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a College of Mathematics and Information Science, Jiangxi Normal University

Nanchang, Jiangxi 330022, People’s Republic of China

b Department of Mathematics, Morgan State University

1700 E. Cold Spring Lane, Baltimore, M.D. 21251, USA

Abstract

In this paper, we investigate the existence of Cn-almost periodic solution for a class

of nonlinear Fredholm integral equation, and the existence of almost periodic solution

for a class of more general nonlinear integral equation. Our existence theorems extend

some earlier results. Two examples are given to illustrate our results.
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1 Introduction

In [1], the author initiated the study on Cn-almost periodic functions, which turns out to be

one of the most important generalizations of the concept of almost periodic functions in the

sense of Bohr. Cn-almost periodic functions are very interesting since their properties are

better than almost periodic functions to some extent as well as they have wide applications

in differential equations. Recently, Cn-almost periodic functions has attracted more and
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more attentions. We refer the reader to [6, 7, 11, 12, 14] and references therein for some

recent development in this topic.

On the other hand, the existence of almost periodic type solutions for various kinds of

integral equations has been of great interest for many authors (see, e.g., [2–5, 8, 10, 15]

and references therein). Especially, in [15], the authors studied the existence of almost

periodic solutions for the following Fredholm integral equation:

y(t) = h(t) +

∫

R

k(t, s)f(s, y(s))ds, t ∈ R. (1.1)

Stimulated by the above works, we will make further study on these topics, i.e., we

will study the existence of Cn-almost periodic solutions for Eq. (1.1), and we will also

investigate the existence of almost periodic solutions for the following more general integral

equation:

y(t) = e(t, y(α(t))) + g(t, y(β(t)))

[

h(t) +

∫

R

k(t, s)f(s, y(γ(s)))ds

]

, t ∈ R. (1.2)

It is easy to see that Eq. (1.1) is a special case of Eq. (1.2).

In fact, to the best of our knowledge, there is no results in the literature concerning

the existence of Cn-almost periodic solutions for Eq. (1.1) and the existence of almost

periodic solutions for Eq. (1.2). Therefore, in this paper, we will extend the results in [15]

to the Cn-almost periodic case and to a more general integral equation, i.e., Eq. (1.2).

Throughout the rest of this paper, if there is no special statement, we denote by R

the set of real numbers, by X a Banach space, by Cn(R,X) (briefly Cn(X)) the space of

all functions R → X which have a continuous n − th derivative on R, and by Cn
b (R,X)

(briefly Cn
b (X)) be the subspace of Cn(R,X) consisting of such functions satisfying

sup
t∈R

n
∑

i=0

|f (i)(t)| < +∞

where f (i) denote the i − th derivative of f and f (0) := f. Clearly Cn
b (X) turns out to be

a Banach space with the norm

‖f‖n = sup
t∈R

n
∑

i=0

|f (i)(t)|.

First, let us recall some definitions and notations about almost periodicity and Cn-

almost periodicity (for more details, see [6, 7, 9, 13]).
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Definition 1.1. A continuous function f : R → X is called almost periodic if for each

ε > 0 there exists l(ε) > 0 such that every interval I of length l(ε) contains a number τ

with the property that

‖f(t + τ) − f(t)‖ < ε for all t ∈ R.

We denote by AP (R,X) (briefly AP (X)) the set of all such functions.

Definition 1.2. F ⊆ AP (X) is said to be equi-almost periodic if for each ε > 0 there

exists l(ε) > 0 such that every interval I of length l(ε) contains a number τ with the

property that for all f ∈ F and t ∈ R,

‖f(t + τ) − f(t)‖ < ε.

Definition 1.3. Let Ω ⊆ X. A continuous function f : R × Ω → X is called almost

periodic in t uniformly for x ∈ Ω if for each ε > 0 and for each compact subset K ⊂ Ω

there exists l(ε) > 0 such that every interval I of length l(ε) contains a number τ with the

property that

‖f(t + τ, x) − f(t, x)‖ < ε for all t ∈ R, x ∈ K.

We denote by AP (R × Ω,X) the set of all such functions.

Definition 1.4. A function f ∈ Cn(R,X) is called Cn-almost periodic if for each ε > 0

there exists l(ε) > 0 such that every interval I of length l(ε) contains a number τ with the

property that

‖f(t + τ) − f(t)‖n < ε for all t ∈ R.

We denote by APn(R,X) (briefly APn(X)) the set of all such functions.

Remark 1.5. By [7], we know that APn(X) turns out to be a Banach space equipped

with the ‖ · ‖n norm. In addition, we usually denote AP 0(X) by AP (X), which is the

classical Banach space of all X-valued almost periodic functions in Bohr’s sense.

2 C
n-almost periodic solution for nonlinear Fredholm inte-

gral equation

Lemma 2.1. The following two statements are equivalent:

(a) for each k ∈ {0, 1, 2, . . . , n}, F (k) ⊆ AP (R) is precompact,
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(b) F ⊆ APn(R) is precompact,

where F (k) := {f (k) : f ∈ F}.

Proof. By noting that

‖f (k)‖0 ≤ ‖f‖n, k = 0, 1, 2, . . . , n

and

‖f‖n ≤
n

∑

k=0

‖f (k)‖0,

it is not difficult to get the conclusion.

Combining Lemma 2.1 and the compactness criteria for AP (R) (cf. [9, Theorem 6.10]),

we get the following compactness criteria for APn(R):

Theorem 2.2. The necessary and sufficient condition that F ⊆ AP (n)(R) be precompact

is that the following properties hold true:

(i) for each t ∈ R and k ∈ {0, 1, · · · , n}, {f (k)(t) : f ∈ F} is precompact in X;

(ii) for k ∈ {0, 1, · · · , n}, F (k) is equi-continuous;

(iii) for k ∈ {0, 1, · · · , n}, F (k) is equi-almost periodic.

Now, let 1 ≤ p ≤ ∞ and q be such that 1
p

+ 1
q

= 1. For convenience, we list some

assumptions.

(H1) f : R × R → R is a Lp-Carathéodory function, i.e., the following two conditions

hold:

(i) the map t → f(t, y) is measurable for all y ∈ R, and the map y → f(t, y) is

continuous for almost all t ∈ R;

(ii) for each r > 0, there exists a function µr ∈ Lp(R) such that |y| ≤ r implies that

|f(t, y)| ≤ µr(t) for almost all t ∈ R.

(H2) Let k : R × R → R be such that ∂mk(t,s)
∂tm

exists for m = 1, 2, . . . , n; and

(i) there exist functions am ∈ Lq(R) such that

|km
t (s)| ≤ am(s), m = 0, 1, 2, . . . , n,

for all t ∈ R and almost all s ∈ R, where km
t (s) := ∂mk(t,s)

∂tm
is measurable for each

t ∈ R;

(ii) the map t 7−→ km
t is almost periodic from R to Lq(R), m = 0, 1, 2, . . . , n.
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(H3) there exists a constant r0 > 0 such that

‖h‖n +
n

∑

m=0

‖am‖q · ‖µr0
‖p ≤ r0.

Now, we are ready to establish one of our main results.

Theorem 2.3. Assume that (H1)-(H3) hold and h ∈ APn(R). Then Eq. (1.1) has a

Cn-almost periodic solution.

Proof. We give the proof by three steps.

Step 1. F : APn(R) → Lp(R) is bounded and continuous, where

(Fy)(t) := f(t, y(t)), t ∈ R, y ∈ APn(R).

Let E ⊂ APn be a bounded subset and

r = sup
y∈E

‖y‖n.

Then, by (H1), there exists a function µr ∈ Lp(R) such that

|f(t, y(t))| ≤ µr(t)

for almost all t ∈ R and all y ∈ E, which yields that

‖Fy‖p =

[
∫

R

|f(t, y(t))|pdt

]
1

p

≤
[
∫

R

|µr(t)|pdt

]
1

p

< +∞, ∀y ∈ E.

Thus F (E) is bounded. Next, we show that F is continuous. Let yk → y in APn(R).

Then

r′ := sup
k

‖yk‖ + 1 < +∞.

By using (H1) again, we know that

lim
k→∞

f(t, yk(t)) = f(t, y(t))

for almost all t ∈ R, and

|f(t, yk(t)) − f(t, y(t))| ≤ 2µr′(t)

for almost all t ∈ R. Then, by the Lebesgue’s dominated convergence theorem, we get

‖Fyk − Fy‖p
p =

∫

R

|f(t, yk(t)) − f(t, y(t))|pdt → 0, k → ∞,
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i.e., Fyk → Fy in Lp(R).

Step 2. K : Lp(R) −→ APn(R) is continuous and compact, where

(Ky)(t) =

∫

R

k(t, s)y(s)ds, t ∈ R, y ∈ Lp(R).

First, let us show that K is well-defined, i.e., Ky ∈ APn(R) for y ∈ Lp(R). Noting

that
∣

∣

∣

∣

k(t + ∆t, s) − k(t, s)

∆t

∣

∣

∣

∣

≤ a1(s)

we get

(Ky)′(t) = lim
∆t→0

∫

R

k(t + ∆t, s) − k(t, s)

∆t
y(s)ds =

∫

R

k1
t (s)y(s)ds.

Similarly, one can show that

(Ky)(m)(t) =

∫

R

km
t (s)y(s)ds, m = 0, 1, 2, . . . , n.

Now, fix y ∈ Lp(R) and m ∈ {0, 1, 2, . . . , n}. We have

|(Ky)(m)(t1) − (Ky)(m)(t2)| =

∣

∣

∣

∣

∫

R

km
t1

(s)y(s)ds −
∫

R

km
t2

(s)y(s)ds

∣

∣

∣

∣

≤
∫

R

|km
t1

(s) − km
t2

(s)| · |y(s)|ds

≤ ‖km
t1

− km
t2
‖q · ‖y‖p (2.1)

for all t1, t2 ∈ R. By the almost periodicity of km
t , the map t 7−→ km

t is uniformly continuous

on R. Combining this with (2.1), we conclude that (Ky)(m) is uniformly continuous on

R. Again by the almost periodicity of km
t , for each ε > 0 there exists l(ε) > 0 such that

every interval I of length l(ε) contains a number τ with the property that

‖km
t+τ − km

t ‖q < ε, ∀t ∈ R,

which and (2.1) yields that

|(Ky)(m)(t + τ) − (Ky)(m)(t)| ≤ ‖km
t+τ − km

t ‖q · ‖y‖p ≤ ε‖y‖p, ∀t ∈ R.

Thus, (Ky)(m) ∈ AP (R). By the definition of APn(R), we know that Ky ∈ APn(R).

Next, we show that K : Lp(R) −→ APn(R) is compact. Let E ⊂ Lp(R) be a bounded

subset. For each m ∈ {0, 1, 2, . . . , n}, we claim that the follow properties hold:

(a) {(Ky)(m)(t) : y ∈ E} is precompact for each t ∈ R;

(b) {(Ky)(m) : y ∈ E} is equi-continuous on R;
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(c) {(Ky)(m) : y ∈ E} is equi-almost periodic.

In fact, the property (a) follows directly from

∣

∣

∣
(Ky)(m)(t)

∣

∣

∣
=

∣

∣

∣

∣

∫

R

km
t (s)y(s)ds

∣

∣

∣

∣

≤
∫

R

|am(s)| · |y(s)|ds

≤ ‖am‖q · ‖y‖p

≤ ‖am‖q · sup
y∈E

‖y‖p < +∞

for all y ∈ E and t ∈ R. In addition, by some direct calculations, it follows from (2.1) that

the properties (b) and (c) hold. Thus, by Theorem 2.2, we know that K(E) is precompact

in APn(R). Moreover, noting that K is linear, we conclude that K is continuous.

Step 3. Eq. (1.1) has a Cn-almost periodic solution.

We denote

(Sy)(t) = h(t) + [K(Fy)](t) = h(t) +

∫

R

k(t, s)f(s, y(s))ds, y ∈ APn(R), t ∈ R.

Noting that h ∈ APn(R), it follows from Step 1 and Step 2 that S is from APn(R) to

APn(R), and S : APn(R) → APn(R) is continuous and compact. Now, let

E = {y ∈ APn(R) : ‖y‖n ≤ r0}.

Then, for all y ∈ E , we have

‖Sy‖n ≤ ‖h‖n + ‖K(Fy)‖n

≤ ‖h‖n +

n
∑

m=0

‖[K(Fy)](m)‖0

≤ ‖h‖n +

n
∑

m=0

‖am‖q · ‖Fy‖p

≤ ‖h‖n +
n

∑

m=0

‖am‖q · ‖µr0
‖p

≤ r0,

which means that S(E) ⊆ E . Noting that S : E → E is continuous and S(E) is precompact,

by the classical Schauder’s fixed point theorem, S has a fixed point in E , i.e., Eq. (1.1)

has a Cn-almost periodic solution.

Next, we present an example to illustrate our result.
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Example 2.4. Let n = 1, p = 1, q = ∞, and

h(t) = cos πt, k(t, s) = (sin t + sin
√

2t)e−s2

, f(t, y) =
y sin(yet2)

20(1 + t2)
.

By some direct calculations, one can show that (H1) holds with µr(t) = r
20(1+t2)

; (H2)

holds with a0(s) = 2e−s2

and a1(s) = (
√

2 + 1)e−s2

; (H3) follows from

lim sup
r→+∞

∑n
m=0 ‖am‖q · ‖µr‖p

r
≤ (3 +

√
2)π

20
< 1.

In addition, it is easy to see that h ∈ AP 1(R). Thus, by Theorem 2.3, the following

integral equation

y(t) = cos πt +

∫

R

sin t + sin
√

2t

20(1 + s2)
e−s2

y(s) sin[es2

y(s)]ds

has a C1-almost periodic solution.

3 Almost periodic solution for a class of integral equation

In this section, we consider the existence of almost periodic solution for Eq. (1.2). In

the case of no confusion, we will denote the norm of AP (R) by ‖ · ‖ instead of ‖ · ‖0 for

convenience.

Theorem 3.1. Assume that (H1)-(H2) hold with n = 0 and h ∈ AP (R). Moreover, the

following assumptions hold:

(H4) α, β, γ : R → R are three functions such that y ∈ AP (R) implies that

y(α(·))), y(β(·))) ∈ AP (R).

(H5) e, g ∈ AP (R × R, R) and there exist two constants Le, Lg such that

|e(t, u) − e(t, v)| ≤ Le|u − v|, |g(t, u) − g(t, v)| ≤ Lg|u − v|, ∀u, v ∈ R.

(H6) There exists a constant r0 > 0 such that MLg + Le < 1 and

M · sup
t∈R,|u|≤r

|g(t, u)| + sup
t∈R,|u|≤r

|e(t, u)| < r, ∀r > r0,

where M = ‖h‖ + ‖a0‖q · ‖µr0
‖p.

Then Eq. (1.2) has an almost periodic solution.
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Proof. Let B be defined as follows

(By)(t) = h(t) +

∫

R

k(t, s)f(s, y(γ(s)))ds, y ∈ AP (R), t ∈ R.

By a similar proof to that of Theorem 2.3, one can also show that B : AP (R) → AP (R)

is continuous and compact.

In addition, we denote

(Ay)(t) = g(t, y(β(t))), y ∈ AP (R), t ∈ R;

and

(Cy)(t) = e(t, y(α(t))), y ∈ AP (R), t ∈ R.

Since e, g ∈ AP (R × R, R) and y(α(·)), y(β(·)) ∈ AP (R) for each y ∈ AP (R), we conclude

that

Ay,Cy ∈ AP (R), ∀y ∈ AP (R),

i.e., A,C are two operators from AP (R) to AP (R).

Denote E = {y ∈ AP (R) : ‖y‖ ≤ r0}. For each y ∈ E , define an operator S(y) on

AP (R) by

[S(y)]x = Ax · By + Cx, x ∈ AP (R).

Then S(y) ia an operator from AP (R) to AP (R). For all x1, x2 ∈ AP (R), by (H5), we

have

‖[S(y)]x1 − [S(y)]x2‖

= ‖Ax1 · By + Cx1 − Ax2 · By − Cx2‖

≤ ‖Ax1 − Ax2‖ · ‖By‖ + ‖Cx1 − Cx2‖

≤ (Lg · ‖By‖ + Le) · ‖x1 − x2‖

≤ (MLg + Le) · ‖x1 − x2‖,

where

‖By‖ ≤ sup
t∈R

|h(t)| + sup
t∈R

∫

R

|kt(s)| · µr0
(s)ds ≤ ‖h‖ + ‖a0‖q · ‖µr0

‖p = M

since ‖y‖ ≤ r0. Noting that MLg +Le < 1, by the Banach contraction principle, we know

that there exists a unique fixed point xy of S(y) in AP (R).

Now, we define an operator on E by

Sy = xy,
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where xy is the unique fixed point of S(y) in AP (R). Then

Sy = [S(y)]xy = Axy · By + Cxy.

In addition, we claim that Sy ∈ E for each y ∈ E . In fact, letting ‖xy‖ = ry, if ry > r0,

then by (H6), we get

ry = ‖xy‖ = ‖Axy · By + Cxy‖

≤ M‖Axy‖ + ‖Cxy‖

≤ M · sup
t∈R,|u|≤ry

|g(t, u)| + sup
t∈R,|u|≤ry

|e(t, u)|

< ry,

which is a contradiction. So S(E) ⊆ E .

Next, let us show that S : E → E is continuous and S(E) is precompact. For all

y1, y2 ∈ E , we have

‖Sy1 − Sy2‖

= ‖Axy1
· By1 + Cxy1

− Axy2
· By2 − Cxy2

‖

≤ Lg · ‖xy1
− xy2

‖ · ‖By1‖ + ‖Axy2
‖ · ‖By1 − By2‖ + Le · ‖xy1

− xy2
‖

≤ (MLg + Le)‖Sy1 − Sy2‖ + ‖Axy2
‖ · ‖By1 − By2‖

≤ (MLg + Le)‖Sy1 − Sy2‖ + (sup
t∈R

|g(t, 0)| + Lgr0) · ‖By1 − By2‖,

which

‖Sy1 − Sy2‖ ≤ supt∈R |g(t, 0)| + Lgr0

1 − MLg − Le
· ‖By1 − By2‖. (3.1)

Let yk → y in E . Combining (3.1) with the continuity of B, we conclude that Syk →
Sy. In addition, letting {yk} ⊂ E , since B(E) is precompact, there exists a subsequence

{yi} ⊂ {yk} such that B(yi) is convergent. Then, (3.1) yields that Syi is convergent,

which means that S(E) is also precompact.

At last, by using Schauder’s fixed point theorem, we conclude that there exists a fixed

point y∗ ∈ E of S. Then, we have

y∗ = Sy∗ = xy∗ = Axy∗ · By∗ + Cxy∗ = Ay∗ · By∗ + Cy∗,

which yields that Eq. (1.2) has an almost periodic solution.

Remark 3.2. We remark that Theorem 3.1 is a generalization of [15, Theorem 2.4] to

some extent. In fact, in [15, Theorem 2.4], the authors established the existence of almost
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periodic solution for Eq. (1.1) by using nonlinear alternative of Leray-Schauder type;

Here, we deal with a more general integral equation, i.e., Eq. (1.2), by using the classical

Schauder’s fixed point theorem directly.

Example 3.3. Let n = 1, p = 1, q = ∞,

h(t) = cos πt, k(t, s) = (sin t + sin
√

2t)e−s2

, f(t, y) =
y sin(yet2)

20(1 + t2)
,

and

α(t) = t−1, β(t) = t−sin t, γ(t) = |t|, g(t, u) ≡ 1

2(1 + u2)
, e(t, u) =

cos t + cos πt

6
u.

By Example 2.4, we know that that (H1) holds with µr(t) = r
20(1+t2)

, and (H2) holds with

n = 0 and a0(s) = 2e−s2

.

It is easy to see that (H4) holds, and (H5) holds with Lg = 1
2 , Le = 1

3 . In addition,

since

‖h‖ + ‖a0‖q · ‖µr‖p = 1 +
πr

10

and

sup
t∈R,|u|≤r

|g(t, u)| ≤ 1

2
, sup

t∈R,|u|≤r

|e(t, u)| ≤ r

3
,

we conclude that (H6) holds r0 = 1. Thus, by Theorem 3.1, the following integral equation

y(t) =
cos t + cos πt

6
y(t − 1) +

cos πt +
∫

R

sin t+sin
√

2t
20(1+s2)

e−s2

y(|s|) sin[es2

y(|s|)]ds

2 + 2[y(t − sin t)]2

has an almost periodic solution.
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