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Abstract: In this paper, we study the second-order nonlinear singular Sturm-Liouville boundary

value problems with Riemann-Stieltjes integral boundary conditions





−(p(t)u′(t))′ + q(t)u(t) = f(t, u(t)), 0 < t < 1,

α1u(0) − β1u
′(0) =

∫ 1

0 u(τ)dα(τ),

α2u(1) + β2u
′(1) =

∫ 1

0 u(τ)dβ(τ),

where f(t, u) is allowed to be singular at t = 0, 1 and u = 0. Some new results for the existence of

positive solutions of the boundary value problems are obtained. Our results extend some known

results from the nonsingular case to the singular case, and we also improve and extend some results

of the singular cases.

Keywords: Boundary value problem; Integral boundary conditions; Positive solution; Singularity;

Eigenvalue.

1 Introduction

We investigate the existence of positive solutions for the second-order nonlinear singular Sturm-

Liouville boundary value problem (BVP) with integral boundary conditions





−(p(t)u′(t))′ + q(t)u(t) = f(t, u(t)), 0 < t < 1,

α1u(0) − β1u
′(0) =

∫ 1

0 u(τ)dα(τ),

α2u(1) + β2u
′(1) =

∫ 1

0
u(τ)dβ(τ),

(1.1)

where α1, α2, β1, β2 ∈ [0,+∞) are constants such that α1α2 + α1β2 + β1α2 > 0. α(t), β(t) are

nondecreasing on [0, 1],
∫ 1

0
u(τ)dα(τ) and

∫ 1

0
u(τ)dβ(τ) denote the Riemann-Stieltjes integral of
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u with respect to α and β, respectively. p ∈ C1([0, 1], (0,+∞)), q ∈ C([0, 1], [0,+∞)), f ∈

C((0, 1) × (0,+∞)), [0,+∞)) may be singular at t = 0, t = 1 and u = 0.

In this paper, the integral BVP in (1.1) has a more general form where the nonlinear term

f(t, u) is allowed to be singular at t = 0, 1 and u = 0. We obtain the existence criteria of at least

one positive solution for BVP (1.1) in the two cases which are β1, β2 > 0 and β1 = 0 or β2 = 0.

Boundary value problems (BVPs) arise from applied mathematics, biology, engineering and so

on. The existence of positive solutions to nonlocal BVPs has been extensively studied in recent

years. There are many results on the existence of positive solutions for three-point BVPs [1, 2],

m-point BVPs [3, 4].

It is well known that BVPs with Riemann-Stieltjes integral boundary conditions include two-

point, three-point, multi-point and the Riemann integral BVPs as special cases. Such BVPs have

attracted the attention of researchers such as [5]-[16]. In [5] and [6], the existence and uniqueness

of a solution of BVPs were studied. In [7]-[16], the sufficient conditions for the existence of positive

solutions of BVPs were given and many optimal results were obtained. In addition, many papers

investigated the existence of solutions for the singular BVPs, for example, [1, 2, 4, 5, 6], [11]-[16].

Especially, in the papers above, [1, 2, 4, 15, 16] studied singularity of the nonlinearity f(t, u) at

the point u = 0.

When
∫ 1

0
u(τ)dα(τ) =

m−2∑
i=1

αiu(ξi) and
∫ 1

0
u(τ)dβ(τ) =

m−2∑
i=1

βiu(ξi), (1.1) becomes BVP of [3].

If α1, α2, β1, β2 ∈ [0, 1], α2
1 + α2

2 = 1 and β2
1 + β2

2 = 1, (1.1) becomes BVPs of [9] and [10] (when

H(x) = x). The three papers above investigated the existence of solutions for the nonsingular

BVPs.

In [12], Webb used the methodology of [13] to study the existence of multiple positive solutions

of nonlocal BVP of the form





u′′(t) + p(t)u′(t) + q(t)u(t) + g(t)f(t, u(t)) = 0, 0 < t < 1,

au(0) − bu′(0) =
∫ 1

0
u(s)dA(s),

cu(1) + du′(1) =
∫ 1

0 u(s)dB(s),

(1.2)

where g, f are non-negative functions, typically f is continuous and g ∈ L1 may have pointwise

singularities. The case when f has no singularity at u = 0 is covered in [12] for the more general

case when the BCs allow Riemann-Stieltjes integrals with sign changing measures. Using the same

general method, other nonlocal problems of arbitrary order are studied in [14].

BVP (1.1) includes the three-point problems as special cases, when
∫ 1

0
u(τ)dα(τ) = 0 and

∫ 1

0 u(τ)dβ(τ) = ξu(η). These were extensively studied by Liu and co-authors (see, for example,

[1], [2]). They studied the existence of positive solutions with β1 = 0, β2 = 0, p ≡ 1 and q ≡ 0 (see

[1]). Furthermore, they improved on the results of [1] (see [2]).
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If β1 > 0, β2 > 0,
∫ 1

0
u(τ)dα(τ) =

m−2∑
i=1

αiu(ξi) and
∫ 1

0
u(τ)dβ(τ) =

m−2∑
i=1

βiu(ξi), then (1.1)

becomes BVP of [4]. In this case, we can get the sufficient conditions for the existence of positive

solutions of BVP (1.1) under weaker conditions than that in [4].

In [15], by means of the fixed point theorem, Jiang, Liu and Wu concerned with the second-order

singular Sturm-Liouville integral BVP





−u′′(t) = λh(t)f(t, u(t)), 0 < t < 1,

αu(0) − βu′(0) =
∫ 1

0
a(s)u(s)ds,

γu(1) + δu′(1) =
∫ 1

0 b(s)u(s)ds,

(1.3)

where h is allowed to be singular at t = 0, 1 and f(t, u) may be singular at u = 0. BVP (1.3) is

the spacial case of BVP (1.1), when p ≡ 1 and q ≡ 0. In [15], [1] and [2], Liu, Jiang and co-author

used the same condition to control the singularity of f at u = 0 for those BVPs (see (H2) in [1]

and [15], (H3) in [2]). In this paper, our condition is less restrictive than that one (see (3.4)), and

the conditions of the existence of solutions is simpler than the one in [15] when β1, β2 > 0.

In [16], by using some results from the mixed monotone operator theory, Kong concerned with

positive solutions of the second order singular BVP





u′′(t) + λh(t)f(t, u(t)) = 0, 0 < t < 1,

u(0) =
∫ 1

0 u(s)dξ(s),

u(1) =
∫ 1

0
u(s)dη(s),

(1.4)

where f(t, u) may be singular at t = 0, 1 and u = 0. When β1, β2 = 0, (1.1) becomes BVP (1.4).

Kong [16] studied the existence and uniqueness of positive solutions of (1.4). In this paper, we use

different methods from [16] to control the singularity of f at u = 0. We improve and extend the

results in [16] (see Remark 3.5).

Our results extend some known results from the nonsingular case in [3], [9], [10] (when H(x) =

x) and [12] to the singular cases, and improve and extend some results from the singular cases in

[1], [2], [4], [15] and [16].

The rest of this paper is organized as follows. In section 2, we present some lemmas that are

used to prove our main results. In section 3, the existence of positive solutions for BVP (1.1) is

stated and proved when β1, β2 > 0 and β1 = 0 or β2 = 0, respectively.
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2 Preliminaries

Lemma 2.1 (See [3]) Suppose φ and ψ be the solutions of the linear problems




−(p(t)φ′(t))′ + q(t)φ(t) = 0, 0 < t < 1,

φ(0) = β1, φ
′(0) = α1,

and 


−(p(t)ψ′(t))′ + q(t)ψ(t) = 0, 0 < t < 1,

ψ(1) = β2, ψ
′(1) = −α2,

respectively. Then

(i) φ is strictly increasing on [0, 1], and φ(t) > 0 on (0, 1];

(ii) ψ is strictly decreasing on [0, 1], and ψ(t) > 0 on [0, 1);

(iii) w = p(t)(φ′(t)ψ(t) − φ(t)ψ′(t)) is a constant and w > 0, φ and ψ are linearly independent. �

Let

G(t, s) =
1

w




φ(t)ψ(s), 0 ≤ t ≤ s ≤ 1,

φ(s)ψ(t), 0 ≤ s ≤ t ≤ 1.

Lemma 2.2 (See [3]) For any y ∈ L[0, 1], u is the solution of the boundary value problem





−(p(t)u′(t))′ + q(t)u(t) = y(t), 0 < t < 1,

α1u(0) − β1u
′(0) = 0,

α2u(1) + β2u
′(1) = 0

if and only if u can be expressed by

u(t) =

∫ 1

0

G(t, s)y(s)ds.

�

Let

a(t) =
ψ(t)

α1ψ(0) − β1ψ′(0)
=
p(0)ψ(t)

w
, and b(t) =

φ(t)

α2φ(1) + β2φ′(1)
=
p(1)φ(t)

w
.

Then a(t) and b(t) are solutions of





−(p(t)a′(t))′ + q(t)a(t) = 0, 0 < t < 1,

α1a(0) − β1a
′(0) = 1,

α2a(1) + β2a
′(1) = 0
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and 



−(p(t)b′(t))′ + q(t)b(t) = 0, 0 < t < 1,

α1b(0) − β1b
′(0) = 0,

α2b(1) + β2b
′(1) = 1,

respectively.

Denote

v1 = 1 −

∫ 1

0

a(τ)dα(τ), v2 = 1 −

∫ 1

0

b(τ)dβ(τ), v3 =

∫ 1

0

a(τ)dβ(τ), v4 =

∫ 1

0

b(τ)dα(τ),

A(s) =
v2

∫ 1

0
G(τ, s)dα(τ) + v4

∫ 1

0
G(τ, s)dβ(τ)

v1v2 − v3v4
,

and

B(s) =
v1

∫ 1

0 G(τ, s)dβ(τ) + v3
∫ 1

0 G(τ, s)dα(τ)

v1v2 − v3v4
.

We will use the following hypothesis:

(H1) v1 > 0, v1v2 − v3v4 > 0.

Obviously, v3, v4 ≥ 0. And v2 > 0 if (H1) holds.

Lemma 2.3 Suppose (H1) holds. For any y ∈ L[0, 1], u is the solution of the nonlinear BVP





−(p(t)u′(t))′ + q(t)u(t) = y(t), 0 < t < 1,

α1u(0) − β1u
′(0) =

∫ 1

0
u(τ)dα(τ),

α2u(1) + β2u
′(1) =

∫ 1

0 u(τ)dβ(τ)

(2.1)

if and only if u can be expressed by

u(t) =

∫ 1

0

(
G(t, s) + a(t)A(s) + b(t)B(s)

)
y(s)ds. (2.2)

�

The equation (2.2) is proved in [12] using the methods of [13] with a different notation from

the one here.

Let M = max
0≤t≤1

{‖φ‖, ‖ψ‖}. For any 0 < θ < 1
2 , we denote

γ = min

{
φ(θ)

φ(1)
,
ψ(1 − θ)

ψ(0)

}

and

γ0 =
1

M
min {β1, β2}.

It follows Lemma 2.4 and Lemma 2.5 from Lemma 2.1.
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Lemma 2.4 (1) G(t, s) = G(s, t) ≤ G(s, s) ≤ M2

w
for all (t, s) ∈ [0, 1] × [0, 1];

(2) 0 < γG(s, s) ≤ G(t, s), for t ∈ [θ, 1 − θ] and s ∈ [0, 1];

(3) 0 < γ0G(s, s) ≤ G(t, s), for t, s ∈ [0, 1], if β1, β2 > 0. �

Lemma 2.5 Suppose (H1) holds. Then

(1) A(s) and B(s) are nonnegative and bounded on [0, 1];

(2) a(t) is strictly decreasing on [0, 1], and a(t) > 0 on [0, 1);

(3) b(t) is strictly increasing on [0, 1], and b(t) > 0 on (0, 1]. �

Let

c(t) = min

{
φ(t)

φ(1)
,
ψ(t)

ψ(0)

}

and

Φ(s) = G(s, s) + a(0)A(s) + b(1)B(s),

we can easily obtain the following Lemma 2.6 from Lemma 2.4 and Lemma 2.5.

Lemma 2.6 Suppose (H1) holds. Then

c(t)Φ(s) ≤ G(t, s) + a(t)A(s) + b(t)B(s) ≤ Φ(s), t, s ∈ [0, 1].

�

Remark 2.7 Denote Q1 = sup
0≤s≤1

A(s) and Q2 = sup
0≤s≤1

B(s). Then Q1, Q2 ≥ 0 if (H1) holds.

For convenience, let us list the following hypothesis:

(H2) There exist functions h ∈ C((0, 1), [0,+∞)) and g ∈ C((0,+∞), [0,+∞)) such that

f(t, u) ≤ h(t)g(u), t ∈ (0, 1), u ∈ (0,+∞),

and

0 <

∫ 1

0

h(s)ds < +∞.

Let E = C[0, 1] with ‖u‖ = max
0≤t≤1

|u(t)| for any u ∈ C[0, 1]. Then E is a Banach space with the

norm ‖ · ‖. Let P = {u ∈ E : u(t) ≥ 0, t ∈ [0, 1]}. Clearly, P is a cone in E.

We define T : P → P by

(Tu)(t) =

∫ 1

0

(
G(t, s) + a(t)A(s) + b(t)B(s)

)
u(s)ds, t ∈ [0, 1].

Let fn(t, u) = f(t,max { 1
n
, u}) for n ∈ N

+ and t ∈ (0, 1). Define An : P → P by

(Anu)(t) =

∫ 1

0

(
G(t, s) + a(t)A(s) + b(t)B(s)

)
fn(s, u(s))ds, t ∈ [0, 1]. (2.3)

For any u ∈ P , if (H2) holds, we have fn(s, u(s)) ≤ h(s)g
(
max { 1

n
, u(s)}

)
and An is well

defined.
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Define

K = {u ∈ P : u(t) ≥ γ0‖u‖, t ∈ [0, 1]} if β1, β2 > 0,

and

K = {u ∈ P : min
t∈[θ,1−θ]

u(t) ≥ γ‖u‖, and u(t) ≥ c(t)‖u‖, t ∈ [0, 1]} if β1 = 0 or β2 = 0.

Clearly, K ⊂ P is a cone.

Noticing Lemma 2.4, 2.5 and Lemma 2.6, we can easily to get the following Lemma 2.8.

Lemma 2.8 Suppose that (H1) and (H2) hold. Then An(K) ⊆ K is a completely continuous

operator for any fixed positive integer n. �

Let E be a Banach space, K ⊂ E a cone. K is said to be reproducing if E = K −K, and is a

total cone if E = K −K. (See [18] and [19]).

Lemma 2.9 (See [18] Page 219 Proposition 19.1) Let E be a Banach space and K ⊂ E a cone.

Then we can get that K̊ 6= Ø ⇒ K is reproducing. The converse fails. �

We take u∗(t) ≡ 1 for t ∈ [0, 1], obviously, u∗ ∈ K̊. It follows K we define is reproducing from

Lemma 2.9.

Lemma 2.10 Suppose that (H1) holds. Then T : K → K is a completely continuous, positive,

linear operator and the spectral radius r(T ) > 0.

Proof Since (H1) holds, by Lemma 2.4, 2.5 and Lemma 2.6, it is easy to show T : K → K is a

completely continuous, positive, linear operator.

Noticing Lemma 2.6, we can get the spectral radius r(T ) > 0 from Lemma 2.5 in [17]. �

Lemma 2.11 (Krein-Rutman theorem. See [18] Page 226 Theorem 19.2) Let E be a Banach

space, K ⊂ E a total cone and T ∈ L(E) a compact, linear, operator with T (K) ⊂ K (positive)

and spectral radius r(T ) > 0. Then r(T ) is an eigenvalue with an eigenvector in K. �

According to Lemmas above, we can let u0 denote the eigenfunction in K corresponding to its

eigenvalue r(T ) such that r(T )u0 = Tu0. We write

λ = (r(T ))−1. (2.4)

Lemma 2.12 (See [20]) Let K be a cone of a real Banach space E, Ω be a bounded open set in

E. Suppose A : K ∩ Ω → K is a completely continuous operator. If there exists u0 ∈ K\{θ} such

that u−Au 6= ρu0 for all u ∈ ∂Ω ∩K and all ρ ≥ 0, then i(A,Ω ∩K,K) = 0. �

Lemma 2.13 (See [20]) Let K be a cone of a real Banach space E, Ω be a bounded open set in

E, with 0 ∈ Ω. Suppose A : K ∩ Ω → K be a completely continuous operator. If Au 6= ρu for all

u ∈ ∂Ω ∩K and all ρ ≥ 1, then i(A,Ω ∩K,K) = 1. �
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3 The main results

We will also use the following hypotheses on the nonlinear term f .

(A1) lim
u→0+

inf
t∈(0,1)

f(t, u)

u
> λ;

(A2) lim
u→+∞

sup
t∈(0,1)

f(t, u)

u
< λ,

where λ is defined by (2.4).

Let 0 < ε0 < λ, r0 > 0 and R0 > max{1, r0} be such that

f(t, u) > (λ+ ε0)u, for 0 < u ≤ r0, and f(t, u) < (λ− ε0)u, for u ≥ R0.

When β1 > 0 and β1 > 0 the singularity of f(t, u) at u = 0 is easily dealt with as nonzero solutions

in the cone are strictly positive.

Theorem 3.1 Suppose (H1), (H2), (A1) and (A2) hold, β1, β2 > 0. Let

K = {u ∈ P : u(t) ≥ γ0‖u‖, t ∈ [0, 1]}.

Then the BVP (1.1) has at least one positive solution u ∈ K with r0 ≤ ‖u‖.

Proof. Take n0 ∈ N
+ and n0 > [ 1

r0
], then 1

n
< r0 for n > n0. Hence, if n > n0 we have

fn(t, u) = f(t,max {
1

n
, u}) > λmax {

1

n
, u} ≥ λu, 0 < u ≤ r0, t ∈ (0, 1). (3.1)

By Theorem 3.4 in [17], i(An, Br0
∩K,K) = 0 for n > 1/r0, where Br0

= {u ∈ C[0, 1] : ‖u‖ < r0}.

On the other hand, for each n ∈ N
+,

fn(t, u) = f(t,max {
1

n
, u}) ≤ (λ− ε0)max {

1

n
, u} = (λ− ε0)u, u ≥ R0, t ∈ (0, 1). (3.2)

Therefore, by Theorem 3.3 in [17], there exists a constantRn > R0 such that i(An, BRn
∩K,K) = 1.

By the additivity property of fixed point index, An has a fixed point un ∈ K with r0 ≤ ‖un‖ ≤ Rn.

For n1 > 1/(γ0r0) and t ∈ (0, 1), it follows that un1
(t) ≥ γ0‖un1

‖ ≥ γ0r0 > 1/n1. We have

fn1
(t, un1

(t)) = f(t, un1
(t)). Hence, un1

is a positive solution of the BVP (1.1) and un1
∈ K with

r0 ≤ ‖un1
‖. �

Now we consider the case when β1 = 0 or β2 = 0. We will use the cone

K = {u ∈ P : min
t∈[θ,1−θ]

u(t) ≥ γ‖u‖, and u(t) ≥ c(t)‖u‖, t ∈ [0, 1]}.

Lemma 3.2 Suppose (H1), (H2), (A1) and (A2) hold, and β1 = 0 or β2 = 0. Then for n > 1
γr0

and n ∈ N
+ we have

i(An, Br0
∩K,K) = 0. (3.3)
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Proof. This is the same as the first part of Theorem 3.1. �

Since r(λ−ε0)T ) = (λ−ε0)r(T ) < 1 and T : P → P is a completely continuous, linear operator,

it follows
(
I − (λ− ε0)T

)−1
is a bounded linear operator and maps P into P .

Theorem 3.3 Suppose (H1), (H2), (A1) and (A2) hold, and β1 = 0 or β2 = 0, there exist

constants M0 > 0, 0 < m0 <
1
2 such that

sup
{u∈K : γr0≤‖u‖≤R0}

∫

E(m0)

h(s)g(u(s))ds ≤M0, (3.4)

where E(m0) = [0,m0] ∪ [1 −m0, 1] and

K = {u ∈ P : min
t∈[m0,1−m0]

u(t) ≥ γ‖u‖, and u(t) ≥ c(t)‖u‖, t ∈ [0, 1]}.

Then the BVP (1.1) has at least one positive solution u ∈ K with r0 ≤ ‖u‖.

Proof. We denote M̃ =
(

M2

w
+ a(0)Q1 + b(1)Q2

)
M0 and take

R > max{
R0

γ
, ‖

(
I − (λ− ε0)T

)−1
‖M̃}.

Let BR = {u ∈ C[0, 1] : ‖u‖ < R}. We can prove

Anu 6= ρu, for all u ∈ ∂BR ∩K, ρ ≥ 1 and n >
1

γR0
. (3.5)

If (3.5) is not true, there exist u∗ ∈ ∂BR ∩K and ρ1 ≥ 1 such that

Anu
∗ = ρ1u

∗, for some n >
1

γR0
. (3.6)

We have

‖u∗‖ = R, u∗(t) ≥ γ‖u∗‖ = γR > R0 > r0 > γr0, for t ∈ [m0, 1 −m0]. (3.7)

Let E1 = {s ∈ [0, 1] : 0 ≤ u∗(s) ≤ R0}, it is easy to see that E1 ⊂ E(m0).

Denote u∗(s) = max{ 1
n
, u∗(s)}, then u∗ ∈ K,

‖u∗‖ = R, u∗(s) ≥ γ‖u∗‖ = γR > R0 > γr0, for s ∈ [m0, 1 −m0]. (3.8)

Let

u∗∗(t) =




u∗(t), t ∈ E1,

R0, t ∈ [0, 1]\E1.

We have γr0 ≤ ‖u∗∗‖ ≤ R0.
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Hence, by (3.4), (H2) and Lemma 2.4, for t ∈ [0, 1], we can show

∫

E1

(
G(t, s) + a(t)A(s) + b(t)B(s)

)
fn(s, u∗(s))ds

=

∫

E1

(
G(t, s) + a(t)A(s) + b(t)B(s)

)
f

(
s,max{

1

n
, u∗(s)}

)
ds

≤

∫

E1

(
G(t, s) + a(t)A(s) + b(t)B(s)

)
h(s)g

(
max{

1

n
, u∗(s)}

)
ds

=

∫

E1

(
G(t, s) + a(t)A(s) + b(t)B(s)

)
h(s)g (u∗(s)) ds

=

∫

E1

(
G(t, s) + a(t)A(s) + b(t)B(s)

)
h(s)g (u∗∗(s)) ds

≤

(
M2

w
+ a(0)Q1 + b(1)Q2

)
sup

{u∈K : γr0≤‖u‖≤R0}

∫

E(m0)

h(s)g(u(s))ds

≤M̃. (3.9)

Noticing (3.2) and (3.9), for t ∈ [0, 1], we can obtain

(Anu
∗)(t) =

∫ 1

0

(
G(t, s) + a(t)A(s) + b(t)B(s)

)
fn(s, u∗(s))ds

=

∫

[0,1]\E1

(
G(t, s) + a(t)A(s) + b(t)B(s)

)
fn(s, u∗(s))ds

+

∫

E1

(
G(t, s) + a(t)A(s) + b(t)B(s)

)
fn(s, u∗(s))ds

≤

∫ 1

0

(
G(t, s) + a(t)A(s) + b(t)B(s)

)
(λ− ε0)u

∗(s)ds+ M̃

=(λ − ε0)(Tu
∗)(t) + M̃.

It is easy to get

0 ≤ u∗ ≤ ρ1u
∗ = Anu

∗ ≤ (λ− ε0)(Tu
∗) + M̃.

Then (I − (λ− ε0)T )u∗ ≤ M̃ , u∗ ≤ (I − (λ− ε0)T )−1M̃ and

‖u∗‖ ≤ ‖(I − (λ− ε0)T )−1‖M̃ < R, (3.10)

which is a contradiction with the definition of u∗ ∈ ∂BR ∩K.

So (3.5) holds. It follows from Lemma 2.13, we have

i(An, BR ∩K,K) = 1 for n >
1

γR0
. (3.11)

By (3.3) and (3.11), we obtain

i
(
An, (BR ∩K)\(Br0

∩K),K
)

= i(An, (BR ∩K),K) − i(An, Br0
∩K,K) = 1,

for n > 1
γr0

.
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We can get An has a fixed point un ∈ K with r0 ≤‖ un ‖≤ R when n > 1
γr0

. Denote

n0 = [ 1
γr0

] + 1. Let

Ω = {un ∈ K : r0 ≤‖ un ‖≤ R, Anun = un, n > n0}.

It is easy to see that Ω is uniformly bounded. And we have

γr0 ≤ γ‖un‖ ≤ un(t) ≤ R, for n > n0 and t ∈ [m0, 1 −m0].

Hence,

∫ 1

0

fn(s, un(s))ds =

∫

{s∈[0,1] : γr0<un(s)≤R}

f(s,max{
1

n
, un(s)})ds

+

∫

{s∈[0,1] : 0≤un(s)≤γr0}

f(s,max{
1

n
, un(s)})ds

Let un(s) = max{ 1
n
, un(s)}, then for n > n0, un ∈ K and

R ≥ un(t) ≥ γ‖un‖ ≥ γr0 for n > n0 and t ∈ [m0, 1 −m0],

It is similar to the proof above, we can show

∫ 1

0

fn(s, un(s))ds ≤ max
γr0≤u≤R

g(u)

∫ 1

0

h(s)ds+M0.

That is, for each un ∈ Ω, we have

∫ 1

0

fn(s, un(s))ds ≤M1, (3.12)

where M1 = max
γr0≤u≤R

g(u)
∫ 1

0 h(s)ds+M0.

In the following, we prove that Ω is equicontinuous.

By the continuity of G(t, s), φ(t) and ψ(t), for any ε > 0, there exists δ1 ∈ (0, 1
2 ) such that

|G(t, s) −G(0, s)| < ε,

|a(t) − a(0)| < ε and |b(t) − b(0)| < ε.

for t ∈ (0, δ1).

By (2.3), for each un ∈ Ω and t ∈ (0, δ1), we have

|un(t) − un(0)| = |

∫ 1

0

(
(G(t, s) −G(0, s)) + (a(t) − a(0))A(s) + (b(t) − b(0))B(s)

)
fn(s, un(s))ds|

≤

∫ 1

0

(
|G(t, s) −G(0, s)| + |a(t) − a(0)|A(s) + |b(t) − b(0)|B(s)

)
fn(s, un(s))ds

≤ εM1(1 +Q1 +Q2).

Then we can show that

lim
t→0+

|un(t) − un(0)| = 0, n > n0. (3.13)
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Similarly, we can easily prove

lim
t→1−

|un(t) − un(1)| = 0, n ≥ n0. (3.14)

Since G(t, s), φ and ψ are uniformly continuous on t ∈ [ξ, 1 − ξ], ξ ∈ (0, 1
2 ) and s ∈ [0, 1]. For

ε > 0, there exists δ2 > 0 such that

|G(t1, s) −G(t2, s)| < ε,

|a(t1) − a(t2)| < ε and |b(t1) − b(t2)| < ε,

whenever |t1 − t2| < δ2, t1, t2 ∈ [ξ, 1 − ξ] and s ∈ [0, 1].

Then, for all n > n0, we have

|un(t1) − un(t2)|

= |

∫ 1

0

(
(G(t1, s) −G(t2, s)) + (a(t1) − a(t2))A(s) + (b(t1) − b(t2))B(s)

)
fn(s, un(s))ds|

≤

∫ 1

0

(
|G(t1, s) −G(t2, s)| + |a(t1) − a(t2)|A(s) + |b(t1) − b(t2)|B(s)

)
fn(s, un(s))ds

≤ εM1(1 +Q1 +Q2).

Thus, Ω is equicontinuous on [ξ, 1 − ξ] ⊂ (0, 1).

Noticing (3.13) and (3.14), we can obtain Ω is equicontinuous.

It follows that the {un}n>n0
has a subsequence which is uniformly convergent on [0, 1] from

Ascoli-Arzela theorem. Without loss of generality, we can assume that {un}n>n0
itself converges

uniformly to u on [0, 1], then r0 ≤ ‖u‖ ≤ R and u ∈ K.

By (2.3), we can show

un(t) =

∫ 1

0

(
G(t, s) + a(t)A(s) + b(t)B(s)

)
fn(s, un(s))ds, n > n0. (3.15)

Since f ∈ C((0, 1) × (0,+∞)), we have

lim
n→+∞

fn(t, un(t)) = f(t, u(t)), t ∈ (0, 1).

Noticing (3.4), (3.12) and (H2), according to the Lebesgue’s dominated convergence theorem, we

can get that f(s, u(s)) ∈ L[0, 1] and that

u(t) =

∫ 1

0

(
G(t, s) + a(t)A(s) + b(t)B(s)

)
f(s, u(s))ds

for t ∈ [0, 1] from (3.15).

Hence, it follows the BVP (1.1) has at least one positive solution u from Lemma 2.3, and u ∈ K

with r0 ≤ ‖u‖. �
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Example 3.4 We consider the BVP




−u′′(t) = f(t, u(t)), 0 < t < 1,

u(0) = 0,

u(1) =
∫ 1

0
u(s)ds,

(3.16)

where

f(t, u) =

(
4 + sin

1

t
+ sin

1

1 − t

) (
uµ +

1

uν

)
,

and 0 ≤ µ, ν < 1 are constants. Then the BVP (3.16) has at least one positive solution.

Proof. It is easy to see that

lim
u→0+

inf
t∈(0,1)

f(t, u)

u
= +∞,

and

lim
u→+∞

sup
t∈(0,1)

f(t, u)

u
= 0.

We can take h(t) = 6, g(u) = uµ + 1
uν

, φ(t) = t, ψ(t) = 1 − t and m0 = 1
4 . Then c(t) =

min{t, 1 − t} and γ = 1
4 . Let

K = {u ∈ P : min
t∈[ 1

4
, 3
4
]
u(t) ≥

1

4
‖u‖, and u(t) ≥ c(t)‖u‖, t ∈ [0, 1]}.

We can easily verify that (A1), (A2), (H1) and (H2) hold.

For each u ∈ K and 1
4r0 ≤ ‖u‖ ≤ R0,

h(t)g(u) ≤ 6

(
‖u‖µ +

1

(c(t)‖u‖)ν

)
≤ 6

(
Rµ

0 +
4

rν
0 (c(t))ν

)
.

Since
∫

E( 1
4
) 6

(
Rµ

0 + 4
rν

0
(c(t))ν

)
dt is convergent, its value is denoted M0. Therefore, the condition

(3.4) is satisfied.

By means of Theorem 3.3, we can obtain that the BVP (3.16) has at least one positive solution.

�

In fact, about the BVP (1.1), if (H1), (H2), (A1) and (A2) hold, when h(t)g(u) = h(t)
(
uµ + 1

uν

)
,

for each u ∈ K and γr0 ≤ ‖u‖ ≤ R0,

h(t)g(u) ≤ h(t)

(
‖u‖µ +

1

(c(t)‖u‖)ν

)
≤ h(t)

(
Rµ

0 +
1

(γr0)ν(c(t))ν

)
.

As long as
∫

E(m0)
h(t)

(
Rµ

0 + 1
(γr0)ν(c(t))ν

)
dt is convergent, we can get (3.4) holds.

Remark 3.5 In the BVP (1.1), let p ≡ 1, q ≡ 0, α1 = α2 = 1 and β1 = β2 = 0, (1.1) becomes

the BVP (1.4). Moreover, let α(t) ≡ C and β(t) = t, where C is a constant, that is ξ(t) ≡ C and

η(t) = t in (1.4). Then M = 1 of (2.2) in [16]. Hence, the assumption (H1) does not hold in [16],

and the existence of positive solutions of (1.4) cannot be obtained.
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