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OSCILLATION OF THIRD-ORDER FUNCTIONAL

DIFFERENTIAL EQUATIONS

B. BACULÍKOVÁ AND J. DŽURINA

Abstract. The aim of this paper is to study oscillatory and asymptotic prop-
erties of the third-order nonlinear delay differential equation

(E)
ˆ

a(t)
ˆ

x
′′(t)

˜

γ
˜

′

+ q(t)f(x [τ (t)]) = 0.

Applying suitable comparison theorems we present new criteria for oscillation
or certain asymptotic behavior of nonoscillatory solutions of (E). Obtained
results essentially improve and complement earlier ones. Various examples are
considered to illustrate the main results.

1. Introduction

We are concerned with oscillatory behavior of the third-order functional differ-
ential equations of the form

(E)
[

a(t)
[

x′′(t)
]γ]′

+ q(t)f(x [τ(t)]) = 0

In the sequel we will assume that the following conditions are always satisfied
throughout this paper:

(H1) a(t), q(t) ∈ C([t0,∞)), a(t), q(t) are positive, τ(t) ∈ C([t0,∞)), τ(t) ≤ t,
lim
t→∞

τ(t) = ∞,

(H2)
∞
∫

t0

a−1/γ(s) ds < ∞,

(H3) γ is a quotient of odd positive integers,
(H4) f(x) ∈ C(−∞,∞), xf(x) > 0, f ′(x) ≥ 0 for x 6= 0 and −f(−xy) ≥

f(xy) ≥ f(x)f(y) for xy > 0.

By a solution of Eq.(E) we mean a function x(t) ∈ C2[Tx,∞), Tx ≥ t0, which
has the property a(t)(x′′(t))γ ∈ C1[Tx,∞) and satisfies Eq. (E) on [Tx,∞). We
consider only those solutions x(t) of (E) which satisfy sup{|x(t)| : t ≥ T} > 0
for all T ≥ Tx. We assume that (E) possesses such a solution. A solution of
(E) is called oscillatory if it has arbitrarily large zeros on [Tx,∞) and otherwise
it is called to be nonoscillatory. Equation (E) is said to be oscillatory if all its
solutions are oscillatory.

Following Tanaka [23] we say that a nontrivial solution x(t) of (E) is strongly
decreasing if it satisfies

(1.1) x(t)x′(t) < 0
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for all sufficiently large t and it said to be strongly increasing if

(1.2) x(t)x′(t) > 0.

Recently differential equations of the form (E) and its special cases have been
the subject of intensive research (see enclosed references). Grace et al. in [9]
have established a useful comparison principle for studying properties of (E).
They have compared Eq.(E) with a couple of the first order delay differential
equations in the sense that we deduce oscillation of Eq.(E) from the oscillation
of this couple of equations.

Dzurina and Baculikova in [5] improve their results for the case when

∞
∫

t0

a−1/γ(s) ds = ∞.

Zhong et al. in [24] adapted Grace et al.’s method and extended some of their
results to neutral differential equation

(E1)
[

a(t)
{

[x(t) + p(t)x(σ(t))]′′
}γ]′

+ q(t)f(x [τ(t)]) = 0.

So that again from oscillation of a suitable first order delay equation we deduce
oscillation of (E1)

On the other hand, Saker and Dzurina in [21] studied a particular case of
Eq.(E), namely the differential equation

(E2)
[

a(t)
[

x′′(t)
]γ]′

+ q(t)xγ [τ(t)] = 0.

They presented conditions under which every nonoscillatory solution of (E2) tends
to zero as t → ∞. Those results are applicable even if the criteria presented in
[9] fail.

It is useful to notice that for a very special case of (E), that is, for

(E3) x′′′(t) + q(t)x(t) = 0,

Hartman and Wintner in [11] have derived that (E3) always has a strongly de-
creasing solution. Thus, the effort for obtaining criteria for all nonoscillatory
solutions to be strongly decreasing appeared.

Therefore, from all above mentioned results, we conclude that if the gap be-
tween t and τ(t) is small, then there exists a nonoscillatory solution of (E) and
the Theorems from [9] are not applicable to deduce oscillation of (E). In this
case, our goal is to prove that every nonoscillatory solution of (E) tends to zero
as t → ∞. While if the difference t− τ(t) is large enough, then we can study the
oscillatory character of (E).

So our aim of this article is to provide a general classification of oscillatory and
asymptotic behavior of the studied equation. We present criteria for (E) to be
oscillatory or for every its nonoscillatory solution to be either strictly decreasing
or tend to zero as t → ∞.

At first we turn our attention to Theorem 2.2 from [9], which is the main result
of the paper. Formulation of Theorem 2.2 in [9] does not match its proof and for
all that we provide a corrected version of the theorem.
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Theorem A. [Theorem 2.2 in [9]] Let (H1) hold and assume that there exist two
functions ξ(t) and η(t) ∈ C1([t0,∞), R) such that

ξ′(t) > 0, η′(t) > 0 and τ(t) < ξ(t) < η(t) < t for t ≥ t0.

If

(1.3)

∫ ∞

t0

(

1

a(u)

∫ u

t0

q(s)f(τ(s))f

(

∫ ∞

τ(s)
a−1/γ(v)dv

)

ds

)1/γ

du = ∞,

and both the first order delay equations

(EI) y′(t) + cq(t)f

(

∫ τ(t)

T
sa−1/γ(s)ds

)

f
(

y1/γ [τ(t)]
)

= 0,

for any constant c, 0 < c < 1, and T ≥ t0, and

(EII) z′(t) + q(t)f (ξ(t) − τ(t)) f

(

∫ η(t)

ξ(t)
a−1/γ(s)ds

)

f
(

z1/γ [η(t)]
)

= 0

are oscillatory, then every solution of Eq.(E) is oscillatory.

Remark 1. In the formulation of Theorem 2.2 in [9], there is an excess term
f(g(t)) included in Eq. (EI). Now, the reader can easily reconstruct the results
from [9] pertaining to Theorem 2.2.

2. Main results

We start our main results with the classification of the possible nonoscillatory
solutions of (E).

Lemma 1. Let x(t) be a positive solution of (E). Then either

(i) x′′(t) > 0, eventually and x(t) is either strongly increasing or strongly
decreasing, or

(ii) x′′(t) < 0, eventually and x(t) is strongly increasing.

Proof. Let x(t) be a nonoscillatory solution of Eq.(E). We may assume that
x(t) > 0, eventually (if it is an eventually negative, the proof is similar). Then

[a(t) [x′′(t)]γ ]
′
< 0, eventually. Thus, a(t) [x′′(t)]γ is decreasing and of one sign

and it follows from hypothesis (H1) and (H2) that there exists a t1 ≥ t0 such
that x′′(t) is of fixed sign for t ≥ t1. If we have x′′(t) > 0, then x′(t) is increasing
and then either (1.1) or (1.2) hold, eventually.

On the other hand, if x′′(t) < 0 then x′(t) is decreasing, hence x′(t) is of
fixed sign. If we have x′(t) < 0, then limt→∞ x(t) = −∞. This contradicts the
positivity of x(t). Whereupon x′(t) > 0. The proof is complete.

The following criterion eliminates case (ii) of Lemma 1.

Lemma 2. Let x(t) be a positive solution of (E). If

(2.1)

∫ ∞

t0

(

1

a(u)

∫ u

t0

q(s)f(τ(s))f

[

∫ ∞

τ(s)
a−1/γ(v)dv

]

ds

)1/γ

du = ∞,

then x(t) does not satisfy case (ii) of Lemma 1.
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Proof Let x(t) be a positive solution of Eq.(E). We assume that x(t) satisfies
case (ii) of Lemma 1. That is x′′(t) < 0 and x′(t) > 0, eventually. Then there
exist a t1 ≥ t0 and a constant k, 0 < k < 1 such that x(t) ≥ ktx′(t) for t ≥ t1.
Consequently,

(2.2) x[τ(t)] ≥ kτ(t)x′[τ(t)]

for t ≥ t2 ≥ t1. Now Eq.(E), in view of (H4) and (2.2), implies

[a(t)[x′′(t)]γ ]′ + f(k)q(t)f [τ(t)]f(x′[τ(t)]) ≤ 0.

An integration of this inequality yields

(2.3) f(k)

∫ t

t2

q(s)f [τ(s)]f(x′[τ(s)])ds ≤ a(t2)[x
′′(t2)]

γ − a(t)[x′′(t)]γ .

On the other hand, since −a1/γ(t)[x′′(t)] is increasing, there exist a constant
m > 0 such that

(2.4) −a1/γ(t)x′′(t) ≥ m, for t ≥ t2,

which implies

(2.5) x′(τ(t)) ≥
∫ ∞

τ(t)
−a1/γ(s)x′′(s)a−1/γ(s)ds ≥ m

∫ ∞

τ(t)
a−1/γ(s)ds.

Combining (2.5) together with (2.3), and taking into account (H3), we get

(2.6) c

(

1

a(t)

∫ t

t2

q(s)f [τ(s)]f

(

∫ ∞

τ(s)
a−1/γ(v)dv

)

ds

)1/γ

≤ −x′′(t),

where c = [f(m)f(k)]1/γ . Integrating (2.6) from t3 to t, we have

c

∫ t

t3

(

1

a(u)

∫ u

t2

q(s)f [τ(s)]f

(

∫ ∞

τ(s)
a−1/γ(v)dv

)

ds

)1/γ

du ≤ x′(t3).

Letting t → ∞ we get a contradiction to condition (2.1). Therefore, we have
eliminated case (ii) of Lemma 1.

Now we are prepared to provide oscillation and asymptotic criteria for solutions
of Eq.(E).

Theorem 1. Let (2.1) hold. If the first order delay equation

(E4) y′(t) + q(t)f

[

∫ τ(t)

t0

(τ(t) − u) a−1/γ(u)du

]

f
[

y1/γ [τ(t)]
]

= 0

is oscillatory, then every solution of Eq.(E) is either oscillatory or strongly de-
creasing.

Proof. Let x(t) be a nonoscillatory solution of Eq.(E). We may assume that
x(t) > 0 for t ≥ t0. From Lemma 2 we see that x′′(t) > 0 and x(t) is either
strongly increasing or strongly decreasing.
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Assume that x(t) is strongly increasing, that is x′(t) > 0, eventually. Using
the fact that a(t) [x′′(t)]γ is decreasing, we are lead to

x′(t) ≥
∫ t

t1

x′′(u)du =

∫ t

t1

a−1/γ(u)
[

a(u)(x′′(u))γ
]1/γ

du

≥
[

a(t)(x′′(t))γ
]1/γ

∫ t

t1

a−1/γ(u)du.(2.7)

Integrating (2.7) from t1 to t, we have

x(t) ≥
∫ t

t1

[

a(s)(x′′(s))γ
]1/γ

∫ s

t1

a−1/γ(u)duds

≥
[

a(t)(x′′(t))γ
]1/γ

∫ t

t1

(t − u) a−1/γ(u)du.

There exists a t2 ≥ t1 such that for all t ≥ t2, one gets

(2.8) x[τ(t)] ≥ y1/γ [τ(t)]

∫ τ(t)

t2

(τ(t) − u) a−1/γ(u)du,

where y(t) = a(t)(x′′(t))γ . Combining (2.8) together with (E), we see that

−y′(t) = q(t)f(x(τ(t))) ≥ q(t)f

[

y1/γ [τ(t)]

∫ τ(t)

t2

(τ(t) − u) a−1/γ(u)du

]

≥ q(t)f

[

∫ τ(t)

t2

(τ(t) − u) a−1/γ(u)du

]

f
[

y1/γ [τ(t)]
]

,

where we have used (H3). Thus, y(t) is a positive and decreasing solution of the
differential inequality

y′(t) + q(t)f

[

∫ τ(t)

t2

(τ(t) − u) a−1/γ(u)du

]

f
[

y1/γ [τ(t)]
]

≤ 0.

Hence, by Theorem 1 in [19] we conclude that the corresponding differential
equation (E4) also has a positive solution, which contradicts to oscillation of
(E4). Therefore x(t) is strongly decreasing.

Adding an additional condition, we achieve stronger asymptotic behavior of
nonoscillatory solutions of Eq.(E).

Lemma 3. Assume that x(t) is a strongly decreasing solution of Eq.(E). If

(2.9)

∫ ∞

t0

∫ ∞

v

1

a1/γ(u)

[∫ ∞

u
q(s)ds

]1/γ

dudv = ∞,

then x(t) tends to zero as t → ∞.

Proof. We may assume that x(t) is positive. It is clear that there exists a finite
lim
t→∞

x(t) = ℓ. We shall prove that ℓ = 0. Assume that ℓ > 0.

Integrating Eq.(E) from t to ∞ and using x[τ(t)] > ℓ and (H3), we obtain

a(t)(x′′(t))γ ≥
∫ ∞

t
q(s)f(x[τ(s)])ds ≥ f(ℓ)

∫ ∞

t
q(s)ds,
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which implies

x′′(t) ≥ ℓ1

a1/γ(t)

[
∫ ∞

t
q(s)ds

]1/γ

,

where ℓ1 = f1/γ(ℓ) > 0. Integrating the last inequality from t to ∞, we get

−x′(t) ≥ ℓ1

∫ ∞

t

1

a1/γ(u)

[
∫ ∞

u
q(s)ds

]1/γ

du.

Now integrating from t1 to t, we arrive at

x(t1) ≥ ℓ1

∫ t

t1

∫ ∞

v

1

a1/γ(u)

[∫ ∞

u
q(s)ds

]1/γ

dudv.

Letting t → ∞ we have a contradiction with (2.9) and so we have verified that
lim
t→∞

x(t) = 0.

Combining Theorem 1 and Lemma 3 we get:

Theorem 2. Assume that (2.1) and (2.9) holds. If the equation (E4) is oscilla-
tory then every solution of Eq.(E) is oscillatory or tends to zero as t → ∞.

For a special case of Eq.(E), we have:

Corollary 1. Assume that (2.9) holds and

(2.10)

∫ ∞

t0





1

a(u)

∫ u

t0

q(s)τβ(s)

(

∫ ∞

τ(s)
a−1/γ(v)dv

)β

ds





1/γ

du = ∞.

Assume that β is a quotient of odd positive integers. If the delay equation

(E5) y′(t) + q(t)

[

∫ τ(t)

t0

(τ(t) − s)a−1/γ(s)ds

]β

yβ/γ [τ(t)] = 0

is oscillatory then every solution of the equation

(E6)
[

a(t)
[

x′′(t)
]γ]′

+ q(t)xβ [τ(t)] = 0

is oscillatory or tends to zero as t → ∞.

In Theorems 1 and 2 and Corollary 1 we have established new comparison
principles that enable to deduce properties of the third order nonlinear differential
equation (E) from oscillation of the first order nonlinear delay equation (E4).
Consequently, taking into account oscillation criteria for (E4), we immediately
obtain results for (E).

Corollary 2. Assume (2.9) and

(2.11)

∫ ∞

t0

(

1

a(u)

∫ u

t0

q(s)τγ(s)

(

∫ ∞

τ(s)
a−1/γ(v)dv

)γ

ds

)1/γ

du = ∞

hold. If

(2.12) lim inf
t→∞

∫ t

τ(t)
q(u)

[

∫ τ(u)

t0

(τ(u) − s)a−1/γ(s)ds

]γ

du >
1

e
,
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then every solution of the equation

(E7)
[

a(t)
[

x′′(t)
]γ]′

+ q(t)xγ [τ(t)] = 0

is oscillatory or tends to zero as t → ∞.

Proof. Condition (2.12) (see Theorem 2.1.1 in [16]) guarantees oscillation of
(E6) with β = γ.

Now we eliminate the strongly decreasing solutions of (E) to get an oscillation
result. We relax condition (2.9) and employ another one. Our method is new
and complements the one presented in [9].

Theorem 3. Let (2.1) hold and τ ′(t) > 0. Assume that there exist a function
ξ(t) ∈ C1([t0,∞)) such that

(2.13) ξ′(t) ≥ 0, ξ(t) > t, and η(t) = τ(ξ(ξ(t))) < t.

If both first order delay equations (E4) and

(E8) z′(t) +





∫ ξ(t)

t

1

a1/γ(s2)

(

∫ ξ(s2)

s2

q(s1)ds1

)1/γ

ds2



 f1/γ (z[η(t)]) = 0

are oscillatory, then Eq. (E) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of Eq.(E). We may assume that
x(t) > 0. From Theorem 1, we see that x(t) is strongly decreasing (i.e., x′(t) < 0).
Integration of (E) from t to ξ(t) yields

a(t)
(

x′′(t)
)γ ≥

∫ ξ(t)

t
q(s1)f(x(τ(s1)))ds1 ≥ f(x[τ(ξ(t))])

∫ ξ(t)

t
q(s1)ds1.

Then

x′′(t) ≥ f1/γ(x[τ(ξ(t))])

a1/γ(t)

(

∫ ξ(t)

t
q(s1)ds1

)1/γ

.

Integrating from t to ξ(t) once more, we get

−x′(t) ≥
∫ ξ(t)

t

f1/γ(x[τ(ξ(s2))])

a1/γ(s2)

(

∫ ξ(s2)

s2

q(s1)ds1

)1/γ

ds2

≥ f1/γ(x[η(t)])

∫ ξ(t)

t

1

a1/γ(s2)

(

∫ ξ(s2)

s2

q(s1)ds1

)1/γ

ds2.

Finally, integrating from t to ∞, one gets

(2.14) x(t) ≥
∫ ∞

t
f1/γ(x[η(s3)])

∫ ξ(s3)

s3

1

a1/γ(s2)

(

∫ ξ(s2)

s2

q(s1)ds1

)1/γ

ds2ds3.

Let us denote the right hand side of (2.14) by z(t). Then z(t) > 0 and one can
easily verify that z(t) is a solution of the differential inequality

z′(t) +





∫ ξ(t)

t

1

a1/γ(s2)

(

∫ ξ(s2)

s2

q(s1)ds1

)1/γ

ds2



 f1/γ (z[η(t)]) ≤ 0
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Then Theorem 1 in [19] shows that the corresponding differential equation (E8)
has also a positive solution. This contradiction finishes the proof.

For the special case of Eq. (E) with f(u) = uβ , we immediately have:

Corollary 3. Let (2.10) hold and τ ′(t) > 0. Let β be a quotient of odd positive
integers. Assume that there exist a function ξ(t) ∈ C1([t0,∞)) such that (2.13)
holds. If both Eq.(E5) and

(E9) z′(t) +





∫ ξ(t)

t

1

a1/γ(s2)

(

∫ ξ(s2)

s2

q(s1)ds1

)1/γ

ds2



 zβ/γ [η(t)] = 0

are oscillatory, then equation (E6) is oscillatory.

When choosing ξ(t) we are very particular about two conditions ξ(t) > t and
τ(ξ(ξ(t))) < t hold. Unfortunately there is no general rule how to choose function
ξ(t) to obtain the best result for oscillation of (E8). We suggest for function ξ(t)
”to be close to” the inverse function of τ(t). In the next example the reader can
see the details.

Example 1. Let us consider third order differential equation

(E10) [t2x′′(t)]′ + bx (λt) = 0, b > 0, λ ∈ (0, 1), t ≥ 1.

It is easy to verify that (2.10) holds for (E10). Now (E5) reduces to

y′(t) + b(λt − lnλt − 1) y(λt) = 0

and the oscillation criterion (2.12) takes the form

lim
t→∞

b

[

t2
λ − λ3

2
+ t ln t(λ − 1) + t ln λ(2λ − 1)

]

>
1

e
,

which is evidently fulfilled. Choosing ξ(t) = αt with 1 < α < 1√
λ

equation (E9)

takes the form

z′(t) + b(α − 1) ln α z[λα2t] = 0

and the oscillation criterion (2.12) reduces to

lim
t→∞

b(α − 1) ln α(1 − λα2) t >
1

e
,

which is satisfied. All conditions of Corollary 3 are satisfied and hence Eq. (E10)
is oscillatory.

Remark 2. In the proof of Lemma 2 we have recognized that condition(2.1)
eliminates case (ii) of Lemma 2.1. On the other hand, Theorems 1 and 3 implies
that oscillation of both equations (E4) and (E8) eliminates case (ii) of Lemma
2.1. Therefore if (2.1) is not satisfied, we have the following result:

Theorem 4. Let τ ′(t) > 0. Assume that there exist a function ξ(t) ∈ C1([t0,∞))
such that (2.13) holds If both first order delay equations (E4) and (E8) are oscil-
latory, then every positive solution x(t) of Eq. (E) satisfies case (ii) of Lemma
2.1.
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Example 2. Let us consider third order delay differential equation

(E11)
[

t5(x′′(t))3
]′

+
b

t2
x (λt) = 0, b > 0, λ ∈ (0, 1), t ≥ 1.

It is easy to verify that (2.1) fails for Eq.(E11). On the other hand, the corre-
sponding equation (E4), namely,

y′(t) +
b

t2

(

3

2
λt − 9

2
(λt)1/3 + 3

)3

z(λt) = 0

is oscillatory for every b. Moreover, setting ξ(t) = αt, with 1 < α < λ−1/2, we
see that the corresponding equation (E8), namely,

z′(t) +
b1/3

t

(

α − 1

α

)4/3

y(α2λt) = 0

is oscillatory if

b1/3

(

α − 1

α

)4/3

ln
1

α2λ
>

1

e
,

which for α = (
√

λ + 1)/(2
√

λ) reduces to

(2.15) b1/3

(

1 −
√

λ

1 +
√

λ

)4/3

ln
4

λ + 2
√

λ + 1
>

1

e
.

Therefore Theorem 4 ensures that every positive solution x(t) of Eq.(E11) satisfies

case (ii) of Lemma 2.1 provided that (2.15) holds. We note that for b = 1/128λ3/2

one such solution of Eq.(E11) is x(t) = t1/2.

In this paper we provide a full classification of nonoscillatory solutions of (E).
Our partial results guarantee described asymptotic behavior of all nonoscillatory
solutions (boundedness, convergence to zero and nonexistence). Our criteria im-
prove and properly complement known results even for simple cases of (E). Our
conclusions are precedented by illustrative examples that confirm upgrading of
known oscillation criteria. If we apply known/new criteria for both nonlinear first
order equations (E4) and (E8) to be oscillatory, we obtain more general criteria
for asymptotic properties of nonlinear third order equation (E).
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