∀t ∈ (t0, t0 + δ2).

Therefore,

V (t) < M, ∀t ∈ (t0, t0 + δ2).

Case (iii): V (t0) = max{|x(t0)|, |y(t0)|} = |x(t0)| ≥ M, and |x(t0)| > |y(t0)|.

Noticing that x(t), y(t) is a solution to (2.5), it follows from (2.8) that

D+(|x(s)|)|s=t0
= sgn(x(t0)) ·

−φ(x(t0)) + y(t0))

F (x(t0))
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<
−|x(t0)| + |y(t0)|

F (x(t0))

<
−|x(t0)| + |x(t0)|

F (x(t0))
= 0.

Then, there exists δ′3 > 0 such that

|x(t)| < |x(t0)| = V (t0). ∀t ∈ (t0, t0 + δ′3).

On the other hand, by the continuity of y(t), there exists δ′′3 > 0 such that

|y(t)| < |x(t0)| = V (t0), ∀t ∈ (t0, t0 + δ′′3 ).

Let δ3 = min{δ′3, δ
′′
3}. Then

max{|x(t)|, |y(t)|} < V (t0), ∀t ∈ (t0, t0 + δ3),

which means that

V (t) = V (t0), ∀t ∈ (t0, t0 + δ3).

Case (iv): V (t0) = max{|x(t0)|, |y(t0)|} = |y(t0)| ≥ M, and |x(t0)| < |y(t0)|.

In view of (2.3), (2.7) and x(t), y(t) being a solution to (2.5), we have

D+(|y(s)|)|s=t0

= F (x(t0))sgn(y(t0))
{

− εy(t0) − [g1(x(t0)) − εφ(x(t0))] − g2(x(t0 − τ(t0))) + e(t0)
}

≤ F (x(t0))
{

− ε|y(t0)| + Φ(|x(t0)|) + G(|x(t0 − τ(t0))|) + e
}

≤ F (x(t0))
{

− εV (t0) + Φ(V (t0)) + G(V (t0)) + e
}

< 0,

which yields that there exists δ4 > 0 such that

|y(t)| < |y(t0)| = V (t0), ∀t ∈ (t0, t0 + δ4).

On the other hand, without loss, by the continuity of x(t), one can assume that

|x(t)| < |y(t0)| = V (t0), ∀t ∈ (t0, t0 + δ4).

So one can conclude

max{|x(t)|, |y(t)|} < V (t0), ∀t ∈ (t0, t0 + δ4).
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Thus V (t) = V (t0) for all t ∈ (t0, t0 + δ4).

Case (v): V (t0) = max{|x(t0)|, |y(t0)|} = |x(t0)| = |y(t0)| ≥ M .

Similar to the proof of Case (iii) and Case (iv), one can show that

D+(|x(s)|)|s=t0
< 0, D+(|y(s)|)|s=t0

< 0.

Then, there exists δ5 > 0 such that

|x(t)| < |x(t0)| = V (t0), |y(t)| < |y(t0)| = V (t0) ∀t ∈ (t0, t0 + δ5).

Therefore, V (t) = V (t0) for all t ∈ (t0, t0 + δ5).

By the above proof, ∀t0 ≥ 0, there exists a constant δ > 0 such that

V (t) ≤ max{V (t0), M}, ∀t ∈ (t0, t0 + δ).

Now, we claim that

V (t) ≤ max{V (0), M}, ∀t ≥ 0. (2.9)

In fact, if this is not true, then

α := inf{t ≥ 0 : V (t) > max{V (0), M}} < +∞.

By the definition of α and the continuity of V (t), we have

V (t) ≤ max{V (0), M}, ∀t ∈ [0, α]. (2.10)

In addition, it follows from the above proof that there is a constants δ
′

> 0 such

that

V (t) ≤ max{V (α), M}, ∀t ∈ (α, α + δ
′

). (2.11)

Combing (2.10) and (2.11), we have

V (t) ≤ max{V (0), M}, ∀t ∈ [0, α + δ
′

),

which contradicts with the definition of α. Thus, (2.9) holds. Then, it follows that

solutions of (2.5) are uniformly bounded.

Remark 2.3. Theorem 2.2 yields that all solutions to (1.2) with any given initial

conditions are uniformly bounded, i.e., for any given initial conditions (φ, y0), there

is a constant B > 0 such that any solution x(t) to (1.2) with initial conditions (φ, y0)

satisfies

|x(t)| ≤ B, t ∈ R
+.
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Remark 2.4. In the case of f1(x) ≡ 0, the assumption (2.2) is equivalent to

lim inf
u→∞

sgn(u)ϕ(u)

|u|
> λε,

where

ϕ(u) =

∫

u

0

[f2(x) − 1]dx.

This means that (2.2) is weaker than (A0) and (A1) to some extent.

Next, we give two example to illustrate our results.

Example 2.5. Consider the following Liénard equation:

x′′(t) + f(x(t))x′(t) + g(x(t)) = e(t), (2.12)

where

f(x) =
e−x − xe−x + 3

2
, g(x) =

1

6
xe−x +

1

3
x, e(t) = cos t.

Noticing that F (x) ≡ 1, one can easily verify that (2.1)–(2.4) hold with ε = 1

3
,

λ = 1, Φ(x) = x

18
and G(x) ≡ 0. Then, Theorem 2.2 yields that all solutions to

(2.12) with any given initial conditions are uniformly bounded.

Remark 2.6. In the above example,

ϕ(x) =

∫

x

0

[f(u) − 1]du =
1

2
xe−x +

1

2
x,

Obviously, neither (A0) nor (A1) hold. Thus, the results in [7, 8] can not be applied

to the above example.

Example 2.7. Consider the following Liénard equation:

x′′(t) + f1(x(t))(x′(t))2 + f2(x(t))x′(t) + g1(x(t)) + g2(x(t − τ(t))) = e(t), (2.13)

where

f1(x) =
cos x

2 + sin x
, f2(x) = 8ex2

, g2(x) =
1

2
x, τ(t) = 1 + cos t, e(t) = sin t,

and

g1(x) =

∫

x

0

(1 +
1

2
sin u)(8eu2

− 1 −
1

2
sin u)du.
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In view of

F (x) = exp

(
∫

x

0

f1(u)du

)

= 1 +
1

2
sin x,

it is not difficult to verify that (2.1)–(2.4) hold with ε = 1, λ = 9

4
, Φ(x) ≡ 0 and

G(x) = x

2
. Then, by Theorem 2.2, all solutions to (2.13) with any given initial

conditions are uniformly bounded.

3 Acknowledgements

The authors are grateful to the referee for valuable suggestions and comments, which

improved greatly the quality of this paper.

References

[1] T. A. Burton, Stability and Periodic Solutions of Ordinary and Functional

Differential Equations, Academic Press, Orland, FL, 1985.

[2] T.A. Burton, B. Zhang, Boundedness, periodicity, and convergence of solutions

in a retarded Liénard equation, Ann. Mat. Pura Appl. (4) CLXV (1993), 351–

368.

[3] A. Fonda, F. Zanolin, Bounded solutions of nonlinear second order ordinary

differential equations, Discrete and Continuous Dynamical Systems, 4 (1998),

91–98.

[4] J. K. Hale, Theory of Functional Differential Equations, Springer-Verlag, New

York, 1977.

[5] L. Huang, Y. Cheng, J. Wu, Boundedness of solutions for a class of nonlinear

planar systems, Tohoku Math. J. 54 (2002), 393–419.

[6] B. Liu, L. Huang, Boundedness for a class of retarded Liénard equation, J.

Math. Anal. Appl. 286 (2003), 422–434.

EJQTDE, 2010 No. 24, p. 8



[7] B. Liu, L. Huang, Boundedness of solutions for a class of Liénard equations

with a deviating argument, Appl. Math. Lett. 21 (2008), 109–112.

[8] G. Ye, H. Ding, X. Wu, Uniform boundedness of solutions for a class of Liénard

equations, Electron. J. Diff. Eqns., Vol. 2009(2009), No. 97, pp. 1–5.

[9] B. Zhang, Boundedness and stability of solutions of the retarded Liénard equa-

tion with negative damping, Nonlinear Anal. 20 (1993), 303–313.

[10] B. Zhang, Necessary and sufficient conditions for boundedness and oscillation

in the retarded Liénard equation, J. Math. Anal. Appl. 200 (1996), 453–473.

(Received September 14, 2009)

EJQTDE, 2010 No. 24, p. 9


