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Abstract. In this paper, we consider (n-1, 1)-type conjugate boundary value problem for coupled systems of the
nonlinear fractional differential equation



















Dα
0+u + λf(t, v) = 0, 0 < t < 1, λ > 0,

Dα
0+v + λg(t, u) = 0,

u(i)(0) = v(i)(0) = 0, 0 ≤ i ≤ n − 2,

u(1) = v(1) = 0,

where λ is a parameter, α ∈ (n − 1, n] is a real number and n ≥ 3, and Dα
0+ is the Riemann-Liouville’s fractional

derivative, and f, g are continuous and semipositone. We give properties of Green’s function of the boundary value
problem, and derive an interval on λ such that for any λ lying in this interval, the semipositone boundary value
problem has multiple positive solutions.

Key words. Riemann-Liouville’s fractional derivative; fractional differential equation; boundary value problem;
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1 Introduction

We consider the (n-1, 1)-type conjugate boundary value problem for nonlinear fractional differential equation
involving Riemann-Liouville’s derivative



















Dα
0+u + λf(t, v) = 0, 0 < t < 1, λ > 0,

Dα
0+v + λg(t, u) = 0,

u(i)(0) = v(i)(0) = 0, 0 ≤ i ≤ n − 2,

u(1) = v(1) = 0,

(1.1)

where λ is a parameter, α ∈ (n−1, n] is a real number, n ≥ 3, Dα
0+ is the Riemann-Liouville’s fractional derivative,

and f, g are sign-changing continuous functions. As far as we know, there are few papers which deal with the
boundary value problem for nonlinear fractional differential equation.

Because of fractional differential equation’s modeling capabilities in engineering, science, economics, and other
fields, the last few decades has resulted in a rapid development of the theory of fractional differential equations,
see [1]-[7] for a good overview. Within this development, a fair amount of the theory has been devoted to initial
and boundary value problems problems (see [9]-[20]). In most papers, the definition of fractional derivative is the
Riemann-Liouville’s fractional derivative or the Caputo’s fractional derivative. For details, see the references.

∗1The work is supported by Natural Science Foundation of Heilongjiang Province of China (No. A201012) and Scientific Research
Fund of Heilongjiang Provincial Education Department (No.11544032).

†Corresponding author: C.J. Yuan, E-mail address: ycj7102@163.com

EJQTDE, 2011 No. 13, p. 1



In this paper, we give sufficient conditions for the existence of positive solution of the semipositone boundary
value problems (1.1) for a sufficiently small λ > 0 where f, g may change sign. Our analysis relies on nonlinear
alternative of Leray-Schauder type and Krasnosel’skii’s fixed-point theorems.

2 Preliminaries

For completeness, in this section, we will demonstrate and study the definitions and some fundamental facts of
Riemann-Liouville’s derivatives of fractional order which can been founded in [3].

Definition 2.1 [3] The integral

Iα
0+f(x) =

1

Γ(α)

∫ x

0

f(t)

(x − t)1−α
dt, x > 0,

where α > 0, is called Riemann-Liouville fractional integral of order α.

Definition 2.2 [3] For a function f(x) given in the interval [0,∞), the expression

Dα
0+f(x) =

1

Γ(n − α)
(

d

dx
)n

∫ x

0

f(t)

(x − t)α−n+1
dt,

where n = [α] + 1, [α] denotes the integer part of number α, is called the Riemann-Liouville fractional derivative
of order s.

From the definition of the Riemann-Liouville derivative, we can obtain the statement.

As examples, for µ > −1, we have

Dα
0+xµ =

Γ(1 + µ)

Γ(1 + µ − α)
xµ−α

giving in particular Dα
0+xα−m, m = i, 2, 3, · · · , N , where N is the smallest integer greater than or equal to α.

Lemma 2.1 Let α > 0; then the differential equation

Dα
0+u(t) = 0

has solutions u(t) = c1t
α−1 + c2t

α−2 + · · · + cntα−n, ci ∈ R, i = 1, , 2 . . . , n, as unique solutions, where n is the
smallest integer greater than or equal to α.

As Dα
0+Iα

0+u = u. From the lemma 2.1, we deduce the following statement.

Lemma 2.2 Let α > 0, then

Iα
0+Dα

0+u(t) = u(t) + c1t
α−1 + c2t

α−2 + · · · + cntα−n,

for some ci ∈ R, i = 1, 2, . . . , n, n is the smallest integer greater than or equal to α.

Lemma 2.3 [16] Let h(t) ∈ C[0, 1] be a given function, then the boundary-value problem










Dα
0+u(t) + h(t) = 0, 0 < t < 1, 2 ≤ n − 1 < α ≤ n,

u(i)(0) = 0, 0 ≤ i ≤ n − 2,

u(1) = 0

(2.1)

has a unique solution

u(t) =

∫ 1

0

G(t, s)h(s)ds, (2.2)

where

G(t, s) =
1

Γ(α)

{

tα−1(1 − s)α−1 − (t − s)α−1, 0 ≤ s ≤ t ≤ 1,

tα−1(1 − s)α−1, 0 ≤ t ≤ s ≤ 1.
(2.3)

Here G(t, s) is called the Green’s function for the boundary value problem (2.1).
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Lemma 2.4 [16] The Green’s function G(t, s) defined by (2.3) has the following properties:

(R1) G(t, s) = G(1 − s, 1 − t), for t, s ∈ [0, 1],

(R2) Γ(α)k(t)q(s) ≤ G(t, s) ≤ (α − 1)q(s), for t, s ∈ [0, 1],

(R3) Γ(α)k(t)q(s) ≤ G(t, s) ≤ (α − 1)k(t), for t, s ∈ [0, 1],

where

k(t) =
tα−1(1 − t)

Γ(α)
, q(s) =

s(1 − s)α−1

Γ(α)
. (2.4)

The following a nonlinear alternative of Leray-Schauder type and Krasnosel’skii’s fixed-point theorems, will
play major role in our next analysis.

Theorem 2.5 [12] Let X be a Banach space with Ω ⊂ X be closed and convex. Assume U is a relatively open
subsets of Ω with 0 ∈ U , and let S : U → Ω be a compact, continuous map. Then either

1. S has a fixed point in U , or

2. there exists u ∈ ∂U and ν ∈ (0, 1), with u = νSu.

Theorem 2.6 [8] Let X be a Banach space, and let P ⊂ X be a cone in X. Assume Ω1, Ω2 are bounded open
subsets of X with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let S : P → P be a completely continuous operator such that, either

1. ‖Sw‖ ≤ ‖w‖, w ∈ P ∩ ∂Ω1, ‖Sw‖ ≥ ‖w‖, w ∈ P ∩ ∂Ω2, or

2. ‖Sw‖ ≥ ‖w‖, w ∈ P ∩ ∂Ω1, ‖Sw‖ ≤ ‖w‖ w ∈ P ∩ ∂Ω2.

Then S has a fixed point in P ∩ (Ω2\Ω1).

3 Main Results

We make the following assumption:

(H1) f(t, z), g(t, z) ∈ C([0, 1]× [0, +∞), (−∞, +∞)), moreover there exists a function e(t) ∈ L1((0, 1), (0, +∞))
such that f(t, z) ≥ −e(t) and g(t, z) ≥ −e(t), for any t ∈ (0, 1), z ∈ [0, +∞).

(H∗
1) f(t, z), g(t, z) ∈ C((0, 1) × [0, +∞), (−∞, +∞)), f, g may be singular at t = 0, 1, moreover there exists a

function e(t) ∈ L1([0, 1], (0, +∞)) such that f(t, z) ≥ −e(t) and g(t, z) ≥ −e(t), for any t ∈ (0, 1), z ∈ [0, +∞).

(H2) f(t, 0) > 0 for t ∈ [0, 1]; there exist M > 0, σ > 0 such that lim
z↓0

sup g(t,z)
z

< M for t ∈ [0, 1] and g(t, z) > 0

for (t, z) ∈ [0, 1]× (0, σ].

(H3) There exists [θ1, θ2] ⊂ (0, 1) such that lim
z↑+∞

inf
t∈[θ1,θ2]

f(t,z)
z

= +∞ and lim
z↑+∞

inf
t∈[θ1,θ2]

g(t,z)
z

= +∞.

(H4)
∫ 1

0
q(s)e(s)ds < +∞,

∫ 1

0
q(s)f(s, z)ds < +∞ and

∫ 1

0
q(s)g(s, z)ds < +∞ for any z ∈ [0, m], m > 0 is any

constant.

In fact, we only consider the boundary value problem



















−Dα
0+x = λ(f(t, [y(t) − w(t)]∗) + e(t)), t ∈ (0, 1), λ > 0,

−Dα
0+y = λ(g(t, [x(t) − w(t)]∗) + e(t)), t ∈ (0, 1),

x(i)(0) = y(i)(0) = 0, 0 ≤ i ≤ n − 2,

x(1) = y(1) = 0,

(3.1)

where

z(t)∗ =

{

z(t), z(t) ≥ 0;

0, z(t) < 0.
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and w(t) = λ
∫ 1

0 G(t, s)e(s)ds, which is the solution of the boundary value problem











−Dα
0+w = λe(t), t ∈ (0, 1),

w(i)(0) = 0, 0 ≤ i ≤ n − 2,

w(1) = 0.

We will show there exists a solution (x, y) for the boundary value problem (3.1) with x(t) ≥ w(t) and y(t) ≥ w(t)
for t ∈ [0, 1]. If this is true, then u(t) = x(t) − w(t) and v(t) = y(t) − w(t) is a nonnegative solution (positive on
(0, 1)) of the boundary value problem (1.1). Since for any t ∈ (0, 1),

−Dα
0+x = −Dα

0+u + (−Dα
0+w) = λ[f(t, v) + e(t)],

−Dα
0+y = −Dα

0+v + (−Dα
0+w) = λ[g(t, u) + e(t)],

we have
−Dα

0+u = λf(t, v) and − Dα
0+v = λg(t, u).

As a result, we will concentrate our study on the boundary value problem (3.1).

We note that (3.1) is equal to

{

x(t) = λ
∫ 1

0
G(t, s)(f(s, [y(s) − w(s)]∗) + e(s))ds

y(t) = λ
∫ 1

0
G(t, s)(g(s, [x(s) − w(s)]∗) + e(s))ds.

(3.2)

From (3.2) we have

x(t) = λ

∫ 1

0

G(t, s)(f(s, [λ

∫ 1

0

G(s, τ)g(τ, [x(τ) − w(τ)]∗)dτ ]∗) + e(s))ds. (3.3)

For our constructions, we shall consider the Banach space E = C[0, 1] equipped with standard norm ‖x‖ =
max
0≤t≤1

|x(t)|, x ∈ X . We define a cone P by

P = {x ∈ X |x(t) ≥
tα−1(1 − t)

p
‖x‖, t ∈ [0, 1], α ∈ (n − 1, n], n ≥ 3}.

Define an integral operator T : P → X by

Tx(t) = λ

∫ 1

0

G(t, s)(f(s, [λ

∫ 1

0

G(s, τ)g(τ, [x(τ) − w(τ)]∗)dτ ]∗) + e(s))ds.

Notice, from Lemma 2.3, we have Tx(t) ≥ 0 on [0, 1] for x ∈ P and

Tx(t) = λ
∫ 1

0
G(t, s)(f(s, [λ

∫ 1

0
G(s, τ)g(τ, [x(τ) − w(τ)]∗)dτ ]∗) + e(s))ds

≤ λ
∫ 1

0
(α − 1)q(s)(f(s, [λ

∫ 1

0
G(s, τ)g(τ, [x(τ) − w(τ)]∗)dτ ]∗) + e(s))ds,

then ‖Tx‖ ≤ λ
∫ 1

0
(α − 1)q(s)(f(s, [λ

∫ 1

0
G(s, τ)g(τ, [x(τ) − w(τ)]∗)dτ ]∗) + e(s))ds.

On the other hand, we have

Tx(t) = λ
∫ 1

0 G(t, s)(f(s, [λ
∫ 1

0 G(s, τ)g(τ, [x(τ) − w(τ)]∗)dτ ]∗) + e(s))ds

≥ tα−1(1−t)
α−1 λ

∫ 1

0 (α − 1)q(s)(f(s, [λ
∫ 1

0 G(s, τ)g(τ, [x(τ) − w(τ)]∗)dτ ]∗) + e(s))ds

≥ tα−1(1−t)
α−1 ‖Tx‖.

Thus, T (P ) ⊂ P . In addition, standard arguments show that T is a compact, completely continuous operator.

Theorem 3.1 Suppose that (H1) and (H2) hold. Then there exists a constant λ > 0 such that, for any 0 < λ ≤ λ,
the boundary value problem (1.1) has at least one positive solution.
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Proof Fix δ ∈ (0, 1). From (H2), let 0 < ε < min{1, σ} be such that

f(t, z) ≥ δf(t, 0), g(t, z) ≤ Mz, for 0 ≤ t ≤ 1, 0 ≤ z ≤ ε. (3.4)

and
g(t, z) > 0, for 0 ≤ t ≤ 1, 0 < z ≤ ε.

Suppose

0 < λ < min{
ε

2cf(ε)
,

1

Mc
} := λ,

where f(ε) = max
0≤t≤1,0≤z≤ε

{f(t, z) + e(t)} and c =
∫ 1

0
(α − 1)q(s)ds. Since

lim
z↓0

f(z)

z
= +∞

and
f(ε)

ε
<

1

2cλ
,

then exists a R0 ∈ (0, ε) such that
f(R0)

R0
=

1

2cλ
.

Let U = {x ∈ P : ‖x‖ < R0}, x ∈ ∂U and ν ∈ (0, 1) be such that x = νT (x), we claim that ‖x‖ 6= R0. In fact,
for x ∈ ∂U and ‖x‖ 6= R0, we have

λ
∫ 1

0
G(s, τ)g(τ, [x(τ) − w(τ)]∗)dτ

≤ λ
∫ 1

0
(α − 1)q(τ)g(τ, [x(τ) − w(τ)]∗)dτ

≤ λ
∫ 1

0 (α − 1)q(τ)M [x(τ) − w(τ)]∗dτ

≤ λ
∫ 1

0
(α − 1)q(τ)MR0dτ

≤ λM
∫ 1

0
(α − 1)q(τ)dτR0

≤ R0.

(3.5)

It follows that

x(t) = νTx(t)

≤ νλ
∫ 1

0 (α − 1)q(s)(f(s, [λ
∫ 1

0 G(s, τ)g(τ, [x(τ) − w(τ)]∗)dτ ]∗) + e(s))ds

≤ λ
∫ 1

0 (α − 1)q(s)(f(s, [λ
∫ 1

0 G(s, τ)g(τ, [x(τ) − w(τ)]∗)dτ ]∗) + e(s))ds

≤ λ
∫ 1

0
(α − 1)q(s) max

0≤s≤1;0≤z≤R0

[f(s, z) + e(s)]ds

≤ λ
∫ 1

0
(α − 1)q(s)f(R0)ds

≤ λcf(R0),

that is
f(R0)

R0
≥

1

cλ
>

1

2cλ
=

f(R0)

R0
,

which implies that ‖x‖ 6= R0. By the nonlinear alternative of Leray-Schauder type, T has a fixed point x ∈ U .
Moreover, combing (3.4), (3.5) and the fact that R0 < ε, we obtain

x(t) = λ
∫ 1

0 G(t, s)(f(s, [λ
∫ 1

0 G(s, τ)g(τ, [x(τ) − w(τ)]∗)dτ ]∗) + e(s))ds

≥ λ
∫ 1

0
G(t, s)[δf(s, 0) + e(s)]ds

≥ λ[δ
∫ 1

0 G(t, s)f(s, 0)ds +
∫ 1

0 G(t, s)e(s)ds]

> λ
∫ 1

0 G(t, s)e(s)ds

= w(t) for t ∈ (0, 1).

Then T has a positive fixed point x and ‖x‖ ≤ R0 < 1.
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On the other hand, from (3.2) and w < x ≤ R0 ≤ ε ≤ σ, we have g(s, x(s) − w(s)) > 0. Then

y(t) = λ
∫ 1

0
G(t, s)(g(s, [x(s) − w(s)]∗) + e(s))ds

= λ
∫ 1

0
G(t, s)(g(s, x(s) − w(s)) + e(s))ds

= λ[
∫ 1

0 G(t, s)g(s, x(s) − w(s))ds +
∫ 1

0 G(t, s)e(s)ds]

> λ
∫ 1

0
G(t, s)e(s)ds

= w(t) for t ∈ (0, 1).

Thus, (x, y) is positive solution (x, y) of the boundary value problem (3.1) with x(t) ≥ w(t) and y(t) ≥ w(t) for
t ∈ [0, 1].

Let u(t) = x(t) − w(t) > 0 and v(t) = y(t) − w(t) > 0, then (u, v) is a nonnegative solution (positive on (0, 1))
of the boundary value problem (1.1).

Theorem 3.2 Suppose that (H∗
1) and (H3)-(H4) hold. Then there exists a constant λ∗ > 0 such that, for any

0 < λ ≤ λ∗, the boundary value problem (1.1) has at least one positive solution.

Proof From (H3), we choose R1 > max{1, r2, (2(α−1)
γ

)2} such that

g(t, z)

z
> N0, namely g(t, z) > N0z, for t ∈ [θ1, θ2], z > R

1

2

1 ,

and N0 > 0 satisfy

N0 >
r

ρ
,

where r = α−1
Γ(α)

∫ 1

0
e(s)ds, γ = min

θ1≤t≤θ2

{tα−1(1 − t)}, and ρ =
∫ θ2

θ1

q(s)ds.

Let Ω1 = {x ∈ C[0, 1] : ‖x‖ < R1} and

λ∗ = min{
1

α − 1
, R1[

∫ 1

0

(α − 1)q(s)[ max
0≤z≤R

f(s, z) + g(s)]ds]−1,
R1

2(α − 1)r
},

where R =
∫ 1

0 (α − 1)q(τ) max
0≤z≤R1

g(τ, z)dτ and R > 0.

Then for any x ∈ P ∩ ∂Ω1, we have ‖x‖ = R1 and x(s) − w(s) ≤ x(s) ≤ ‖x‖,

λ
∫ 1

0
G(s, τ)g(τ, [x(τ) − w(τ)]∗)dτ ≤ λ

∫ 1

0
G(s, τ) max

0≤z≤R1

g(τ, z)dτ

≤
∫ 1

0
(α − 1)q(τ) max

0≤z≤R1

g(τ, z)dτ = R.

It follows that

‖Tx(t)‖ ≤ λ
∫ 1

0
(α − 1)q(s)(f(s, [λ

∫ 1

0
G(s, τ)g(τ, [x(τ) − w(τ)]∗)dτ ]∗) + e(s))ds

≤ λ
∫ 1

0 (α − 1)q(s)[ max
0≤z≤R

f(s, z) + e(s)]ds

≤ R1 = ‖x‖.

This implies
‖Tx‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω1.

On the other hand, choose a constant N > 1 such that

N min

{

ρ(r +
1

λγ
)−1,

γρ

2(α − 1)(1 + r)
, λ2γ2ρ

}

≥ 1,

where γ = min
θ1≤t≤θ2

{tα−1(1 − t)}.

By the assumption (H3), there exists a constant B > R1 such that

f(t, z)

z
> N, namely f(t, z) > Nz, for t ∈ [θ1, θ2], z > B;
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and
g(t, z)

z
> N, namely g(t, z) > Nz, for t ∈ [θ1, θ2], z > B.

Choose R2 = max{R1 + 1, 2λ(α − 1)r, 2(α−1)(B+1)
γ

}, and let Ω2 = {x ∈ C[0, 1] : ‖x‖ < R2}. Then for any
x ∈ P ∩ ∂Ω2, we have

x(t) − w(t) = x(t) − λ
∫ 1

0
G(t, s)e(s)ds

≥ x(t) − α−1
Γ(α) t

α−1(1 − t)λ
∫ 1

0 e(s)ds

≥ x(t) − tα−1(1 − t)λr

≥ x(t) − (α−1)x(t)
‖x‖ λr

≥ x(t) − (α−1)x(t)
R2

λr

≥ (1 − (α−1)λr

R2

)x(t)

≥ 1
2x(t) ≥ 0, t ∈ [0, 1].

And then
min

θ1≤t≤θ2

{x(t) − w(t)} ≥ min
θ1≤t≤θ2

{ 1
2x(t)} ≥ min

θ1≤t≤θ2

{ 1
2(α−1) t

α−1(1 − t)‖x‖}

= 1
2(α−1)R2 min

θ1≤t≤θ2

{tα−1(1 − t)} ≥ B + 1 > B.

It follows that

λ
∫ 1

0 G(s, τ)g(τ, [x(τ) − w(τ)]∗)dτ

= λ(
∫ 1

0
G(s, τ)(g(τ, [x(τ) − w(τ)]∗) + e(τ))dτ −

∫ 1

0
G(s, τ)e(τ)dτ)

≥ λ(sα−1(1 − s)
∫ 1

0 q(τ)(g(τ, [x(τ) − w(τ)]∗) + e(τ))dτ − α−1
Γ(α)s

α−1(1 − s))
∫ 1

0 e(τ)dτ)

≥ λsα−1(1 − s)(
∫ θ2

θ1

q(τ)(g(τ, [x(τ) − w(τ)]∗) + e(τ))dτ − α−1
Γ(α)

∫ 1

0 e(τ)dτ)

≥ λγ(
∫ θ2

θ1

q(τ)g(τ, [x(τ) − w(τ)]∗)dτ − r)

≥ λγ(
∫ θ2

θ1

q(τ)N
2 x(τ)dτ − r)

≥ λγ(
∫ θ2

θ1

q(τ)NBdτ − r)

≥ λγ(NBρ − r) > B, s ∈ [θ1, θ2].

In fact, from
Nρ( 1

λγ
+ r)−1 ≥ 1 ⇔ Nρ ≥ 1

λγ
+ r ⇔ Nρ − r ≥ 1

λγ
,

we have
B(Nρ − r) ≥ B

λγ
⇒ NBρ − r ≥ B

λγ
⇔ λγ(NBρ − r) > B.

Thus
f(s, [λ

∫ 1

0
G(s, τ)g(τ, [x(τ) − w(τ)]∗)dτ ]∗)

≥ Nλ
∫ 1

0 G(s, τ)g(τ, [x(τ) − w(τ)]∗)dτ

≥ Nλγ(
∫ θ2

θ1

q(τ)N
2 x(τ)dτ − r)

≥ Nλγ(
∫ θ2

θ1

q(τ) N
2(α−1) τ

α−1(1 − τ)‖x‖dτ − r)

≥ Nλγ( N
2(α−1)γ

∫ θ2

θ1

q(τ)R2dτ − r)

≥ Nλγ( N
2(α−1)γρ − r)R2

≥ NλγR2, s ∈ [θ1, θ2].

This implies

‖Tx(t)‖ ≥ max
0≤t≤1

λ
∫ 1

0 G(t, s)(f(s, [λ
∫ 1

0 G(s, τ)g(τ, [x(τ) − w(τ)]∗)dτ ]∗) + e(s))ds

≥ max
0≤t≤1

λtα−1(1 − t)
∫ θ2

θ1

q(s)f(s, [λ
∫ 1

0
G(s, τ)g(τ, [x(τ) − w(τ)]∗)dτ ]∗)ds

≥ λ min
θ1≤t≤θ2

tα−1(1 − t)
∫ θ2

θ1

q(s)f(s, [λ
∫ 1

0 G(s, τ)g(τ, [x(τ) − w(τ)]∗)dτ ]∗)ds

≥ λγ
∫ θ2

θ1

q(s)NλγR2ds

≥ λ2γ2NρR2

≥ R2 = ‖x‖
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and
‖Tx‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω2.

Condition (2) of Krasnoesel’skii’s fixed-point theorem is satisfied. So T has a fixed point x with r ≤ R1 < ‖x‖ < R2.

Since r < R1 < ‖x‖,

x(t) − w(t) ≥ 1
α−1 tα−1(1 − t)‖x‖ − λ

∫ 1

0 G(t, s)e(s)ds

≥ 1
α−1 tα−1(1 − t)‖x‖ − α−1

Γ(α) t
α−1(1 − t)λ

∫ 1

0
e(s)ds

≥ 1
α−1 tα−1(1 − t)‖x‖ − tα−1(1 − t)λr

≥ 1
α−1 tα−1r − tα−1(1 − t)λr

≥ ( 1
α−1 − λ)tα−1(1 − t)r

> 0, t ∈ (0, 1).

On the other hand, according to the choice of λ∗ and R1, we have

x(s) − w(s) ≥ x(s) − (α−1)x(s)
‖x‖ λr

≥ x(s) − (α−1)x(s)
R1

λr

≥ (1 − λ(α−1)r
R1

)x(s)

≥ 1
2x(s)

≥ 1
2(α−1)s

α−1(1 − s)‖x‖

≥ 1
2(α−1)γR1

≥ R
1

2

1 , t ∈ [θ1, θ2].

This implies

g(s, [x(s) − w(s)]∗) ≥ N0R
1

2

1 , s ∈ [θ1, θ2].

This together with the choice of N0, for ‖x‖ ≥ R1, we have

λ
∫ 1

0
G(t, s)g(s, [x(s) − w(s)]∗)ds

= λ(
∫ 1

0 G(t, s)(g(s, [x(s) − w(s)]∗) + e(s))ds −
∫ 1

0 G(s, s)e(s)ds)

≥ λtα−1(1 − t)(
∫ θ2

θ1

q(s)(g(s, [x(s) − w(s)]∗) + e(s))ds − α−1
Γ(α)

∫ 1

0
e(s)ds)

≥ λγ(
∫ θ2

θ1

q(s)g(s, [x(s) − w(s)]∗)ds − r)

≥ λγ(
∫ θ2

θ1

q(s)N0R
1

2

1 ds − r)

≥ λγ(N0R
1

2

1 ρ − r)

≥ λγ(ρN0 − r)R
1

2

1 > 0, t ∈ [0, 1].

It follows that
y(t) = λ

∫ 1

0
G(t, s)(g(s, [x(s) − w(s)]∗) + e(s))ds

= λ(
∫ 1

0 G(t, s)(g(s, x(s) − w(s))ds +
∫ 1

0 G(t, s)e(s))ds)

> λ
∫ 1

0 G(t, s)e(s)ds

= w(t) for t ∈ (0, 1).

Thus, (x, y) is positive solution (x, y) of the boundary value problem (3.1) with x(t) ≥ w(t) and y(t) ≥ w(t) for
t ∈ [0, 1].

Let u(t) = x(t) − w(t) > 0 and v(t) = y(t) − w(t) > 0, then (u, v) is a nonnegative solution (positive on (0, 1))
of the boundary value problem (1.1).

Since condition (H1) implies conditions (H∗
1) and (H4), then from proof of Theorem 3.1 and 3.2, we immediately

have the following theorem:

Theorem 3.3 Suppose that (H1)-(H3) hold. Then the boundary value problem (1.1) has at least two positive
solutions for λ > 0 sufficiently small.

In fact, let 0 < λ < min{λ, λ∗}, then the boundary value problem (1.1) has at least two positive solutions.
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4 Example

To illustrate the usefulness of the results, we give some examples.

Example 4.1 Consider the boundary value problem



























−Dα
0+u = λ(vα + 1

(t−t2)
1

2

cos(2πv)), t ∈ (0, 1), λ > 0,

−Dα
0+v = λ(uβ + 1

(t−t2)
1

2

sin(2πu)),

u(i)(0) = v(i)(0) = 0, 0 ≤ i ≤ n − 2,

u(1) = v(1) = 0,

(4.1)

where a > 1. Then, if λ > 0 is sufficiently small, (4.1) has a positive solutions (u, v) with u > 0, v > 0 for t ∈ (0, 1).

To see this we will apply Theorem 3.2 with

f(t, z) = zα + 1

(t−t2)
1

2

cos(2πz), g(t, z) = zβ + 1

(t−t2)
1

2

sin(2πz),

e(t) = 2

(t−t2)
1

2

.

Clearly, for t ∈ (0, 1),

f(t, z) + e(t) ≥ zα + 1 > 0, g(t, z) + e(t) ≥ zβ + 1 > 0, for t ∈ (0, 1);

lim
z↑+∞

inf f(t,z)
z

= +∞, lim
z↑+∞

inf g(t,z)
z

= +∞, for ∀ t ∈ [θ1, θ2] ⊂ (0, 1),

for u > 0. Namely (H∗
1) and (H3)-(H4) hold. From r =

∫ 1

0
2

(s−s2)
1

2

ds = π, let [θ1, θ2] ∈ (0, 1), R1 = 17 + ( 2
C0γ

)2 +

(m0 + 4
C0ρ

)
2

β−1 and N0 = 4
C0ρ

.

Then, we have

R1 > 17 +

(

2

C0γ

)2

> 1 + r2 +

(

2

C0γ

)2

> max

{

1, r2,

(

2

C0γ

)2}

, N0 >
r

C0ρ
.

When z > R
1

2

1 > (m0 + 4
C0ρ

)
1

β−1 , we have

g(t, z)

z
> zβ−1 − m0 >

4

C0ρ
for t ∈ [θ1, θ2],

where m0 = max
0<θ1≤t≤θ2<1

{ 2

(t−t2)
1

2

}. So

g(t, z)

z
> N0 for t ∈ [θ1, θ2], z > R

1

2

1 .

We have

R =

∫ 1

0

pq(τ)( max
0≤z≤R1

{zβ +
1

(τ − τ2)
1

2

sin(2πz)} + e(τ))dτ ≤ (Rβ
1 + π)

∫ 1

0

pq(τ)dτ

and
∫ 1

0

pq(s)( max
0≤z≤R

{zα +
1

(s − s2)
1

2

cos(2πz)} + e(s))ds ≤ (Rα + π)

∫ 1

0

pq(s)ds.

Let

λ∗ = min{1, R1[(R
α + 3)

∫ 1

0

pq(s)ds]−1,
C0R1

2r
}.

Now, if λ < λ∗, Theorem 3.2 guarantees that (4.1) has a positive solutions u with ‖u‖ ≥ 2.
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Example 4.2 Consider the boundary value problem



















−Dα
0+u = λ(v − α)(v − β), t ∈ (0, 1), λ > 0,

−Dα
0+v = λu(u − a)(u − b),

u(i)(0) = v(i)(0) = 0, 0 ≤ i ≤ n − 2,

u(1) = v(1) = 0,

(4.2)

where β > α > 0, b > a > 0. Then, if λ > 0 is sufficiently small, (4.2) has two solutions (u1, v1), (u2, v2) with
ui(t) > 0, vi(t) > 0 for t ∈ (0, 1), i = 1, 2.

To see this we will apply Theorem 3.3 with

f(t, z) = z2 − (α + β)z + αβ and g(t, z) = z3 − (a + b)z2 + abz for z ≥ 0.

Clearly, there exists a constant e(t) = M0 > 0 such that

f(t, z) + e(t) > 1, g(t, z) + e(t) > 0

and

f(t, 0) = αβ > 0, g(t, z) > 0 for 0 < z < a, lim
z↓0

g(t, z)

z
= ab < M,

where M = (a + 1)(b + 1).

Since g(t, z) increase to z for 0 ≤ t ≤ 1, 0 ≤ z ≤ (a + b)− (a2 + b2)
1

2 , f(t, z) decrease to z for 0 ≤ t ≤ 1, 0 ≤

z ≤ α. Let δ = α
4β

, ε = 1
4 min{1, α, (a + b) − (a2 + b2)

1

2 } and c =
∫ 1

0 pq(s)ds. We have

f(t, z) ≥ δf(t, 0), 0 < g(t, z) ≤ Mz, for 0 ≤ t ≤ 1, 0 ≤ z ≤ ε.

Namely (H1)-(H2) hold. We choose

λ = min{
1

αβ + M0
,

1

Mc
}. (4.3)

Now, if λ < λ, Theorem 3.1 guarantees that (4.2) has a positive solutions (u1, v1) with ‖u1‖ ≤ 1
4 .

On the other hand,

lim
z↑+∞

inf f(t,z)
z

= +∞, lim
z↑+∞

inf g(t,z)
z

= +∞ for t ∈ (0, 1).

Namely (H1)-(H4) hold and r = M0. Next, let [θ1, θ2] ∈ (0, 1), R1 > 1 + M2
0 + ( 2

C0γ
)2 such that g(t, z) >

N0z for z > R
1

2

1 and N0 = M0+1
C0γ

. We have

R =

∫ 1

0

pq(τ)( max
0≤z≤R1

{z(z − a)(z − b)} + M0)dτ

and

λ∗ = min{1, R1[

∫ 1

0

pq(s)( max
0≤z≤R

{(z − α)(z − β)} + M0)ds]−1,
C0R1

2r
}.

Now, if 0 < λ < λ∗, Theorem 3.2 guarantees that (4.2) has a positive solutions (u2, v2) with ‖u2‖ ≥ 1.

Since all the conditions of Theorem 3.3 are satisfied , if λ < min{λ, λ∗}, Theorem 3.3 guarantees that (4.2) has
two solutions ui with ui(t) > 0 for t ∈ (0, 1), i = 1, 2.

Example 4.3 Consider the boundary value problem



















−Dα
0+u = λ(vα + cos(2πv)), t ∈ (0, 1), λ > 0,

−Dα
0+v = λ(uβ + sin(2πu)),

u(i)(0) = v(i)(0) = 0, 0 ≤ i ≤ n − 2,

u(1) = v(1) = 0,

(4.4)
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where α, β > 1. Then, if λ > 0 is sufficiently small, (4.4) has two solutions (u1, v1), (u2, v2) with ui(t) > 0, vi(t) > 0
for t ∈ (0, 1), i = 1, 2.

To see this we will apply Theorem 3.3 with

f(t, z) = zα(t) + cos(2πz), g(t, z) = zβ + sin(2πz), e(t) = 2.

Clearly, for t ∈ (0, 1),

f(t, z) + e(t) ≥ zα + 1 > 0, g(t, z) + e(t) ≥ zβ + 1 > 0,

f(t, 0) = 1 > 0, g(t, z) > 0 for 0 < z < 1
2 ,

lim
z↑+∞

inf f(t,z)
z

= +∞, lim
z↓0

sup g(t,z)
z

= 2π < M, lim
z↑+∞

inf g(t,z)
z

= +∞,

where M = 2π + 1.

Namely (H1)-(H4) hold. Let δ = 1
2 , ε = 1

8 and c =
∫ 1

0 pq(s)ds. We have

ε

2c( max
0≤x≤ε

f(t, x) + 2)
≥

1

16c(2 + 3)
=

1

90c
. (4.5)

Let λ = min{ 1
90c

, 1
Mc

}. Now, if 0 < λ < λ then 0 < λ < ε
2c( max

0≤x≤ε
f(t,x)+2) , Theorem 3.1 guarantees that (4.4) has a

positive solutions (u1, v1) with ‖u1‖ ≤ 1
8 .

Next, from r =
∫ 1

0
e(s)ds = 2, let [θ1, θ2] ∈ (0, 1), R1 = 5 + ( 2

C0γ
)2 + (1 + 3

C0ρ
)

2

β−1 and N0 = 3
C0ρ

.

Then, we have

R1 > 5 + (
2

C0γ
)2 > 1 + r2 + (

2

C0γ
)2 > max{1, r2, (

2

C0γ
)2}, N0 >

r

C0ρ
.

When z > R
1

2

1 > (1 + 3
C0ρ

)
1

β−1 , we have

g(t, z)

z
> zβ−1 − 1 >

3

C0ρ
.

So,
g(t, z)

z
> N0 for z > R

1

2

1 .

we have

R =

∫ 1

0

pq(τ)( max
0≤z≤R1

{zβ + sin(2πz)} + e(τ))dτ ≤ (Rβ
1 + 3)

∫ 1

0

pq(τ)dτ

and
∫ 1

0

pq(s)( max
0≤z≤R

{zα + cos(2πz)} + M0)ds ≤ (Rα + 3)

∫ 1

0

pq(s)ds.

Let

λ∗ = min{1, R1[(R
α + 3)

∫ 1

0

pq(s)ds]−1,
C0R1

2r
}.

Now, if 0 < λ < λ∗ then 0 < λ < R1(
∫ 1

0 pq(s)( max
0≤z≤R

{zα + cos(2πz)} + M0)ds)−1, Theorem 3.2 guarantees that

(4.4) has a positive solutions (u2, v2) with ‖u2‖ ≥ 1.

So, if λ < min{λ, λ∗}, Theorem 3.3 guarantees that (4.4) has two solutions (u1, v1) and (u2, v2) with ui, vi > 0
for t ∈ (0, 1), i = 1, 2.
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