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Abstract

In this paper, we prove the existence of solutions for an anti-periodic boundary value
problem of nonlinear impulsive fractional differential equations by applying some known
fixed point theorems. Some examples are presented to illustrate the main results.
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1 Introduction

Fractional differential equations arise in many engineering and scientific disciplines as the
mathematical modeling of systems and processes in the fields of physics, chemistry, aerodynam-
ics, electrodynamics of complex medium, polymer rheology, etc. involves derivatives of fractional
order([1]-[3]). Recently, many authors have studied fractional-order differential equations from
two aspects, one is the theoretical aspects of existence and uniqueness of solutions, the other is
the analytic and numerical methods for finding solutions. The interest in the study of fractional-
order differential equations lies in the fact that fractional-order models are found to be more
accurate than the classical integer-order models, that is, there are more degrees of freedom in
the fractional-order models. Fractional differential equations also serve as an excellent tool for
the description of hereditary properties of various materials and processes. In consequence, the
subject of fractional differential equations is gaining more and more attention. For some recent

development on the topic, see ([4]-[13]) and the references therein.
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Impulsive differential equations arising from the real world describe the dynamics of processes
in which sudden, discontinuous jumps occur. Such processes are naturally seen in biology,
physics, engineering, etc. Due to their significance, it is important to study the solvability of
impulsive differential equations. For the general theory and applications of impulsive differential
equations, we refer the reader to the references ([14]-[18]). It is worthwhile mentioning that
impulsive differential equations of fractional order have not been much studied and many aspects
of these equations are yet to be explored. The recent results on impulsive fractional differential
equations can be found in ([19]-[26]).

Anti-periodic problems constitute an important class of boundary value problems and have
recently received considerable attention. Anti-periodic boundary conditions appear in physics
in a variety of situations (see for example, in ([27]-[35]) and the references therein). For some
recent work on anti-periodic boundary value problems of fractional differential equations, see
([36]-[40]) and the references therein.

Motivated by the above-mentioned work on anti-periodic and impulsive boundary value

problems of fractional order, in this paper, we study the following problem

CDu(t) = f(t,u(t)), 1l<a<?2, te.J,
Au(ty) = Ie(u(te)), Au(ty) = I (ute)), k=1,2,--,p, (L.1)
u(0) = —u(T), w'(0) = —u/(T),

where ¢ D® is the Caputo fractional derivative, f € C(JxR,R), Iy, I} € C(R,R), J = [0,T|(T >
0), 0=tg <t1 < <tp <<ty <tpyr =T, J =J\{t1,ta, ., tp}, Dulty) = u(t]) —
u(ty, ), where u(t}) and u(t; ) denote the right and the left limits of u(t) at t = t(k = 1,2, -+, p),
respectively. Au/(tx) have a similar meaning for u'(t).

We organize the rest of this paper as follows: in Section 2, we present some necessary defi-
nitions and preliminary results that will be used to prove our main results. The proofs of our

main results are given in Section 3. Section 4 contains some illustrative examples.

2 Preliminaries

Let Jo = [0,t1], 1 = (t1,ta],- -+ , Jp—1 = (tp—1,tp), Jp = (tp, T, and we introduce the spaces:
PC(JR)={u:J —R|ueC(Jy), k=0,1,--- ,p, and u(t;) exist, k=1,2,--- ,p, } with the
norm |ju| = sup |u(t)], and PC'(J,R) ={u:J - R |ue C'(Jg), k=0,1,---,p, and u(t]),

teJ

u'(t)) exist, k = 1,2,--- ,p, } with the norm |ul|pc1 = max{||u||, |u’||}. Obviously, PC(J,R)
and PC'(J,R) are Banach spaces.

Definition 2.1 A function u € PC(J,R) with its Caputo derivative of order o existing on J
is a solution of (1.1) if it satisfies (1.1).

We need the following known results to prove the existence of solutions for (1.1).
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Theorem 2.1 [17] Let E be a Banach space. Assume that  is an open bounded subset of E
with € Q and let T : Q — E be a completely continuous operator such that

| Tul| < |lul, Yu € 0Q.

Then T has a fized point in Q.

Theorem 2.2 [17] Let E be a Banach space. Assume thatT : E — E is a completely continuous
operator and the set V. ={u € E | u = pTu,0 < p < 1} is bounded. Then T has a fized point
n E.

Lemma 2.1 For a given y € C[0,T], a function u is a solution of the impulsive anti-periodic

boundary value problem

D(t) =yt), l<a<?2, tel,
Au(ty) = Ie(u(tr)), Au'(te) = I (u(te), k=1,2,---,p, (2.1)
u(0) = —u(T), w'(0) = —u'(T),

if and only if u is a solution of the impulsive fractional integral equation

_Safl _Safl _ _Sa72
f(f (t F(O)[) y(s)ds — %ftr;’: %y(s)ds n T ) 2t ftf (?(a _) ) y(s)ds + o, t € Jo;

¢ (t—s)2t Ods L 7 (T —s) ! s L2 7 (T —5)*2 \ds
u(t) = ftkk ING) ?( )da_12ftp [(a) y(s)ds + = J, F(a—l)aﬁ )
F o yteds + nute)] + 5 (- ) [ 1, Sy + )

;1 (ti _ S)a—Q .
—l—lzl(t — tk)[ i1 my(S)dS + I (u(tl))] +of, ted, k=1,2,---,p.
(2.2)

where

Proof. Let u be a solution of (2.1). Then, for t € Jy, there exist constants ¢1,co € R such that

u(t) = I1%Y(t) — c1 — cot = ﬁ /0 (t— S)O‘_ly(s)ds — ¢] — cot. (2.3)

1
IMNa—1)
For t € Jy, there exist constants dq,ds € R, such that

u'(t) = Iy (¢ — s)°"2y(s)ds — ca.

ftl -1 (s)ds—d1 —dg(t—tl),

u'(t) = ft1 — 5)*2y(s)ds — da,
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Then we have

— 1
u(ty) = T fgl (t1 — 8)2 Ly(s)ds —c1 — cot,  w(t]) = —dy,

V)= Fo b s e W) = e

In view of Au(ty) = u(t]) —u(ty) = L(u(tr)), and Au'(t1) = o' (t7) — ' (t7) = I} (u(tr)),
we have
J(t— s)0 y(s)ds — c1 — eaty + Li(u(ty)),

—dy = ﬁ fotl (t1 — ) 2y(s)ds — co + I (u(t1)).

Consequently,
2 ftl “y(s)ds + ﬁ 0t1 (t1 — 8)2 Ly(s)ds
— tll) a1 (t1 — s)a*2y(s)ds + Il(u(tl)) + (t — tl)Iik(u(tl)) —c1 — cat, teJ.
By a similar process, we can get
— g\~ 1 g a—1
ftk (t F(())z) y(s)ds + Z [ o %y(s)d&—kﬁ(u(u))}
s a—2
ol [ﬁl——%ﬁw@w+ﬁwmﬂ
s a—2
+,§1 (=) [ftf—l I‘(T_)l)y(s)ds + I;(u(ti))} —ci—cot, t€Jy, k=12, ,p.
(2.4)
By conditions u(0) = —u(T) and «/(0) = —/(T"), we have
— 5 a—1 _ s 2
c1 = %ftf% (s)ds — —ftp %y(s)ds
1 P £ (ti_s)a—l
+§ Z%:ll [ ti—1 Wy(s)js:' IZ(u(tl))]
+% izl(tp t@)[ e (?(;8_) 5 y(s)ds%—ll*(u(tl))]
_ . _ g a—2
3 T, v + 1 e
and
1 7 (T —s)* 52

c2=73 I, m y(s)ds + = Z [ftl ) Tl)y(s)ds + If(u(ti))]

Substituting the value of ¢;(i = 1,2) in (2.3) and (2.4), we can get (2.2). Conversely,
assume that u is a solution of the impulsive fractional integral equation (2.2), then by a direct

computation, it follows that the solution given by (2.2) satisfies (2.1). O

Remark 2.1 The first three terms of the solution (2.2) correspond to the solution for the prob-

lem without impulses.
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3 Main results

Define an operator T': PC(J,R) — PC(J,R) as

(t _ S)a—l S)a—l

Tu(t) = fti f(s,u(s))ds — ftp Wf( u(s))ds
_ — s a—2 — 5)™ 1
S putonas + 3 [, S sutos + Buteo)
1

. _ g 2
F (-t %f(au(s))ds + I u(t)]

)
3=t i, S s + 17 ()]
> [f;;il “Z}Tﬂ u(s))ds + Lu(t)

)a2

Wl ety (s u(s))ds + 1 (u(t)|

:1
w[ﬁ : tm_)n P, us))ds + 11wt

(3.1)
Then the problem (1.1) has a solution if and only if the operator T" has a fixed point.

Lemma 3.1 The operator T : PC(J,R) — PC(J,R) is completely continuous.

Proof. It is obvious that T' is continuous in view of continuity of f, I} and I}.
Let Q C PC(J,R) be bounded. Then, there exist positive constants L; > 0(i = 1,2, 3) such
that | f(t,u)| < Ly, [Ix(u)| < Lo and |1} (u)| < L3z, Vu € Q. Thus, Vu € €2, we have

— g a—1 — g a—1
)< J 52 |f<s ) g s atslas
’T_ 2t| ) . ti 7@1 _ s)ail s,u(s))|ds (u(t;
e o1 | s, uls Nlds + 32 [ i, Sy (s ul)lds + i)

— g~ 2
+kz (=) [, o ool + 12 o)
k )04—2 .
s3e- ! W\f(s,u(s))\ds 117 (ut) |
3 > I %\ﬂs u(s)lds + |1 (u(t))
a—2
3 & - i, ST o e u()lds + |17 (u(t)]
a—2
Zw[ﬁ A s w(s)) s + 7 () |
=1 a— 1 F )a—l TL -2
S TRk T It R
D ) p—_ a—1 a—2
H%}— gt e 1
L _ g a—2
+7T P> 2N (?’(a —) ot L]

EJQTDE, 2011 No. 7, p. 5



3(L+p)T°Ly  (13p = 5)T*Ly  3pLy  (13p = 6)TLs
2T(a + 1) AT () 2 4 ’

which implies

(3.2)

(1 + p)TaLl (13]) - 5)TaL1 3pLo (13]) - 6)TL3

3
[Tul| <
o (v + 1) AT () 2 4

= L.

On the other hand, for any ¢t € Ji,0 < k < p, we have

) k
i e s utelas + 3 [, G
— g)a—2 D . i— s a—2
w5 b e s + 5 5 [ s o las + 1 ute) ]
y (t—s)2 Ly o (T—s)%2 32 b (= s)°2
by T ds+ 5 Jiy a1 “ 2% L T(a—1) ds + Ls|
3(14pT* 'Ly  3pLs
2I'(@) 2

(ti — S)a72

IN

£ (s, u(s))lds + |17 ()

IN

IN

Hence, for ty,t9 € J, t1 < t2, 0 < k < p, we have

(Tu)(ts) — (Tu)(t1)] < / |(Tu) (s)lds < T(ta — ).

t1

This implies that T is equicontinuous on all Jg, k = 0,1,2,--- | p. The Arzela-Ascoli Theorem

implies that T': PC(J,R) — PC(J,R) is completely continuous. O
t 1 I
Theorem 3.1 Let lim f(—,u) =0, lim M =0 and lim M =0, then problem (1.1) has at
u—0 U u—0 U u—0 U
least one solution.
t 1, I
Proof. Since lim 1t =0, lim k() =0 and lim M = 0, then there exists a constant

u—0 u u—0 U u—0 U
r > 0 such that |f(¢t,u)| < 61|ul, [Ix(uw)| < d2lul and |1} (u)| < d3|u| for 0 < |u| < r, where
0; > 0(i = 1,2, 3) satisfy

1 T 13p — 5)T¢ 13p — 6)T
3(1+ p)T%6; +( 3p—5)T*61  3pdy  (13p —6)T63 <1 (3.3)
o (a + 1) AT (o) 2 1

Let Q@ = {u € PC(J,R) | |lu|| < r}. Take u € PC(J,R), such that |[u| = r, which means
u € 0. Then, by the process used to obtain (3.2), we have

3(1 + p)TO‘(Sl (13]) - 5)Ta(51 3p52 (13]9 - 6)T(53
Tu()] < { Hill

2(a + 1) (o) 2 1 (34)

Thus, (3.4) shows ||[Tu|| < ||ul|, u € 9.
Therefore, by Theorem 2.1, we know that 71" has at least one fixed point, which in turn implies
that (1.1) has at least one solution u € €. O
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Theorem 3.2 Assume that
(Hy) There exist positive constants L;(i = 1,2,3) such that

lf(t,u)] < Ly, |Ig(u)| < Lo, |Ip(u)| < Ls, forteld ueRandk=1,2,---,p
Then problem (1.1) has at least one solution.

Proof. Now, we show the set V = {u € PC(J,R) | u= pTu,0 < p < 1} is bounded.
Let w € V, then v = pTu,0 < p < 1. For any ¢t € J we have

)a—l

) oK 7>‘1 o ulsNds
ut) = J g f( s =8 i g s ute)d

_ a2 L g)a—1
T 42t ftp F )f( ())ds—{—,ui;[ftiil%

a—2
s - g, & a_)l) (s, u(s))ds + T (u(t)]
(ti — 8)a72

+u i(t - tk) |:ftil_1 m]ﬂ(s, u(s))ds + Il*(u(tz))}

. _ g a—1
[, B suto)ds + Lute)]
(ti — S)a_2

(tp = )| i, gy (oo + I ()|

f(s,u(s))ds + Li(u(ts))

=1
p

-
I

1
1

IR NI
T

1

<.
Il

POT — 2y + 27 o (ti— )22 .
h L T | oy ule)ds + I (u(t)].
(3.5)
Combining (Hp) and (3.5), by the process used to obtain (3.2), we have
Ju ()\ = ulTu(®) »
< ftk )) |f(s u(s ))|ds+lff%|f(5,u(5))|d5
|T 27f| ) k 4 (tz _ S)a—l
it P o s ulDlds + 32 | i, g1 (s uls)ds + L)

k—l ' t (ti _ S)a—Q p " .

F X =) | oy M s wle)lds + 1 (uteo)|

(ti — 8)a72

-] Ty Y+t

w52 [ %ws u()lds + 1)
p—1 a—2
*éizl ol ety s s )]

+@-—1 T - 22 +2t|[ft ] r(a 8)*” - s uls Dlds + |17 (u(ts)]

3L +p)T Ly (13p —5)T*Ly L 3pLy  (13p— 6)TLs
o0 (a + 1) AT (a) 2 4

which implies that for any ¢ € J, it hold that

3(14+p)T°Ly  (13p—5)T“Ly  3pLy L (3p - 6)TLs

<
lul = =ora+1) AT () 2 1
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So, the set V is bounded. By Theorem 2.2, we know that 7" has at least one fixed point, which

implies that (1.1) has at least one solution. (]

4 Examples

Example 4.1 Consider the following impulsive anti-periodic fractional boundary value problem

C Doy (t) = ) 4 3 gin u2 (t) — 1, O<t<1,t7é%7
sint u
Au(s ) In(1 + u(t)), Au’(é) _ T(t) (4.1)
w0 - —u<1>7 W(0) =~ (1),

where 1 < a <2 and p=1.

Clearly, all the assumptions of Theorem 3.1 hold. Thus, by the conclusion of Theorem 3.1
we can get that the above impulsive anti-periodic fractional boundary value problem (4.1) has

at least one solution.

Example 4.2 Consider the following impulsive anti-periodic fractional boundary value problem

In(1 + 3et)e=w*(®)

oy (4) — )
CDu(t) = 3+sindu(t)
(

1
0<t<l, t;ég,

1 7T+ 2 1 .
Auly) = ET?)) Al () = Sarctan’[in(1 + 26 (1)), 4.2)
u(O) = _u(1)7 ul(o) = _ul(1)7
where 1 <a <2 and p=1.
In(1+3
It can easily be found that L; = M,Lg = 3, L3 = 27%. Thus, the conclusion of
Theorem 3.2 applies and the impulsive fractional boundary value problem (4.2) has at least one
solution.
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