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In this paper, we prove the existence of nontrivial nonnegative classical time
periodic solutions to the viscous diffusion equation with strongly nonlinear periodic
sources. Moreover, we also discuss the asymptotic behavior of solutions as the
viscous coefficient k tends to zero.
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1 Introduction

This paper deals with the following viscous diffusion equation in one spatial dimension

∂u

∂t
− k

∂D2u

∂t
= D2u+m(x, t)uq, (x, t) ∈ Q ≡ (0, 1) × R

+ (1.1)

under the homogeneous boundary conditions

u(0, t) = u(1, t) = 0, t ≥ 0 (1.2)

and the time periodic condition

u(x, t+ ω) = u(x, t), (x, t) ∈ Q, (1.3)
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where q > 1, D = ∂/∂x, k > 0 denotes the viscous coefficient, m(x, t) ∈ C1(Q) is
a positive function satisfies m(x, t + ω) = m(x, t) for any (x, t) ∈ Q, ω is a positive
constant. The purpose of this paper is to investigate the solvability of the time periodic
problem (1.1)–(1.3) and the asymptotic behavior of solutions as the viscous coefficient k
tends to zero.

Equations of the form (1.1) can also be called pseudo-parabolic equations [1, 2], or
Sobolev type equations [3, 4]. They model many mathematical and physical phenomena,
such as the seepage of homogeneous fluids through a fissured rock [5, 6], or the heat con-
duction involving a thermodynamic temperature θ = u− k∆u and a conductive temper-
ature u [7, 8], or the populations with the tendency to form crowds [9, 10]. Furthermore,
according to experimental results, some researchers have recently proposed modifications
to Cahn’s model which incorporate out-of-equilibrium viscoelastic relaxation effects, and
thus obtained this type of equations (see [11]). This paper deals with such equations with
strong nonlinear time periodic sources, i.e. q > 1. From the early 19th century so far,
diffusion equations have been widely investigated, among them periodic problems have
been paid much attention. The researches on second order periodic diffusion equations
are extensive, and many profound results have been obtained ([12, 13, 14, 15]). When
k = 0, i.e. there isn’t any viscosity, the equation (1.1) in multi-spatial dimension becomes

∂u

∂t
= ∆u+m(x, t)uq,

which has been studied in [16, 17]. The authors proved the existence of nontrivial non-
negative time periodic solutions when q ∈

(

1, N
N−2

)

, where N is the spatial dimension.
When k > 0, i.e. pseudo-parabolic equations, Matahashi and Tsutsumi established the
existence theorems of time periodic solutions for the linear case

∂u

∂t
−
∂D2u

∂t
−D2u = f(x, t),

and the semilinear case

∂u

∂t
−
∂D2u

∂t
−D2u+ |u|pu− f(x, t) = 0

with 0 < p < 2, in [18](1978) and [19](1979), respectively. There are also some other early
works that related to the periodic problems of the following well-known BBM equation
which also has the viscous term

∂u

∂t
− k

∂D2u

∂t
−D2u+Du+ uDu = 0

with periodicity conditions with respect to space but not time variable, see for example
[20], [21]-[24]. As far as we know, there are a few investigations devoted to time peri-
odic problems of this kind of viscous diffusion equations. Furthermore, notice that such
equations can be used to describe models which are sensitive to time periodic factors
(for example seasons), such as aggregating populations ([9, 10]), etc, and there are some
numerical results and the stability of solutions ([20, 25, 26]) which indicate that time
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periodic solutions should exist, so it is reasonable to study the periodic problems of the
equation (1.1).

This paper is organized as follows. In Section 2, we apply topological degree method
to prove the existence of nontrivial nonnegative strong time periodic solutions to the
problem (1.1)–(1.3). We further prove that the strong solution is classical. Consequently,
in Section 3, we discuss the asymptotic behavior of solutions as the viscous coefficient k
tends to zero.

2 Existence of Periodic Solutions

This section is devoted to the existence of time periodic solutions of the problem (1.1)–
(1.3). Due to the time periodicity of the solutions under consideration, we only need to
consider the problem on Qω = (0, 1)×(0, ω). In fact, the existence results we obtained are
finally for the classical solutions, but due to the proof procedure, we first need to define
strong solutions of the problem (1.1)–(1.3).

Definition 2.1 Let E = Cω(Qω) be the set of all functions which are continuous in
[0, 1] × R and ω-periodic with respect to t. A function u is said to be a strong solution

of the problem (1.1)–(1.3), if u ∈
◦

W
2,1
2 (Qω) ∩ Cω(Qω) with Dut and D2ut in L2(Qω), and

satisfies
∫∫

Qω

∂u

∂t
ϕdxdt− k

∫∫

Qω

∂D2u

∂t
ϕdxdt =

∫∫

Qω

D2uϕdxdt+

∫∫

Qω

m(x, t)uqϕdxdt,

for any ϕ ∈ C(Qω), with ϕ(x, 0) = ϕ(x, ω) and ϕ(0, t) = ϕ(1, t) = 0 for t ∈ [0, ω].

Our main result is as follows.

Theorem 2.1 The problem (1.1)–(1.3) admits at least one nontrivial nonnegative clas-
sical time periodic solution u in C2+α,1+α/2(Qω) with its derivative ∂u

∂t
in C2+α,α/2(Qω),

where α ∈ (0, 1).

In order to prove this theorem, we employ the topological degree method to get the
existence of nontrivial strong time periodic solutions. Finally, by lifting the regularity of
the strong solution, we get the classical solution. Actually, the topological degree method
enables us to study the problem by considering a simpler equation with parameter

∂u

∂t
− k

∂D2u

∂t
= D2u+ τf(x, t), (x, t) ∈ Qω, (2.1)

where τ ∈ [0, 1] and f ∈ E. Define

F : E × [0, 1] −→ E, (f, τ) 7−→ u.

In the following, we prove that the map F is completely continuous. Furthermore, it
is easy to see that if we set f = Φ(u) = m(x, t)|u|q, then the map F (Φ(u), τ) is also
completely continuous.
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Lemma 2.1 For any τ ∈ [0, 1], f ∈ E, the equation (2.1) subject to the conditions (1.2)
and (1.3) has a unique strong solution u ∈ Cα,α/2(Qω), where α ∈ (0, 1).

Proof. The existence and uniqueness results can be found in [18]. Next, we discuss
the regularity of the solutions. Multiplying (2.1) by u and integrating the result with
respect to x over (0, 1), by using Young’s inequality and Poincaré’s inequality, we have

1

2

d

dt

∫ 1

0

(

u2 + k|Du|2
)

dx+

∫ 1

0

|Du|2dx = τ

∫ 1

0

fudx ≤
1

2

∫ 1

0

|Du|2dx+ C, (2.2)

here and below, C is a constant independent of u and τ . Then we have

d

dt

∫ 1

0

(

u2 + k|Du|2
)

dx ≤ C, ∀t ∈ (0, ω). (2.3)

Integrating (2.2) over (0, ω) and noticing the periodicity of u, we get

∫∫

Qω

|Du|2dxdt ≤ C,

which with Poincaré’s inequality imply
∫∫

Qω

(

u2 + k|Du|2
)

dxdt ≤ C. (2.4)

Set

F (t) =

∫ 1

0

(u2(x, t) + k|Du(x, t)|2)dx, ∀t ∈ [0, ω].

From (2.4), by the mean value theorem, we see that there exists a point t̂ ∈ (0, ω) such
that

F (t̂) =
1

ω

∫ ω

0

F (t)dt ≤ C.

For any t ∈ (t̂, ω], integrating (2.3) from t̂ to t gives

F (t) ≤ C + F (t̂) ≤ C, ∀t ∈ [t̂, ω].

Noticing the periodicity of F (t), we arrive

F (0) = F (ω) ≤ C.

Hence, integrating (2.3) over (0, t), we obtain

F (t) ≤ C, ∀t ∈ [0, ω].

Recalling the definition of F (t) and k > 0, we have

∫ 1

0

|Du(x, t)|2dx ≤ C, ∀t ∈ [0, ω]. (2.5)
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Noticing that u(0, t) = 0, there holds

|u(x, t)| =

∣

∣

∣

∣

∫ x

0

Du(y, t)dy

∣

∣

∣

∣

≤

(
∫ 1

0

|Du(x, t)|2dx

)1/2

≤ C, ∀(x, t) ∈ Qω. (2.6)

Multiplying (2.1) with D2u and integrating the result with respect to x over (0, 1), we
have

1

2

d

dt

∫ 1

0

(

|Du|2 + k|D2u|2
)

dx+

∫ 1

0

|D2u|2dx = −τ

∫ 1

0

fD2udx ≤
1

2

∫ 1

0

|D2u|2dx+ C,

Similar to the above discussion, we can obtain
∫∫

Qω

|D2u|2dxdt ≤ C, (2.7)

∫ 1

0

|D2u(x, t)|2dx ≤ C, ∀t ∈ [0, ω]. (2.8)

From the inequality (2.5) and (2.8), we can conclude that

|Du(x, t)| ≤ C, ∀(x, t) ∈ Qω. (2.9)

Multiplying (2.1) by
∂u

∂t
and integrating over Qω, noticing the periodicity of u, we have

∫∫

Qω

∣

∣

∣

∣

∂u

∂t

∣

∣

∣

∣

2

dxdt+ k

∫∫

Qω

∣

∣

∣

∣

∂Du

∂t

∣

∣

∣

∣

2

dxdt = τ

∫∫

Qω

f
∂u

∂t
dxdt ≤

1

2

∫∫

Qω

∣

∣

∣

∣

∂u

∂t

∣

∣

∣

∣

2

dxdt+ C,

from which we have

∫∫

Qω

∣

∣

∣

∣

∂u

∂t

∣

∣

∣

∣

2

dxdt ≤ C (2.10)

∫∫

Qω

∣

∣

∣

∣

∂Du

∂t

∣

∣

∣

∣

2

dxdt ≤ C. (2.11)

We rewrite the equation (2.1) into the following form

∂D2u

∂t
=

1

k

∂u

∂t
−

1

k
D2u−

τ

k
f(x, t).

By using (2.7), (2.10) and recalling k > 0, we get

∫∫

Qω

∣

∣

∣

∣

∂D2u

∂t

∣

∣

∣

∣

2

dxdt ≤ C. (2.12)

From (2.9), we have

|u(x1, t) − u(x2, t)| ≤ C|x1 − x2|, ∀t ∈ [0, ω], x1, x2 ∈ [0, 1]. (2.13)
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For any (x, t1), (x, t2) ∈ Qω, we consider the case of 0 ≤ x ≤ 1/2. Denote ∆t = t2− t1 > 0
satisfying (∆t)β ≤ 1/4, β ∈ (0, 1). For any y ∈ (x, x + (∆t)β), integrating the equation
(1.1) over (y, y + (∆t)β) × (t1, t2) yields

∫ y+(∆t)β

y

(u(z, t2) − u(z, t1))dz

=k

∫ y+(∆t)β

y

∫ t2

t1

∂D2u

∂t
(z, t)dtdz +

∫ y+(∆t)β

y

∫ t2

t1

D2u(z, t)dtdz

+ τ

∫ y+(∆t)β

y

∫ t2

t1

f(z, t)dtdz.

It follows that

(∆t)β

∫ 1

0

[

u(y + θ(∆t)β , t2) − u(y + θ(∆t)β , t1)
]

dθ

≤(∆t)
1+β

2



k

(

∫∫

Qω

∣

∣

∣

∣

∂D2u

∂t

∣

∣

∣

∣

2

dxdt

)1/2

+

(
∫∫

Qω

|D2u|2dxdt

)1/2


+ ‖f‖L∞(Qω)(∆t)
1+β .

Integrating the above equality with respect to y over (x, x+(∆t)β), from (2.7),(2.12), and
by using the mean value theorem, we get

|u(x∗, t2) − u(x∗, t1)| ≤ C|t2 − t1|
1−β

2 ,

where x∗ = y∗ + θ∗(∆t)β , y∗ ∈ (x, x + (∆t)β), θ∗ ∈ (0, 1). Recalling β ∈ (0, 1), we have
(1 − β)/2 ∈ (0, 1/2). Combining the above inequality with (2.13), we have

|u(x, t1) − u(x, t2)| ≤ |u(x, t1) − u(x∗, t1)| + |u(x∗, t1) − u(x∗, t2)| + |u(x∗, t2) − u(x, t2)|

≤ C|t1 − t2|
min{β, 1−β

2 }.

Hence,

|u(x1, t1) − u(x2, t2)| ≤ C(|x1 − x2| + |t1 − t2|
α/2) (2.14)

for all (xi, ti) ∈ Qω(i = 1, 2), α ∈ (0, 1). Thus we have u ∈ Cα,α/2(Qω). The proof is
complete. �

Lemma 2.2 The map F : E × [0, 1] → E is completely continuous.

Proof. By Lemma 2.1, the periodicity of u in t, and the Arzelá-Ascoli theorem, we
can see that F maps any bounded set of E × [0, 1] into a compact set of E.

Suppose that {fn}
∞

n=1 ⊂ Cω(Qω), {τn}
∞

n=1 ⊂ [0, 1], f ∈ Cω(Qω), τ ∈ [0, 1], and

lim
n→∞

|fn − f |0 = 0, lim
n→∞

τn = τ.

EJQTDE, 2011 No. 10, p. 6



Denote un = F (fn, τn), u = F (f, τ). Similar to the proof of Lemma 2.1, we have

1

2

d

dt

∫ 1

0

(

|un − u|2 + k|Dun −Du|2
)

dx+

∫ 1

0

|Dun −Du|2dx (2.15)

=

∫ 1

0

(τnfn − τf)(un − u)dx ≤
1

2

∫ 1

0

|Dun −Du|2dx+
1

2

∫ 1

0

|τnfn − τf |2dx,

which implies that

d

dt

∫ 1

0

(

|un − u|2 + k|Dun −Du|2
)

dx ≤ C

∫ 1

0

(τ 2
n|fn − f |2 + |f |2|τn − τ |2)dx→ 0

and
∫∫

Qω

|Dun −Du|2dxdt ≤ C

∫∫

Qω

(τ 2
n|fn − f |2 + |f |2|τn − τ |2)dxdt→ 0

as n→ ∞. Using the method to prove (2.6), we have

lim
n→∞

|un − u|0 = 0.

The proof is complete. �

Before using the topological degree method, we should remark that if we set f =
Φ(u) = m(x, t)|u|q, then the nontrivial strong time periodic solution we obtained are just
the nontrivial nonnegative classical solution.

Proposition 2.1 If u ∈ Cα,α/2(Qω) is the nontrivial strong time periodic solution of

∂u

∂t
− kD2u = D2u+m(x, t)|u|q, (2.16)

subject to (1.2), (1.3), then u is just the nontrivial nonnegative classical time periodic
solution.

Proof. As is well known, (I−kD2)−1 is bounded from Cα,α/2(Qω) to C2+α,α/2(Qω),
then the strong solution u in Cα,α/2(Qω) satisfies

∂u

∂t
= −

1

k
u+ (I − kD2)−1(

1

k
u+m(x, t)|u|q). (2.17)

Thus we have
∂u

∂t
+

1

k
u ∈ C2+1/2,α(Qω). (2.18)

Multiplying et/k on both sides of (2.17), we get

∂

∂t
(et/ku) = et/k(I − kD2)−1(

1

k
u+m(x, t)|u|q).

For any t ∈ [0, ω], integrating the above equation in [t, t+ ω] and using the periodicity of
u yield

u(x, t) = (e(t+ω)/k − et/k)−1

∫ t+ω

t

es/k(I − kD2)−1

(

1

k
u(x, s) +m(x, s)|u|q(x, s)

)

ds,
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which with (2.18) imply that

u ∈ C2+α,1+α/2(Qω),
∂u

∂t
∈ C2+α,α/2(Qω).

Hence u is the classical solution and we conclude that u ≥ 0. Suppose to the contrary,
there exists a pair of points (x0, t0) ∈ (0, 1) × (0, ω) such that

u(x0, t0) < 0.

Since u is continuous, then there exists an interval (x0 − δ1, x0 + δ2) such that u(x, t0) < 0
in (x0 − δ1, x0 + δ2) and u(x0 − δ1, t0) = u(x0 + δ2, t0) = 0. Multiplying (2.16) by ϕ which
is the principle eigenfunction of −D2 in (x0 − δ1, x0 + δ2) with homogeneous Dirichlet
boundary condition, and integrating on (x0 − δ1, x0 + δ2), we can get

(1 + kλr)

∫ x0+δ2

x0−δ1

utϕdx+ λr

∫ x0+δ2

x0−δ1

uϕdx =

∫ x0+δ2

x0−δ1

m(x, t)|u|qϕdx, (2.19)

where λr is the first eigenvalue. Integrating the above inequality from 0 to ω and using
the periodicity of u, we have

λr

∫ ω

0

∫ x0+δ2

x0−δ1

uϕdxdt > 0.

By the mean value theorem, there exists a point t∗ ∈ (0, ω) such that
∫ x0+δ2

x0−δ1

u(x, t∗)ϕdx > 0.

Actually (2.19) is equivalent to
∫ x0+δ2

x0−δ1

∂etλr/(1+kλr)u

∂t
ϕdx =

1

1 + kλr

∫ x0+δ2

x0−δ1

etλr/(1+kλr)m(x, t)|u|qϕdx. (2.20)

Integrating the above inequality from t∗ to ω implies that
∫ x0+δ2

x0−δ1

eωλr/(1+kλr)u(x, ω)ϕdx > 0.

Recalling the periodicity of u, we see that
∫ x0+δ2

x0−δ1

u(x, 0)ϕdx > 0.

Then integrating (2.20) over (0, t) implies that
∫ x0+δ2

x0−δ1

etλr/(1+kλr)u(x, t)ϕdx > 0, t ∈ (0, ω)

which is contradict with u(x, t0) < 0 in (x0 − δ1, x0 + δ2). The proof is complete. �

In the following, we are going to establish the existence of nontrivial strong time
periodic solutions by calculating the topological degree. For this purpose, we denote the
ball in C(Qω) with center zero and radius R by BR(0). Firstly, we calculate deg(I −
F (Φ(·), 1), Br(0), 0) for r appropriately small.
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Proposition 2.2 There exists a constant r > 0 such that

deg(I − F (Φ(·), 1), Br(0), 0) = 1.

Proof. Owing to the complete continuity of the map F (Φ(u), σ), where σ ∈ [0, 1]
is a parameter, the homotopy invariance of degree implies

deg(I − F (Φ(·), 1), Br(0), 0) = deg(I, Br(0), 0) = 1,

provided that

F (Φ(u), σ) 6= u, ∀ σ ∈ [0, 1], u ∈ ∂Br(0). (2.21)

Therefore, we need only to prove that there exists a constant r > 0 such that (2.21) holds.
In fact, it suffices to take

r <

(

π2

m

)
1

q−1

,

where m is the upper bound of m(x, t). Suppose u ∈ ∂Br(0), namely ‖u‖C(Qω) = r,
satisfies F (Φ(u), σ) = u for any σ ∈ [0, 1]. Multiplying the equation

∂u

∂t
− k

∂D2u

∂t
= D2u+ σm(x, t)|u|q

with u and integrating over Qω, by the time periodicity of u, and noticing that the
first eigenvalue of the Laplacian equation with homogeneous Dirichlet boundary value
conditions in (0, 1) is π2, we have

0 = −

∫∫

Qω

|Du|2dxdt+ σ

∫∫

Qω

m(x, t)|u|qudxdt

≤− π2

∫∫

Qω

u2dxdt+mrq−1

∫∫

Qω

u2dxdt

=
(

mrq−1 − π2
)

∫∫

Qω

u2dxdt < 0,

which is a contradiction. The proof is complete. �

Next, we calculate deg(I − F (Φ(·), 1), BR(0), 0) for appropriately large R. In order
to do this, we need the following maximum norm estimate.

Lemma 2.3 If u is a time periodic solution of the equation

∂u

∂t
− k

∂D2u

∂t
= D2u+m(x, t)|u|q + (1 − τ)(π2|u| + 1) (2.22)

subject to the conditions (1.2) and (1.3), then

‖u‖L∞(Qω) ≤M1, ∀τ ∈ [0, 1],

where M1 is a positive constant independent of u, k and τ .
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For proving this lemma, we need the following result, the proof of which is similar to
[29].

Lemma 2.4 If q > 1, a(x) is appropriately smooth and satisfies 0 < a ≤ a(x) ≤ a,
where a and a are positive constants, then the problem







∫

R

DvDϕdx =

∫

R

a(x)vqϕdx, ∀ϕ ∈ C1
0(R), ϕ ≥ 0,

v > 0, ∀x ∈ R

(2.23)

has no solution v ∈ C1(R).

Proof. For any ψ ∈ C1
0 (R), ψ ≥ 0, taking ϕ = v−λψ with 0 < λ < q−1

2
, we have

∫

R

v−λDvDψdx− λ

∫

R

v−λ−1|Dv|2ψdx =

∫

R

a(x)vq−λψdx.

It follows that

λ

∫

R

v−λ−1|Dv|2ψdx+

∫

R

a(x)vq−λψdx ≤

∫

R

v−λ|Dv||Dψ|dx

≤
λ

2

∫

R

v−λ−1|Dv|2ψdx+ C

∫

R

v−λ+1 |Dψ|
2

ψ
dx

≤
λ

2

∫

R

v−λ−1|Dv|2ψdx+
1

2

∫

R

a(x)vq−λψdx+ C

∫

R

|Dψ|
2(q−λ)

q−1

ψ
2(q−λ)

q−1
−1

dx,

which implies that

λ

∫

R

v−λ−1|Dv|2ψdx+

∫

R

a(x)vq−λψdx ≤ C

∫

R

|Dψ|
2(q−λ)

q−1

ψ
2(q−λ)

q−1
−1

dx, (2.24)

where C is constant independent of v. Furthermore, replacing ϕ by ψ in (2.23), we see
that

∫

R

a(x)vqψdx =

∫

R

DvDψdx

≤

(
∫

R

v−λ−1|Dv|2ψdx

)
1
2
(
∫

R

vλ+1 |Dψ|
2

ψ
dx

)
1
2

≤

(
∫

R

v−λ−1|Dv|2ψdx

)
1
2
(
∫

R

a(x)vq−λψdx

)
λ+1

2(q−λ)

(

∫

R

|Dψ|
2(q−λ)
q−2λ−1

ψ
2(q−λ)
q−2λ−1

−1
dx

)

q−2λ−1
2(q−λ)

.

Combining the above inequality with (2.24), we obtain

∫

R

a(x)vqψdx ≤ C

(

∫

R

|Dψ|
2(q−λ)

q−1

ψ
2(q−λ)

q−1
−1

dx

)

q+1
2(q−λ)

(

∫

R

|Dψ|
2(q−λ)
q−2λ−1

ψ
2(q−λ)
q−2λ−1

−1
dx

)

q−2λ−1
2(q−λ)

. (2.25)
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For A > 0, define

ξ(x) = ξ0

(

|x|

A

)

,

where ξ0 ∈ C1(R+) with 0 ≤ ξ0 ≤ 1 satisfying

ξ0(ν) =

{

1, 0 ≤ ν ≤ 1,

0, ν ≥ 2.

Taking ψ = ξκ with κ appropriately large, through a simple calculation, we get

∫

R

|Dψ|2ρ

ψ2ρ−1
dx ≤ CA1−2ρ, ∀ρ > 0.

Recalling (2.25), we obtain

∫ A

−A

vqdx ≤
1

a

∫

R

a(x)vqψdx ≤ CA−
q+1
q−1 ,

where C is independent of v and A. Letting A→ ∞ and noticing q > 1, we arrive

∫

R

vqdx = 0.

Then we have v ≡ 0 for any x ∈ R, which is a contradiction. The proof is complete. �

Remark 2.1 The result of Lemma 2.4 is also correct for v ∈ H1
loc(R).

Proof of Lemma 2.3 Suppose that the periodic solution u is not uniformly
bounded. Then, there exist unbounded real number collection {ρn}

∞

n=1, a sequence
{τn}

∞

n=1(τn ∈ [0, 1]) and the periodic solution sequence {un}
∞

n=1 of the problem (2.22),
(1.2) and (1.3), such that

ρn = max
Qω

un(x, t) = un(xn, tn) −→ ∞, n→ ∞.

Since xn ∈ (0, 1), there exists a subsequence of {xn}
∞

n=1, denoted by itself for simplicity,
and x0 ∈ (0, 1) such that xn → x0 as n→ ∞. For any fixed n, define

vnj(y, s) = ρ−1
n un(x0 + ρ

−
q−1
2

n y, tj + js),

m̃nj(y, s) = m(x0 + ρ
−

q−1
2

n y, tj + js),

where tj ∈ {tn}
∞

n=1 and

(y, s) ∈ Qnj = Ωn ×

(

−
tj
j
,
ω − tj
j

)

, Ωn = {y; y = ρ
q−1
2

n (x− x0), x ∈ (0, 1)}.
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Obviously, ‖vnj‖L∞(Qnj) = 1 and vnj satisfies

ρ1−q
n

∂vnj

∂s
− k

∂D2vnj

∂s
= jD2vnj + jm̃nj(y, s)|vnj|

q + j(1 − τn)(π2ρ1−q
n |vnj| + ρ−q

n ),

here and below, we denote D =
∂

∂y
. Similar to the proof of Lemma 2.1 and Proposition

2.1, we can deduce that vnj ≥ 0. Thus, for simplicity, in what follows, we would throw
off the symbol of absolute value of vnj. Therefore, for any φ(y, s) ∈ C1(Qnj) satisfying
φ|∂Ωn

= 0, we have

ρ1−q
n

∫∫

Qnj

∂vnj

∂s
φdyds+ k

∫∫

Qnj

∂Dvnj

∂s
Dφdyds+ j

∫∫

Qnj

DvnjDφdyds

=j

∫∫

Qnj

m̃nj(y, s)v
q
njφdyds+ j(1 − τn)

∫∫

Qnj

(π2ρ1−q
n vnj + ρ−q

n )φdyds.

Taking φ = vnj , by virtue of the periodicity of vnj , we get

j

∫∫

Qnj

|Dvnj|
2dyds =j

∫∫

Qnj

m̃nj(y, s)v
q+1
nj dyds

+ j(1 − τn)

∫∫

Qnj

(π2ρ1−q
n v2

nj + ρ−q
n vnj)dyds

≤Cω|Ωn| + Cω(ρ1−q
n + ρ−q

n )|Ωn|.

Hence, by means of the integral mean value theorem, there exists a point sj ∈
(

−
tj
j
,

ω−tj
j

)

such that
∫

Ωn

|Dvnj(y, sj)|
2dy ≤ C|Ωn| + C(ρ1−q

n + ρ−q
n )|Ωn|.

Noticing that for any s > sj, by taking φ = χ(sj ,s)
∂vnj

∂s
, we have

∫

Ωn

|Dvnj(y, s)|
2dy ≤

∫

Ωn

|Dvnj(y, sj)|
2dy +

2

q + 1

∫

Ωn

m̃nj(y, s)v
q+1
nj (y, s)dy

−
2

q + 1

∫

Ωn

m̃nj(y, sj)v
q+1
nj (y, sj)dy

−
2j

q + 1

∫ s

sj

∫

Ωn

∂m̃nj

∂t
(y, s)vq+1

nj dyds

+ (1 − τn)π2ρ1−q
n

∫

Ωn

(v2
nj(y, s) − v2

nj(y, sj))dy

+ 2(1 − τn)ρ−q
n

∫

Ωn

(vnj(y, s) − vnj(y, sj))dy

≤C|Ωn| + C(ρ1−q
n + ρ−q

n )|Ωn|,
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where C is a constant independent of j, n and |Ωn|. By the periodicity of vnj, we get

∫

Ωn

|Dvnj(y, − tj/j)|
2dy ≤ C|Ωn| + C(ρ1−q

n + ρ−q
n )|Ωn|.

Similar to the above argument, we obtain
∫

Ωn

|Dvnj(y, s)|
2dy ≤ C|Ωn| + C(ρ1−q

n + ρ−q
n )|Ωn| (2.26)

for any s ∈
[

−
tj
j
,

ω−tj
j

]

. On the other hand, noticing that for any ϕ ∈ C1
0 (Ωn), there holds

j

∫∫

Qnj

DvnjDϕdyds =j

∫∫

Qnj

m̃nj(y, s)v
q
njϕdyds

+ j(1 − τn)

∫∫

Qnj

(π2ρ1−q
n vnj + ρ−q

n )ϕdyds.

Fixing j0 > 0, for any j = lj0, where l is a positive integer, we get

j0

∫∫

Qnj0

DvnjDϕdyds =j0

∫∫

Qnj0

m̃nj(y, s)v
q
njϕdyds

+ j0(1 − τn)

∫∫

Qnj0

(π2ρ1−q
n vnj + ρ−q

n )ϕdyds.

Recalling (2.26), there exists a function vn ∈ H1(Qnj0) satisfying ‖vn‖L∞(Qnj0
) = 1, such

that
Dvnj ⇀ Dvn in L2(Qnj0), vnj → vn in Lγ(Qnj0) for γ > 0,

as j → ∞. Meanwhile, since m̃nj is continuous on Qnj0, then there exists a function m̃n,
such that

m̃nj → m̃n as j → ∞.

Hence, taking l → ∞, we have

j0

∫∫

Qnj0

DvnDϕdyds =j0

∫∫

Qnj0

m̃n(y, s)vq
nϕdyds

+ j0(1 − τn)

∫∫

Qnj0

(π2ρ1−q
n vn + ρ−q

n )ϕdyds.

Then, by virtue of the arbitrariness of j0, taking j0 → ∞, we arrive
∫

Ωn

DvnDϕdy =

∫

Ωn

m̃n(y, 0)vq
nϕdy + (1 − τn)

∫

Ωn

(π2ρ1−q
n vn + ρ−q

n )ϕdy.

Choose ϕ = vnη
2, where

η(y) =

{

1, y ∈ (−R,R),

0, y∈(−2R, 2R),
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and 0 ≤ η ≤ 1 is smooth enough, |η
′

(y)| ≤ C
R
. Then, for n large enough, we have

(−2R, 2R) ⊂ Ωn and

∫ 2R

−2R

|Dvn|
2η2dy = −

∫ 2R

−2R

2vnDvnηη
′

dy +

∫ 2R

−2R

m̃n(y, 0)vq+1
n η2dy

+ (1 − τn)

∫ 2R

−2R

(π2ρ1−q
n v2

n + ρ−q
n vn)η2dy

≤
1

2

∫ 2R

−2R

|Dvn|
2η2dy + CR+

C

R
+ C(ρ1−q

n + ρ−q
n )R,

which implies that

∫ R

−R

|Dvn|
2dy ≤ CR+

C

R
+ C(ρ1−q

n + ρ−q
n )R,

where C is a constant independent of n and R. Therefore, there exists a function v̂ ∈
H1

loc(R) (pass to a subsequence if necessary) such that

Dvn ⇀ Dv̂ in L2(−R,R), vn → v̂ in Lγ(−R,R) for γ > 0,

as n → ∞. Since m̃n(y, 0) is continuous on [−R,R], then there exists a function m̃(y, 0)
such that m̃n(y, 0) → m̃(y, 0) as n→ ∞. Thus, we have











∫ R

−R

Dv̂Dϕdy =

∫ R

−R

m̃(y, 0)v̂qϕdy, ∀ϕ ∈ C1
0 (−R,R),

‖v̂‖L∞(−R,R) = 1, and v̂ ≥ 0, ∀y ∈ (−R,R).

Moreover, since v̂ 6≡ 0, by the strong maximum principle we have v̂ > 0 for any x ∈
(−R,R). Taking R larger and larger and repeating the argument for the subsequence v̂k

obtained at the previous step, we get a Cantor diagonal subsequence, for simplicity, we
still denote it by {v̂k}

∞

k=1, which converges in H1
loc(R) to a function v ∈ H1

loc(R) as k → ∞
and







∫

R

DvDϕdy =

∫

R

m̃(y, 0)vqϕdy, ∀ϕ ∈ C1
0 (R),

‖v‖L∞(R) = 1, and v > 0, ∀y ∈ R.

Thus, thanks to Lemma 2.4, we see that for q > 1, the above problem has no solution,
which is a contradiction. The proof is complete. �

Proposition 2.3 There exists a constant R > r such that

deg(I − F (Φ(·), 1), BR(0), 0) = 0.

Proof. Set Ψ(u) = π2|u| + 1, H(u, τ) = F (Φ(u) + (1 − τ)Ψ(u), 1). Then the map
H(u, τ) is completely continuous. Hence, the homotopy invariance of degree implies

deg(I − F (Φ(·), 1), BR(0), 0) = deg(I −H(·, 0), BR(0), 0),

EJQTDE, 2011 No. 10, p. 14



provided that
H(u, τ) 6= u, ∀ τ ∈ [0, 1], u ∈ ∂BR(0).

In fact, Lemma 2.3 implies that the above inequality holds for R > max{M1, r}.
On the other hand, when τ = 0, the equation (2.22) becomes

∂u

∂t
− k

∂D2u

∂t
= D2u+m(x, t)|u|q + π2|u| + 1. (2.27)

Similar to the proof of Lemma 2.1 and Proposition 2.1, we can deduce that u > 0.
Multiplying the above equation by sinπx and integrating over Qω, by the periodicity of
u, we have

0 =

∫∫

Qω

D2u sin πxdxdt+

∫∫

Qω

m(x, t)|u|q sin πxdxdt

+

∫∫

Qω

π2u sin πxdxdt+

∫∫

Qω

sin πxdxdt

=

∫∫

Qω

m(x, t)|u|q sin πxdxdt+

∫∫

Qω

sin πxdxdt

=

∫∫

Qω

m(x, t)|u|q sin πxdxdt+
2ω

π
> 0,

which is a contradiction. Therefore, the equation (2.27) with the Dirichlet boundary value
conditions (1.2) doesn’t admit nonnegative periodic solutions. Hence,

deg(I −H(·, 0), BR(0), 0) = 0.

Consequently,
deg(I − F (Φ(·), 1), BR(0), 0) = 0.

The proof is complete. �

Finally, we prove our main result of this section.
Proof of Theorem 2.1 From Proposition 2.2 and Proposition 2.3, we see that

there exist constants R and r satisfying R > r > 0 such that

deg(I − F (Φ(·), 1), BR(0)/Br(0), 0) = −1,

which implies that the problem (1.1)–(1.3) admits at least one nontrivial strong time
periodic solution u ∈ E such that r ≤ ‖u‖Cω(Qω) ≤ R.

Basing on the discussion in Lemma 2.1 and Proposition 2.1, u is just the nontrivial
nonnegative classical time periodic solution. The proof of Theorem 2.1 is complete. �

3 Asymptotic Behavior

In this section, we are interested in the asymptotic behavior of solutions as the viscous
coefficient k tends to zero. Here, we denote by C a constant independent of u and k.
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Theorem 3.1 If uk is a nontrivial nonnegative classical time periodic solution of the
problem (1.1)–(1.3), then uk(x, t) is uniformly convergent in Qω as k → 0, and the limit
function u(x, t) is a nontrivial nonnegative classical periodic solution of the following
problem

∂u

∂t
= D2u+m(x, t)uq, (x, t) ∈ Qω, (3.1)

u(0, t) = u(1, t) = 0, t ∈ [0, ω], (3.2)

u(x, ω) = u(x, 0), x ∈ [0, 1]. (3.3)

Proof. Similar to the proof of Lemma 2.3, we can prove that the time periodic
solution uk satisfies

‖uk‖L∞(Qω) ≤M1,

where M1 is independent of k. Multiplying (1.1) by D2uk and integrating the result with
respect to x over (0, 1), we have

1

2

d

dt

∫ 1

0

(|Duk|
2 + k|D2uk|

2)dx+

∫ 1

0

|D2uk|
2dx

= −

∫ 1

0

m(x, t)uq
kD

2ukdx ≤
1

2

∫ 1

0

|D2uk|
2dx+ C,

(3.4)

from which we get

d

dt

∫ 1

0

(|Duk|
2 + k|D2uk|

2)dx ≤ C, ∀t ∈ (0, ω). (3.5)

Moreover, integrating (3.4) over (0, ω) yields
∫∫

Qω

|D2uk|
2dxdt ≤ C. (3.6)

From ‖uk‖L∞(Qω) ≤M1, (3.6) and Young’s inequality, we get
∫∫

Qω

|Duk|
2dxdt = −

∫∫

Qω

ukD
2ukdxdt ≤

1

2

∫∫

Qω

u2
kdxdt+

1

2

∫∫

Qω

|D2uk|
2dxdt ≤ C.

Then, we have
∫∫

Qω

(|Duk|
2 + k|D2uk|

2)dxdt ≤ C + Ck. (3.7)

From (3.5) and (3.7), by the similar proof in Lemma 2.1, we can deduce that
∫ 1

0

|Duk(x, t)|
2dx ≤ C + Ck, ∀t ∈ [0, ω]. (3.8)

Taking
∂uk

∂t
as a test function, we can derive

∫∫

Qω

∣

∣

∣

∣

∂uk

∂t

∣

∣

∣

∣

2

dxdt ≤ C. (3.9)
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By means of the equation (1.1), we can further obtain

k

∫∫

Qω

∣

∣

∣

∣

∂D2uk

∂t

∣

∣

∣

∣

2

dxdt ≤ C. (3.10)

Similar to the proof in Lemma 2.1, we can prove that

|uk(x1, t1) − uk(x2, t2)| ≤ (C + Ck)(|x1 − x2|
α + |t1 − t2|

α/2)

for all (xi, ti) ∈ Qω(i = 1, 2), α ∈ (0, 1). Therefore, there exists a function u ∈ H2,1(Qω)∩
Cα,α/2(Qω) such that

uk → u uniformly in Qω,

∂uk

∂t
⇀

∂u

∂t
, D2uk ⇀ D2u weakly in L2(Qω),

(3.11)

as k → 0. Recalling the equation (1.1), we see that for any ϕ ∈ C2(Qω) satisfying
ϕ(x, ω) = ϕ(x, 0) and ϕ(0, t) = ϕ(1, t) = 0 for t ∈ [0, ω], we have
∫∫

Qω

∂uk

∂t
ϕdxdt− k

∫∫

Qω

∂uk

∂t
D2ϕdxdt =

∫∫

Qω

D2ukϕdxdt+

∫∫

Qω

m(x, t)uq
kϕdxdt.

Taking k → 0, by (3.11), we arrive
∫∫

Qω

∂u

∂t
ϕdxdt =

∫∫

Qω

D2uϕdxdt+

∫∫

Qω

m(x, t)uqϕdxdt,

which implies that u satisfies the equation (3.1) in the sense of distribution. It is obvious
that u satisfies the conditions (3.2) and (3.3). Therefore, from the classical theory of the
parabolic equation, u(x, t) is a nontrivial nonnegative classical time periodic solution of
the problem (3.1)–(3.3). The proof of this theorem is complete. �
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