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Abstract

By applying the method of coincidence degree, some criteria are established for
the existence of anti-periodic solutions for a class of fourth-order nonlinear differential
equations with variable coeflicients. Finally, an example is given to illustrate our result.
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1 Introduction

In this paper, we should apply the method of coincidence degree to study the existence of
anti-periodic solutions for a class of fourth-order nonlinear differential equations with variable
coefficients in the form of

u(t) — a(t)u™(t) = b(t)u"(t) — c(t)u'(t) — g(t, u(t)) = e(t), (1.1)

where a € C3(R,R), b € C*(R,R) and ¢ € C'(R,R) are %—periodic, g € C(R? R) is T-periodic
in its first argument, and e € C(R,R) is T-periodic with fOT e(s)ds = 0.

During the past thirty years, there has been a great deal of work on the problem of the
periodic solutions of fourth-order nonlinear differential equations, which have been used to
describe nonlinear oscillations [1-5], and fluid mechanical and nonlinear elastic mechanical
phenomena [6-12]. In [13], Bereanu discussed the existence of T-periodic solutions of the
following fourth-order nonlinear differential equations:

u(t) — pu”(t) = g(t, u(t)) = e(t),

which can be regarded as a special case of Eq. (1.1) with b(t) = p and a(t) = ¢(t) = 0.
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Arising from problems in applied sciences, it is well-known that the existence of anti-
periodic solutions plays a key role in characterizing the behavior of nonlinear differential
equations as a special periodic solution and have been extensively studied by many authors
during the past twenty years, see [14-22] and references therein. For example, anti-periodic
trigonometric polynomials are important in the study of interpolation problems [23,24], and
anti-periodic wavelets are discussed in [25]. However, to the best of our knowledge, there are
few papers to investigate the existence of anti-periodic solutions to Eq. (1.1) by applying the
method of coincidence degree.

The main purpose of this paper is to establish sufficient conditions for the existence of
%—anti—periodie solutions to Eq. (1.1) by using the method of coincidence degree.

The organization of this paper is as follows. In Section 2, we make some preparations. In
Section 3, by using the method of coincidence degree, we establish sufficient conditions for the
existence of %—anti—periodic solutions to Eq. (1.1). An illustrative example is given in Section
4.

2 Preliminaries

For the readers’ convenience, we first summarize a few concepts from [26].

Let X and Y be Banach spaces. Let L : DomL C X — Y be a linear mapping and
N : X — Y be a continuous mapping. The mapping L will be called a Fredholm mapping of
index zero if Im L is a closed subspace of Y and

dim Ker L = codimIm L < oo.

If L is a Fredholm mapping of index zero, then there exist continuous projectors P : X — X
and @ : Y — Y such that Im P=Ker L and Im L=Ker Q=Im (I — Q). It follows that

L|DomLﬂKerP : (I - P)X — ImL

is invertible and its inverse is denoted by Kp. If €2 is a bounded open subset of X, the mapping
N is called L-compact on X, if QN () is bounded and Kp(I — Q)N : Q — X is compact.
Because Im () is isomorphic to Ker L, there exists an isomorphism J : Im @) — Ker L.

The following fixed point theorem of coincidence degree is crucial in the arguments of our
main results.

Lemma 2.1. [26] Let X, Y be two Banach spaces, @ C X be open bounded and symmetric
with 0 € . Suppose that L : D(L) C X =Y is a linear Fredholm operator of index zero with
D(L)NQ #0 and N : Q — Y is L-compact. Further, we also assume that

(H) Ly — Nz # \(—Lx — N(—x)) for all z € D(L)N 9, X\ € (0,1].
Then equation Lz = Nx has at least one solution on D(L) N Q.

Definition 2.1. A continuous function u : R — R is said to be anti-periodic with anti-period

gonRz’f,

ult+T) =u(t), u(t+ %) = —u(t) forallteR.
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Example 2.1. The functions sinz and cosz are anti-periodic with anti-period 7 (as well as
with anti-periods 3w, 5w, etc.).

We will adopt the following notations:

Cr .= {u€ C(R,R): uis T-periodic}, k€N, |u|s = n%mT(] lu(t)],
telo,

where u is a T-periodic function.

Lemma 2.2. [27] For any u € C% one has that

T T2 T
/ [u'(s)]?ds < —2/ |u"(s)|? ds.
0 ™ Jo

Lemma 2.3. [27] For any u € C} one has that
1 4—k ,T
u), < T3—’f<§) | olas = 1.2
0

3 Main result

Theorem 3.1. Assume that the following conditions hold:
(Hy) a(t) =0 orla(t)] > a* > 0 for allt € R, where a* is a constant.
(Hs) maxsepo.r)[b(s) — 3d/(s)] <0 or mingejo7[b(s) — 2a'(s)] > 0.

If maxery[b(s) — $a/(s)] < 0, then

T\/T T a///(s) —b”(s) +C/(S)
4 J 2

ds <1+ min ~[b(s) = Sa'(s)]
min — - = :
§ se[0,7] 472 s @Ak

If mingepo 71 [b(s) — 2d'(s)] > 0, then

al/l<8> _ bII<S> + C/<S)

VT [T
2

ds < 1.
dr Jo °

(Hs) There exist N >0, k>0 and 0 < <1 such that

maX{‘g(tvu)‘a ‘g(ta _u)|} S N + k‘U‘(s fOT all (t, u) I~ RQ.
(Hy) For all (t,u) € R?,

g(t+ g —u) = —g(t,u), e(t+ g) = —e(t).

Then Eq.(1.1) has at least one Z-anti-periodic solution.
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Proof. Let
X={uecCs: u(t—l—%) = —u(t) for all t € R}
and
Y:{UEC%:u(tJrg) = —u(t) for all t € R}
be two Banach spaces with the norms
lullx = max{|ulo, [u|co; [u"]os, [u”|oc} and [|ully = |u|w.
Define a linear operator L : D(L) C X — Y by setting
Lu=u"" for all u € D(L),
where D(L) ={u e X:u"” € C(R,R)} and N : X — Y by setting
Nu = e(t) + a(t)u”(t) + b()u"(t) + c(t))u'(t) + g(t, u(t)).

It is easy to see that

T
Ker L = {0} and ImL:{uEY:/ u(s)ds:O}EY.
0

Thus dim Ker L = 0 = codim Im L, and L is a linear Fredholm operator of index zero.
Define the continuous projector P : X — Ker L and the averaging projector ) : Y — Y
by

Pu(t) = Qu(t) = %/0 u(s)ds = 0.

Hence Im P = Ker L and Ker @ = Im L. Denoting by L' : Im L — D(L)NKer P the inverse
of L‘D L)NKerP, we have

//// dsdadﬁdv—%/ /// s)dsdadBdy
12 4t/ // s)dsdadf + ‘8t2// 5 ds da

+T —6T2t+12Tt2—16t3/ (5)d
192 ; uls S.

Clearly, QN and Lp'(I — Q)N are continuous. Using the Arzela-Ascoli theorem, it is not
difficult to show that QN (Q), L' (I — Q)N () are relatively compact for any open bounded
set 2 C X. Therefore, N is L- compact on Q for any open bounded set  C X.

In order to apply Lemma 2.1, we need to find an appropriate open bounded subset {2 in
X. Corresponding to the operator equation Lx — Nx = A\(—Lz — N(—x)), A € (0, 1], we have

nn 1 )\
u"(t) = H—)\G(tau) - H—AG(t’ —u), (3.1)
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where
G(t,u) = e(t) +a(t)u”(t) + b(t)u" () + c(t)u'(t) + g(t, u(?))
and

G(t, —u) = e(t) — a(t)u”(t) — b(t)u"(t) — c(t))u'(t) + g(t, —u(t)).

Suppose that u(t) € X is an arbitrary Z-anti-periodic solution of system (3.1). Hence we have

/OTu(s)ds:/Ogu(s)ds+/:u(s)ds:/0

2

Tu'(s)ds: gu'(s)ds+ Tu'(s)ds:
[, = [T [rieas= |

2

Then there exists constant &, ¢ € [0, 7] such that
w()=0 and ' (¢)=0.

Therefore, we have

ut)] = [u(€) + /g o/ (s) ds

N

T

2 T
u(s)ds+/ u(s+§)ds:0
0

and

Nl

3 T
u'(s)ds + / u'(s+ 5) ds = 0.
0

<[ ul(5)]ds

u(€) - /fTu%s) ds| < /fT|u'<s>|ds

for all t € [£,£ + T]. Combining the above two inequalities, we can get

and

u(t)] = u(t = T)| =

co — t
|u| e |u(t)]

= max |u(t
te[&gm| (t)]

1/ [ ‘
< max {—(/ |u'(s)] ds —i—/ /()] ds)}
tele.e+T) [ 2\ J¢ T

1 T
<5 [ Wlds
2 0

1 T 1/2
< 5@(/ W/ (s)]? ds) . (3.2)
0
By using a similar argument as that in the proof of (3.2), we can easily obtain
1 T 1/2
] < 5\@(/ \u"<s)\2ds) | (3.3)
0
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In view of Lemma 2.2, we get from (3.2) that

e < DT ([ oras) 3.4
Thus
[ cmisras] < T [ roras) 7 (35

On the other hand, multiplying Eq. (3.1) by w and integrating it from 0 to 7', it follows that

/ ()2 ds + / b(s) — ol (s)]ul () ds

Sy CEUBEEIVE |QdH_/

1 T

T, 9(s,u(s))u(s)ds — 1+—A g(s —u(s))u(s) ds. (3.6)

Assume that max,ejo)[b(s) — 3a/(s)] < 0. Using (3.4), (3.5) and (Hs), we obtain

/OT (1 * 4T—7T22[b<5> - ga%s)]) " (s) 2 ds

. / 16 V4 D) g ' /

- " max {lats.uts)llats,~uto) }|u<s>| s
< IV [7]a"s) = V(s) + ¢(s) ds(/T|u”(s)|2ds) + T1f|e|oo</:|u"(s)|2ds) v

4 Jo 2

NTZ\;T</OT|u”(s)|2ds)1 2+Tk:{T4\7/T_</O | ”(s)|2ds)l/2}5+1,

in which together with (Hs) and 0 < § < 1 imply that there exists a positive constant M
satisfying

T T
/ |u"(s)|*ds < M; and / [u"(s)] ds < /T M;. (3.7)
0 0
Therefore, from (3.2), (3.3) and (3.7), we can choose a constant M, such that
[uloo < My and  |u'|o < Ms. (3.8)

If a(t) =0, by Eq. (3.1), (3.7) and (3.8) it follows that there exists a constant Mj satisfying

T
/ [u"(s)| ds < Ms.
0
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If |a(t)| > a* > 0 for all t € R, multiplying Eq. (3.1) by % and integrating it from 0 to 7', it
follows that

T
a*/ ()2 ds < sup [b(s \/ W (8) [ ()] ds + sup |e(s |/ [ (5)][ [ (5)] ds
0

s€[0,T] s€[0,T]

+ sup {lg(s.u)] + |gls, —u)]} / " (s)] ds

SE[O,T],lu‘SMQ

T
leleo / "(s)] ds
0

T 1/2 T 1/2
< sw pl( [ weras) ([ eepas)
s€[0,T] 0 0
T 1/2 T 1/2
e s el ( [ weras) ([ opas)
s€[0,7T 0 0

W s {gtsl +lote -l [ ()P 1s) "

SG[O7TL‘UJ|§M2

+VTle|oo ( /T " ()| ds) "

s<sup|b IV + s (e i,

s€[0,T7] s€[0,T

ST s flats, ]+ lats, )l + VTl ) ) (s as) 7

SE[O,T},‘?”SMQ

Therefore, there exists a positive constant M, such that

T
| woras < v and / ()| ds < /T,
0

Then, we can easily find a positive constant M5 satisfying

T
/ ‘ /I/I( )‘dS< M5
0
3

Assume that mingep m[b(s) — —a’(s)] > 0. In view of (3.6), we have

[ weepas < TE [0 ([ oeas)
+T1f|e\oo( / T|u"<s>|2ds)1 2+NT17(( [ as) "

{22 ([ wora) )
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As in the preceding step, there must exist a positive constant Mg such that

T
/ [u""(s)|ds < M.
0

Set M7 = max{Ms, M5, Mg}. Together with Lemma 2.3, there exists a positive constant Mg
satisfying

[u"|oo < Mg and  |u"|o < Ms.
Let

M = max{M,, Mg} + 1 (Clearly, M is independent of \).
Take

Q={zeX:|z||x < M}.

It is clear that €2 satisfies all the requirements in Lemma 2.1 and condition (H) is satisfied.
In view of all the discussions above, we conclude from Lemma 2.1 that Eq. (1.1) has at least

one %—anti—periodic solution. This completes the proof. ]

Consider the following fourth-order nonlinear differential equations with delay:
u™(t) = a(t)u”(t) — b(t)u" (t) — c(t)u'(t) — g(t, u(t — (1)) = e(t), (3.9)
where 7 € C(R,R), other coefficients are defined as that in Eq. (1.1).

Remark 3.1. From the proof of Theorem 3.1, we can see that the delay term 7(t) in Eq.(3.9)
has no effect on the result in Theorem 3.1. So the result in Theorem 3.1 also holds for Eq.(3.9).

4 An example

Example 4.1. Let 0 < r < (27)73/2. Then the following fourth-order differential equation
W"(t) — (rsin®t + 1w (t) + 500" () — 1000/ (t) + | sint|us (t — 1) = cost

has at least one w-anti-periodic solution.

Proof. When 0 < r < (27)7%/2, it is easy to verify that (Hy) holds. Furthermore, it suffices
to remark that the function g(t,u) = |sint|us satisfies

3

l9(t, w)| = [g(t, —u)| < [ul5
uniformly with respect to t € R. Hence (H3) and (H4) hold and the result follows from
Theorem 3.1. This completes the proof. |

EJQTDE, 2011 No. 12, p. 8



References

[1] E. Miiller-Pfeiffer, Oscillation criteria for self-adjoint fourth order differential equations,
J. Differential Equations 46 (1982) 194-215.

2] P.C. Carriao, L.F.O. Faria, O.H. Miyagaki, Periodic solutions for extended Fisher-
Kolmogorov and Swift-Hohenberg equations by truncature techniques, Nonlinear Anal.
67 (2007) 3076-3083.

[3] R.P. Agarwal, S.R. Grace, J.V. Manojlovic, Oscillation criteria for certain fourth order
nonlinear functional differential equations, Math. Comput. Modelling 44 (2006) 163-187.

[4] F. Li, Y. Li, Z. Liang, Existence and multiplicity of solutions to 2mth-order ordinary
differential equations, J. Math. Anal. Appl. 331 (2007) 958-977.

[5] P. Amster, M.C. Mariani, Oscillating solutions of a nonlinear fourth order ordinary dif-
ferential equation, J. Math. Anal. Appl. 325 (2007) 1133-1141.

[6] J. Mawhin, F. Zanolin, A continuation approach to fourth order superlinear periodic
boundary value problems, Topol. Methods Nonlinear Anal. 2 (1993) 55-74.

[7] W.N. Everitt, C. Markett, L.L. Littlejohn, Properties of the solutions of the fourth-order
Bessel-type differential equation, J. Math. Anal. Appl. 359 (2009) 252-264.

[8] L.A. Peletier, W.C. Troy, Spatial patterns described by the Fisher-Kolmogorov equation:
Periodic solutions, STAM J. Math. Anal. 28 (1997) 1317-1353.

[9] S. Jin, S. Lu, Periodic solutions for a fourth order p-Laplacian differential equation with
a deviating argument, Nonlinear Anal. 69 (2008) 1710-1718.

[10] S. Tersian, J. Chaparova, Periodic and homoclinic solutions of extended Fisher-
Kolmogorov equations, J. Math. Anal. Appl. 260 (2001) 490-506.

[11] B. Ahmad, On the existence of T-periodic solutions for Duffing type integro-differential
equations with p-Laplacian, Lobachevskii J. Math. 1, 29 (2008), 1-4.

[12] Q. Yao, Existence, multiplicity and infinite solvability of positive solutions to a nonlinear
fourth-order periodic boundary value problem, Nonlinear Anal. 63 (2005) 237-246.

[13] C. Bereanu, Periodic solutions of some fourth-order nonlinear differential equations, Non-
linear Anal. 71 (2009) 53-57.

[14] H. Okochi, On the existence of periodic solutions to nonlinear abstract equations, J.
Math. Soc. Japan 40 (1988) 541-553.

[15] H. Okochi, On the existence of anti-periodic solutions to nonlinear parabolic equations
in noncylindrical domains, Nonlinear Anal. 14 (1990) 771-783.

EJQTDE, 2011 No. 12, p. 9



[16] Y. Chen, On Massera’s theorem for anti-periodic solution, (English summary), Adv.
Math. Sci. Appl. 9 (1) (1999) 125-128.

[17] K.Z. Wang, Y. Li, A note on existence of (anti-)periodic and heteroclinic solutions for a
class of second-order odes, Nonlinear Anal. 70 (2009) 1711-1724.

[18] B. Ahmad, J.J. Nieto, Existence of solutions for anti-periodic boundary value problems
involving fractional differential equations via Leray-Schauder degree theory, Topological
Methods in Nonlinear Anal. 35 (2010) 295-304.

[19] B. Ahmad, Existence of solutions for second-order nonlinear impulsive boundary-value
problems, Elect. J. Differential Equations Vol. 2009 (2009), No. 68, 1-7.

[20] S. Aizicovici, M. McKibben, S. Reich, Anti-periodic solutions to nonmonotone evolution
equations with discontinuous nonlinearities, Nonlinear Anal. 43 (2001) 233-251.

[21] Y. Chen, J.J. Nieto, D. O'Regan, Anti-periodic solutions for fully nonlinear first-order
differential equations, Math. Comput. Modelling 46 (2007) 1183-1190.

[22] T. Chen, W. Liu, J. Zhang, M. Zhang, The existence of anti-periodic solutions for Liénard
equations, J. Math. Study 40 (2007) 187-195 (in Chinese).

(23] F.J. Delvos, L. Knoche, Lacunary interpolation by antiperiodic trigonometric polynomi-
als, BIT 39 (1999) 439-450.

[24] J.Y. Du, H.LL. Han, G.X. Jin, On trigonometric and paratrigonometric Hermite interpo-
lation, J. Approx. Theory 131 (2004) 74-99.

[25] H.L. Chen, Antiperiodic wavelets, J. Comput. Math. 14 (1996) 32-39.

[26] D. O’Regan, Y.J. Cho, Y.Q. Chen, Topological degree theory and application, Taylor &
Francis Group, Boca Raton, London, New York, 2006.

[27] C.H. Zhao, W. Chen, J.L. Zhou, Periodic solutions for a class of fourth-order nonlinear
differential equations, Nonlinear Anal. 72 (2010) 1221-1226.

(Received January 2, 2010)

EJQTDE, 2011 No. 12, p. 10



