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Abstract.

In this paper we establish the existence solution approximately for differential equation of
fractional order takes the form

zαD[Dαu(z)] + (b − z)u′(z) − au(z) = 0, a 6= 0, |b| < 1, 0 < α < 1,

subject to the initial conditions u(0) = u0 and u′(0) = u1, in the unit disk U := {z ∈ C :
|z| < 1}. The uniqueness of this solution is discussed. The general analytic solutions are
posed. Moreover, the Hyers-Ulam stability is studied. An example is illustrated.
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1 Introduction.

Recently, fractional differential equations and inclusions have been of great interest.
It is caused both by the intensive development of the theory of fractional calculus [9]
itself and by the applications of such constructions in various sciences and topics such
as physics, mechanics, chemistry, engineering, control systems, etc. [1,4,10,11,12,18].
Moreover, fractional differential equations in complex domain have been studied and
established [5-7].

In this paper, we deal with the existence of Kummer differential equation of fractional
order in the complex plane. The Kummer differential equation which is also called the
confluent hypergeometric differential equation, appears frequently in practical problems
and applications. These equations have proved useful in many branches of physics. They
have been used in problems involving diffusion, for example, in isotope separation and
protein molecular weight determinations in the ultracentrifuge. The solution of the
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equation for the velocity distribution of electrons in high frequency gas discharges may
frequently be expressed in terms of these functions. The high frequency breakdown
electric field may then be predicted theoretically for gases by the use of such solutions
together with kinetic theory [3,8,17,19]. Furthermore, an immensely useful class of spe-
cial functions (namely, the generalized hypergeometric function) played a rather crucial
role in the theory of analytic and univalent functions. These latter developments in
an area other than the so-called traditional areas of applications of generalized hyper-
geometric functions have naturally provided a new impetus for the study of such an
important class of special functions. Finally, hypergeometric function and its general-
izations employed to define certain families of linear operators which reduced in terms
of (for example) fractional derivatives and fractional integrals, Hadamard product or
convolution [13,14].

In [15], Srivastava and Owa, gave definitions for fractional operators (derivative and
integral) in the complex z-plane C as follows:

Definition 1.1. The fractional derivative of order α is defined, for a function f(z) by

Dα
z f(z) :=

1

Γ(1 − α)

d

dz

∫ z

0

f(ζ)

(z − ζ)α
dζ ; 0 ≤ α < 1,

where the function f(z) is analytic in simply-connected region of the complex z-plane C

containing the origin and the multiplicity of (z−ζ)−α is removed by requiring log(z−ζ)
to be real when(z − ζ) > 0.

Definition 1.2. The fractional integral of order α is defined, for a function f(z), by

Iα
z f(z) :=

1

Γ(α)

∫ z

0

f(ζ)(z − ζ)α−1dζ ; α > 0,

where the function f(z) is analytic in simply-connected region of the complex z-plane
(C) containing the origin and the multiplicity of (z − ζ)α−1 is removed by requiring
log(z − ζ) to be real when(z − ζ) > 0.

Remark 1.1.

Dα
z zµ =

Γ(µ + 1)

Γ(µ − α + 1)
zµ−α, µ > −1; 0 ≤ α < 1

and

Iα
z zµ =

Γ(µ + 1)

Γ(µ + α + 1)
zµ+α, µ > −1; α > 0.

In this paper we study the existence of holomorphic solution at the origin of the frac-
tional pantograph equation in the unit disk takes the form

zαD[Dαu(z)] + (b − z)u′(z) − au(z) = 0, D =
d

dz
, (1)

EJQTDE, 2011 No. 64, p. 2



(a 6= 0, |b| < 1, 0 < α < 1)

subject to the initial conditions

u(0) = u0 and u′(0) = u1,

in the unit disk U such that u : U → C.

2 Existence and Uniqueness

We have the following main results:

Theorem 2.1. Consider the initial-value problem (1). If one of the following cases is
hold:

• a = −j for j ∈ N ∪ {0},

• a 6= −j and α → 0,

• a 6= −j and α → 1,

then the problem (1) has a holomorphic solution u(z), z ∈ U. Moreover, if

b = −
(m + 1 − α)Γ(m + 1)

(m + 1)Γ(m + 2 − α)
(2)

for some non negative integer m then (1) has no holomorphic solution U.

Proof. Let u be a solution to the initial- value problem (1) such that u is a holomorphic
at z = 0 then u can be represented as a power series of the form

u(z) =

∞
∑

n=0

bnz
n, (z ∈ U).

Substituting this expression into the equation (1), we obtain

bn = b0

n−1
∏

k=0

(a + k)
Γ(k+2)(k+1−α)

Γ(k+2−α)
+ (k + 1)b

.

For u0 6= 0 and u1 6= 0 we have b0 6= 0. If a = −j for non negative integer j, then it is
clear that the solution is a polynomial which is converge in U.
Now let a 6= −j then we have the ratio

∣

∣

∣

bn+1

bn

∣

∣

∣
=

∣

∣

∣

(a + n)
Γ(n+2)(n+1−α)

Γ(n+2−α)
+ (n + 1)b

∣

∣

∣
.
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For a 6= −j and α → 0, we obtain that

∣

∣

∣

bn+1

bn

∣

∣

∣
= |

1

1 + b
|, |b| < 1, as n → ∞

this poses that there is a converge solution for the problem (1) in the unit disk. Also
for a 6= −j and α → 1, we have

∣

∣

∣

bn+1

bn

∣

∣

∣
→ 0, as n → ∞,

thus the problem (1) has a solution. Finally, if b satisfies the relation (2), this implies
that bn is undefined and hence the problem (1) has no solution in the unit disk.

Theorem 2.2. Assume that |a|+(1−|b|)γ
(1−α)Γ(α+1)

< 1, where γ > 0 satisfies ‖u′−v′‖ ≤ γ‖u−v‖

then problem (1) has a unique solution.

Proof. Let u be a solution to the initial- value problem (1) such that u is a holomorphic
at z = 0. The differential equation (1) can be converted into the equation:

Dα
z u(z) = H(u(z), u′(z)), (z ∈ U), (3)

where

H(u(z), u′(z)) =

∫ z

0

η−α[au(η) − (b − η)u′(η)]dη.

We establish the existence of a local solution by showing that the integral equation

u(z) =
1

Γ(α)

∫ z

0

H(u(ζ), u′(ζ))(z − ζ)α−1dζ + u0 + zu1, (z ∈ U). (4)

is a contraction mapping. Let H(U) denote the Banach space of functions in

U := {z ∈ U : |z| ≤ r, 0 < r < 1}

equipped with the norm ‖.‖, ‖u‖ = supz∈U |u|, and let P : H(U) → H(U) be the
operator defined by

Pu =
1

Γ(α)

∫ z

0

H(u(ζ), u′(ζ))(z − ζ)α−1dζ + u0 + zu1.

For any 0 < r < 1 the function H is holomorphic in u. Now for any u, v ∈ H(U),

‖Pu − Pv‖ = ‖
1

Γ(α)

∫ z

0

H(u(ζ), u′(ζ))(z − ζ)α−1dζ −
1

Γ(α)

∫ z

0

H(v(ζ), v(ζ))(z − ζ)α−1dζ‖

≤
|z|α

Γ(α + 1)
‖H(u(ζ), u(βζ))− H(v(ζ), v(βζ))‖

≤
supz∈U |z|

(

|a| + γ(|b − z|)
)
∣

∣

∣
u(z) − v(z)

∣

∣

∣

(1 − α)Γ(α + 1)
.
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Let

M := max

(

|a| + γ(1 − |b|)
)

(1 − α)Γ(α + 1)

then for sufficiently 0 < r < 1 we pose

‖Pu − Pv‖ ≤ rM‖u − v‖.

Hence there is a constant 0 < ρ < 1 such that

‖Pu −Pv‖ ≤ ρ‖u − v‖.

Therefore the initial-value problem (1) has a unique solution in H(U).

3 General Solution

In this section, we will determine the general solution of the inhomogeneous fractional
differential equation

zαD[Dαu(z)] + (b − z)u′(z) − au(z) =

∞
∑

n=0

anzn, D =
d

dz
, (5)

where neither a nor b is a non-positive integer and the coefficients an of the power series
are given such that the radius of convergence is σ > 0. A power series solution of

zαD[Dαu(z)] + (b − z)u′(z) − au(z) = 0 (6)

is given by

w(z) =

∞
∑

n=0

(a)n

[γ]n
zn, z ∈ U,

where (a)n is the Pochhammer symbol defined by

(a)n =
Γ(a + n)

Γ(a)
=

{

1, n = 0
a(a + 1)...(a + n − 1), n = {1, 2, ...}.

And

[γ]n :=

n−1
∏

k=0

γk =

n−1
∏

k=0

[Γ(k + 2)(k + 1 − α)

Γ(k + 2 − α)
+ (k + 1)b

]

.

Here we assume that b0 = 1. For some values of a and b, the power series w(z) converges
for all values z ∈ U.

Theorem 3.1. Let a, b be real constants such that a /∈ Z− and ab
γ0

= 1. Assume that

the radius of convergence of the power series
∑∞

n=0 anzn, z ∈ U is 0 < σ < 1 and that
there exists a positive real number µ satisfies 1+µ

|1+b|
≤ 1 and

∣

∣

∣

[γ]nan

(a)n+1

∣

∣

∣
≤ µ

∣

∣

∣

n−1
∑

j=0

aj [γ]j
(a)j+1

∣

∣

∣
(7)
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for all sufficiently large integer n. Then every solution u of the non-homogenous equation
(5) can be represented by

u(z) = uh(z) +
∞

∑

n=1

n−1
∑

j=0

(a)n[γ]jaj

[γ]n(a)j+1
zn,

where uh is a solution for (6).

Proof. Let up(z) = u(z) − uh(z). We show that up(z) satisfies the equation (5). Since

u′
p(z) =

∞
∑

n=1

n−1
∑

j=0

n
(a)n[γ]jaj

[γ]n(a)j+1
zn−1 =

∞
∑

n=0

n
∑

j=0

(n + 1)
(a)n+1[γ]jaj

[γ]n+1(a)j+1
zn,

zαD[Dαup(z)] =
∞

∑

n=1

n
∑

j=0

(n − α)
Γ(n + 1)

Γ(n + 1 − α)

(a)n[γ]jaj

[γ]n(a)j+1
zn−1,

we obtain

zαD[Dαup(z)] + (b − z)u′
p(z) − aup(z) =

ab

γ0
a0

+

∞
∑

n=1

n
∑

j=0

(a)n+1[γ]jaj

[γ]n+1(a)j+1
[
Γ(n + 2)(n + 1 − α)

Γ(n + 2 − α)
+ nb]zn

−

∞
∑

n=1

n−1
∑

j=0

(a)n[γ]jaj

[γ]n(a)j+1
[n + a]zn

= a0 +
∞

∑

n=1

anz
n.

Next we prove that the power expression of up(z) converges for all z ∈ U. By applying
the ratio test to the power series expression of up(z) and using the assumption (7) we
have

∞
∑

n=1

n−1
∑

j=0

(a)n[γ]jaj

[γ]n(a)j+1
zn =

∞
∑

n=1

cnz
n

and for α → 0 we pose

lim
n→∞

|
cn+1

cn

| ≤ lim
n→∞

∣

∣

∣

a + n
Γ(n+2)(n+1−α)

Γ(n+2−α)
+ (n + 1)b

∣

∣

∣

[

1 +
∣

∣

∣

[γ]nan

(a)n+1

∣

∣

∣

∣

∣

∣

n−1
∑

j=0

[γ]jaj

(a)j+1

∣

∣

∣

−1]

≤
1 + µ

|1 + b|
≤ 1.

Therefore the power series of up(z) converges for all z ∈ U and consequently those of
u′

p(z) and Dαup(z). Hence the power series expression for zαD[Dαu(z)]+ (b− z)u′(z)−
au(z) has the same convergence region (the maximum open disk where the relevant
power series converges) as that of up(z). This completes the proof.
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4 Hyers-Ulam Stability

Assume that X and Y are a topological vector space and a normed space, respectively,
and that I is an open subset of X. If for any function f : I → Y satisfying the differential
inequality

‖an(x)y(n)(x) + an−1(x)y(n−1)(x) + · · ·+ a0(x)y(x) + h(x)‖ ≤ ε

for all x ∈ I and for some ε ≥ 0, there exists a solution f0 : I → Y of the differential
equation

an(x)y(n)(x) + an−1(x)y(n−1)(x) + · · ·+ a0(x)y(x) + h(x) = 0

such that ‖f(x) − f0(x)‖ ≤ K(ε) then we say that the above differential equation
satisfies the Hyers-Ulam stability ( or the local Hyers-Ulam stability if the domain I is
not the whole space X) (see [2]).
In the following theorem, we shall prove a local Hyers-Ulam stability of the equation
(1) under additional conditions.

Theorem 4.1. Let a, b be real constants such that a /∈ Z−. Suppose a function u :
U → C is represented by the power series

∑∞
n=0 bnzn, z ∈ U. Assume that there exist

nonnegative constants µ 6= 0 and ν satisfying the condition

∣

∣

∣

[γ]nan

(a)n+1

∣

∣

∣
≤ µ

∣

∣

∣

n−1
∑

j=0

aj [γ]j
(a)j+1

∣

∣

∣
≤ ν

∣

∣

∣

(n + 1)[γ]nan

(a)n+1

∣

∣

∣
, ∀n ∈ N0 (8)

and there is a constant L ≥ 0 such that

∞
∑

n=0

|anz
n| ≤ L|

∞
∑

n=0

anz
n|, z ∈ U,

where

an =
[(n + 1 + α)Γ(n + 1)

Γ(n + 1 − α)
+ b(n + 1)

]

bn+1 − (n + a)bn. (9)

If u satisfies the fractional differential inequality
∣

∣

∣
zαD[Dαu(z)] + (b − z)u′(z) − au(z)

∣

∣

∣
≤ ε (10)

for all z ∈ U and for some ε ≥ 0 then there exists a solution uh : U → C of the equation
(1) such that

∣

∣

∣
u(z) − uh(z)

∣

∣

∣
≤











ν
µ
Lε, a > 1

ν
µ
Lε

[

∑n0−1
n=0

∣

∣

∣
|n+1
n+a

| − | n+2
n+1+a

|
∣

∣

∣
+

(

n0+1
n0+a

)]

, a ≤ 1,

where n0 = max{0, ⌈−a⌉}.
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Proof. By the definition of an, we have

|zαD[Dαu(z)] + (b − z)u′(z) − au(z)|

=
∣

∣

∣

∞
∑

n=0

[((n + 1 + α)Γ(n + 1)

Γ(n + 1 − α)
+ b(n + 1)

)

bn+1 − (n + a)bn

]

zn
∣

∣

∣

= |
∞

∑

n=0

anz
n|

≤ ε.

Consequently yields

∞
∑

n=0

|anz
n| ≤ L|

∞
∑

n=0

anzn| ≤ Lε, z ∈ U. (11)

In view of Theorem 3.1, we have

u(z) = uh(z) +

∞
∑

n=1

n−1
∑

j=0

(a)n[γ]jaj

[γ]n(a)j+1
zn, z ∈ U.

Hence by using Abel′s formula (see [16]), we can estimate

|u(z) − uh(z)| =
∣

∣

∣

∞
∑

n=0

n−1
∑

j=0

(a)n[γ]jaj

[γ]n(a)j+1

zn
∣

∣

∣

≤

∞
∑

n=0

∣

∣

∣

an(n + 1)zn

n + a

∣

∣

∣

∣

∣

∣

(a)n+1

(n + 1)an[γ]n

∣

∣

∣

∣

∣

∣

n−1
∑

j=0

[γ]jaj

(a)j+1

∣

∣

∣

≤
ν

µ
lim

m→∞

m
∑

n=0

∣

∣

∣

(n + 1)anz
n

n + a

∣

∣

∣

=
ν

µ
lim

m→∞

(

m
∑

j=0

|ajz
j |
)

|
m + 2

m + 1 + a
|

+

m
∑

n=0

(

n
∑

j=0

|ajz
j |
)(

|
n + 1

n + a
| − |

n + 2

n + 1 + a
|
)

.

Assume that n0 = max{0, ⌈−a⌉} where ⌈−a⌉ is the ceiling of −a. It is clear that

if a > 1, then
n + 1

n + a
<

n + 2

n + 1 + a
forn ≥ 0;

if a ≤ 1, then
n + 1

n + a
≥

n + 2

n + 1 + a
forn ≥ n0.
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Thus we have

|u(z) − uh(z)| ≤



































ν
µ

limn→∞

[

Lε| n+2
n+1+a

| +
∑m

n=0 Lε( n+2
n+1+a

− n+1
n+a

)
]

, a > 1

ν
µ

limn→∞

[

Lε| n+2
n+1+a

| +
∑n0−1

n=0 Lε
∣

∣

∣
|n+1
n+a

| − | n+2
n+1+a

|
∣

∣

∣

]

, a ≤ 1

+
∑m

n=n0
Lε

(

n+1
n+a

− n+2
n+1+a

)

≤











ν
µ
Lε, a > 1

ν
µ
Lε

[

∑n0−1
n=0

∣

∣

∣
|n+1
n+a

| − | n+2
n+1+a

|
∣

∣

∣
+

(

n0+1
n0+a

)]

, a ≤ 1

for all z ∈ U. This completes the proof.

5 An example

For fix α = 0.5, a = b = 1, ε > 0, b0 = 0 and bn = ε
s(n+1)

, n ≥ 1. Define a function

u(z) =
∑∞

n=0 bnzn, z ∈ U. Setting

an =
[(n + 3/2)Γ(n + 1)

(n + 2)Γ(n + 0.5)
+

n + 1

n + 2
− 1

]ε

s
, n ∈ N (12)

and using (9), we pose a0 ≃
ε
s
. It is clear that an are positive for all n, therefore,

|

∞
∑

n=0

anzn| ≥ a0 ≃
ε

s
. (13)

Assume that the reduce of the solution satisfies |z| ≤ r < 1, then relation (12) implies

∞
∑

n=0

|anz
n| ≤

∞
∑

n=0

anrn = a0 +
∞

∑

n=1

anrn

=
∞

∑

n=1

[(n + 3/2)Γ(n + 1)

(n + 2)Γ(n + 0.5)
+

n + 1

n + 2

]ε

s
rn

≤
∞

∑

n=1

2ε

s
rn

= ε

(14)

where s := 2
∑∞

n=1 rn. Hence from (13) and (14), we obtain (11)

∞
∑

n=0

|anzn| ≤
2

1 − r
|

∞
∑

n=0

anz
n|.
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It is clear that (8) is satisfied, thus in virtu of Theorem 4.1, there exists a solution
uh : U → C of the equation (1) such that

|u(z) − uh(z)| ≤
2ε

1 − r
, z ∈ U.
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