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Abstract: This paper is devoted to investigate the existence of pesfieriodic solution
for a functional dfferential equation in the form ofL.x = —b(t) f (x(t — 7(t))), where Lx = X (t) —
a(t)g(x(t))x(t). By using well-known fixed point index theory in a cone, valud A are determined
for which there exist positive periodic solutions for theoa® functional diferential equation. The

dependence of positive periodic solutig(t) on the parameter is also studied, i.e.,
lim |[X;]] = +00 or lim [|x;]| = 0.
A—>+00 A—+00
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1 Introduction

Functional diferential equations with periodic delays appear in someogasl models. For
example, the model of the survival of red blood cells in anrati[1], and the model of dynamic
disease [2], and so on. One of the important questions isheh#tese equations can support positive
periodic solutions. In recent years, periodic populatignainics has become a very popular subject,
and several dierent periodic models have been studied by many authorf3-<&34] and references
therein.

In this article, we will study the existence of eigenvaluesresponding to positive periodic solu-

tions of the first order functional fierential equation with a parameter of the form

ALX = —b(t) f (x(t — (1)), (1.1)
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wherel > 0 is a positive parameteLx = X (t) —a(t)g(x(t))x(t), a b e C(R, [0, +o)) arew-periodic,
f, g € C(]0, +),[0, +0)) andr(t) is a continuousv-periodic function.

S.Chow [3], H.Freedman and J.Wu [4], K.Hadeler and J.Torf8ikY.Kuang [6,7], Y.Kuang and
H.Smith [8], J.Mallet-Paret and R.Nussbaum [9] and mang&istudied the existence of periodic
solutions of this type or its generalized forms. This type@fiation has been proposed as models for
a variety of physiological processes and conditions iriolgighroduction of blood cells, respiration,
and cardiac arrhythmias. See, for example, the above nefeseand [2,10,11].

Recently, H.Wang [12] investigated the existence of pasitolutions ofEq.(1.1) by a well-
known result of the fixed point index under conditidé{x) > 0 for x > 0. The author showed the
relationship between the asymptotic behaviors of the quoﬁ(xi) (at zero and infinity) and the open
intervals (eigenvalue intervals) of the parametsuch that the problem has zero, one and two positive
solution(s). However, to the best of our knowledge, littlerkvhas been done for the dependence of
positive periodic solutions diq.(1.1) on the parametarwithout conditionf (x) > 0 for x > 0. Thus,
it is worthwhile to studyEq.(1.1) in this case.

On the other hand, some new results are obtained for thepgesbf positive periodic solution of
Eq.(1.1) by using the fixed point index theory in a cone. Our rssaklude and extend many results
of X.Liu and W.Li [13], D.Jiang, J.Wei and B.Zhang [14], S&tg and G.Zhang [15] and D.Jiang
and J.Wei [16] in the case ¢f= 1.

At the same time, we notice that the dependence of positikdi®o x,(t) on the parameter
has received much attention, see [13,26-29] and the refeserited therein. In [13], X.Liu and W.Li
considered the existence and uniqueness of positive pegotltion for the periodic equation in the
form of

X (t) = —at)x(t) + F(x(t — 7(1))).

They examined the uniqueness of the solutions and theimdiepee on the paramet@munder con-
dition

(H) f : [0, 0) — (0, ) is nondecreasing, and there exigts (0, 1) such that
f(kx) > K'f(x), for ke (0,1) and x € [0, +c0).

Using a similar condition to that o) in [13], J.Graef, L.Kong, and H.Wang [26], L.Kong [27],
T.He and Y.Su [28] and W.Li and X.Liu [29] also studied the éiegence of positive solutiax(t) on
the parametef. But, to the best of our knowledge, there is no result for thpeathdence of positive
periodic solutionx,(t) on the parametet of Eqg.(1.1) without a similar condition to that oH). The
objective of the present paper is to fill this gap.

The main purpose of this paper is to establish some néficignt conditions for the existence
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of positive periodic solution oEq. (1.1) by using well-known fixed point index theory in a cone. |

particular, we examine the dependence of positive perisaligtion x,(t) on the parametet, i.e.,
lim ||X3]] = 40 or lim ||x;]| = 0.
A—+00 A—>+00

We remark that our methods are entirelffelient from those used in [12-16,26-29].
Letw > 0 andR = (-0, +0). We make the following hypotheses:
(H1) a b e C(R, [0, +)) arew-periodic functions satisfying’ a(t)dt > 0, [*b(t)dt > O.
(H2) 7 € C(R,R) is w-periodic functions.
(H3) f : [0, +o0) — [0, +0) is continuous and (0) = O;
(H4) g : [0, +00) — [0, +o0) is continuous and & | < g(X) < L < +o0, wherel, L are positive
constants.

For ease of exposition, we set

. (X .
fo = lim —( ), feo = lim
x—=0t X X—+00

f3)
T.

We will also need the function

m(r) = min{ f(rx) X € [UL(l_ O—I)r, r]}

1-ot

whereo = e o a0t

The main results of the present paper are as follows.
Theorem 1.1.Assume thatkl,) — (Hs) hold. If 0 < f,, < +o0, then there exist8y > 0 such that, for

everyR > By, Eq. (1.1) has a positive periodic solutiog(t) satisfying||Xg|| = R associated with
A = AR € [1o, Ag], (1.2)

wherelgp and g are two positive finite numbers.

Remark 1.1. Some ideas of the proof of Theorem 1.1 are from Theorem 32[30] and Lemma
2.6in [31].

Theorem 1.2. Assume thatkl;) — (Hg) hold. If f, = +oo, then there existEo > 0 such that, for
everyR > 3o, Eq. (1.1) has a positive periodic solutiog(t) satisfying||xgll = R associated with

A=A5> 1, (1.3)

whereA is a positive finite number.
Theorem 1.3.Assume thatki;) — (Hs) hold. If 0 < fo < +c0, then there existg > 0 such that, for

every O<r < g, Eq. (1.1) has a positive periodic solution(t) satisfying||x || = r associated with
A=A €[5 5], (1.4)
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whereqy and/fg are two positive finite numbers.
Theorem 1.4.Assume thatkl;) — (H,4) hold. If fg = +o0, then there exist8; > 0 such that, for any
0 < r* < B1, Eq. (1.1) has a positive periodic solutioq:(t) satisfying||x+|| = r* associated with

A=A > %, (1.5)

whereA* is a positive finite number.
Theorem 1.5.Assume thatl1)—(H4) hold. If there exist* > 0 andB,- > 0 such thatn(r**) > B+,

thenEq. (1.1) has a positive periodic solutiof-(t) satisfying||x.«|| = r** associated with
A= A > A, (1.6)

wherel*" is a positive finite number.

Finally we consider the dependence of positive periodiatsmi X, (t) on the parametet.
Theorem 1.6.Assume thatl;) — (H4) hold. Then the following two conclusions hold.

(Hsg) If fg = 0 andf,, = o, then for everyd > 0 Eq. (1.1) has a positive periodic solution(t)
satisfying lim ;|| = oo;

(Hg) If fp = 0 and f,, = 0, then for everyl > 0 Eq. (1.1) has a positive periodic solutiof(t)
satisfying}ﬂ)rog [[X;]| = O.
Remark 1.2. Some ideas of the proof of Theorem 1.6 are from [30,32].
Remark 1.3. It is easy to point out some elementary functions, whictsgatonditions Hs) and

(Hs), or satisfy conditionsH3) and Hg); for example,
f(X) = kp X2,

or
f(X) = koX2,

wherek; andk; are two positive real numbers.

2 Preliminaries
In order to establish the positive periodic solutiong=gf (1.1), we shall consider the following
space:
X = {x :X(t) € C(R,R), X(t+ w) = x(t)}.

ThenX is a real Banach space endowed with the usual linear steuagiwell as the norm

IXl = sup [X(t)l, xeX
te[0,w]
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Define a con& c X by
L 1— |
K = {xe xoxt) >z T te [O,w]}.
1-ot
Also, define, for a positive numbelQ; by

Qr = {xe XX < r}.

Note thatiQ, = {xe X1 [1XI| = r}.
Definition 2.1. By a solution ofEg. (1.1) we mean that a functior € X satisfying (1.1). x is a
positive solution oEg. (1.1) if, in addition,x(t) > 0 fort € (0, w).

Let the mapA, : K — X be defined by

t+w
AX(t) = % ft Gy(t, 9)b(9) f (x(s— 7(9)))ds, (2.1)

where .
gk aAg))dv

Gy(t, s) = — , Seftt+w]. 2.2

69 = —— e SElttrol (2.2)
Further, it follows from (2.2) that
L

1_O_Lsz(t,s)sl_O_l, se[tt+ w]. (2.3)

Lemma 2.1. (See[12]) Assume thatH;) — (Hs) hold. Eg. (1.1) is equivalent to the fixed point
problem ofA, in K.
Lemma 2.2. (See[12]) Assume thatH;) — (H4) hold. Then,A;(K) c K andA,; : K —» K is
completely continuous.

The following well-known results of the fixed point index afixed point are crucial in our argu-
ments.
Lemma 2.3. (See[30]) Letk be a cone in a real Banach spdeeQ be a bounded open set Bf

Assume that operatgk: Kn Q- Kis completely continuous. If there existx@> 0 such that
X—AX#tXy, YXe KNoQ, t>0,

theni(A,K N Q,K) =0.

Remark 2.1. It follows from the Corollary of Lemma 4.2 in [33] thap > 0 implies thatxg € K and
X0 # 0.

Lemma 2.4.(See[30]) LetP be a cone in a real Banach spdteAssumeQ;, Q, are bounded open

sets inE with 0 € Q;, Q; c Q. If

A PN(Q\Q1) > P
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is completely continuous such that either
() IIAXI < I, ¥x € PN adQs and||AX]| > [IXl, ¥xe PN aQy, or
@iy JAXI = (IXIl, Yxe PnaQq and||AX|| < |IXl, YXe PN aQ,,
thenA has at least one fixed point N (52\91).

3 Proof of main results

In this section, we prove the main results, and let us begintpyducing some notation:

KmaQrz{x:xe K, ||x||=r},

= fo " bty

Proof of Theorem 1.1.It follows from 0 < f,, < +oo that there exist & |1 < |,, u > 0 such that

wherer > 0 and

It follows from (H1) thaty > O.

l1x < f(X) < lox (X > p). (3.1)

Now, we prove thaBy = ,u(M) is required. Thus, wher e K N dQr we have

L1 L1
X(t) 2 %n x| = MR te[0,].
Noticing R > Sy, we have
ot(1-o) ot(1-o") ot(1-o)
X0 2 —— =Nl = ——"R>—F—"ho=p tel0al
which also implies thalR > .
LetAg = |1yl . Then we may assume that
X=ApXx#0 (Vxe KNoQg); (3.2)

if not, then there existsgr € K N 0Qr such thatA, xg = xg and therefore (1.1) already holds for
AR = Ao.

Definey(t) = 1, fort € R. Theny € K with ||yl =

We now show that

X—ApX# Y (Yxe KNoQg, £ = 0). (3.3)

In fact, if there existx; € K N 0Qg, {1 > 0 such thatx; — Ay, X1 = {1, then (3.2) implies that
{1 > 0. On the other hands; = {1y + Ay X1 = Q1. SO we can choosg” = sup{|x1 > {y}, then

{1 £ < +00, X3 = Y. Therefore

=l < ixall =R (34)
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Consequently, for anye [0, w], (2.3) and (3.1) imply

x1(t) = Ao [ Gy, (t, B f (xa(5— 7(9))ds + Ly (t)
> Ao~ 12 [ (9 f (xa(s— T(9))ds+ ()
= 07 xZr [ b(9) f(xa(s— 7(9))ds + L ()

1-0
L

> A0~ 152 3 B(S)xa(s— T(9)ds + {1y (t)
> Ao~ U112 [y D(L w(s— T(9)ds + &y (D)
= A0~ 172 f b(9)ds + Q1w (D)

= o M1y O + ()

="+ Qy(b),

which and (3.4) imply thak; (t) > (&* + {1)y(t), t e [0, w], which is a contradiction to the definition
of 7*. Thus, (3.3) holds and, by Lemma 2.3, the fixed point index

i(Ar, KN Qr,K) =0. (3.5)
On the other hand, it is easy to see that
i(0,KNQR,K) =1, (3.6)

whered is the zero operator.
It follows therefore from (3.5) and (3.6), and the homotopyariance property that there exist

Xr € K N dQr and 0< vr < 1 such thatrA,,Xr = Xgr, Which implies that
AR = /101/&1 > Ap.

From the proof above, for arig > 8o, there exists a positive solutiok € K N dQg associated

with 1 = Ag > 0. Thus,

t+w
Xr(t) = /lgel ft Gxx(t, 9)b(9) f(Xr(s— 7(9)))ds,

with ||xgl| = R.
On the other hand,

XR(t) = AR* j; v Gxx(t, 90(9) f (Xr(s— 7(9)))ds < ARHR j: b(s)ds = %O_I/l&llzRy,

1-o'

which implies that

Iell = R< 7 ARM2Ry,

— o
and hence,

AR < |2)/ = /T().

—
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In conclusionAg € [Ao, /To]. The proof is complete.[]

Remark 3.1. If we use the theory of Leray-Schauder degree, then we cdecee(3.5) and (3.6) with
deg(l - A, KNQr,K) =0

and

deg(l, K N QRr,K) =1,

respectively, whert is the identical operator.

Proof of Theorem 1.2.1t follows from f,, = +oo that there exist* > 0, u > 0 such that

f(X) > I*x (x> p). (3.7)

_ -1
Now, we prove thaBy = 4&1(_1_;({')) is required. Thus, wher e K N 0Qgz we have

L _ L |
X(t) > %n W=TE DR te0.0)
Noticing R > o, we have
L _ L 1— AN L 1— N _
X(t)>%ll X| = 1(_U‘LT)R> 1( (L}-),Bo—,u, te[0,w].

Letd = I*ylf_’—;L, we proceed in the same way as in the proof of Theorem 1.lacig (3.2) we
may assume that

X—AX#0 (Yxe KnNaQg), (3.8)

and replacing (3.3) we can prove
X—AX#y (Yxe KNaQg, ¢ = 0). (3.9

Hencei(A7, K N Qg,K) = 0. Observingi(d, K N Qg, K) = 1, we can show easily that there exist
Xz € K N dQgand 0< vg < 1 such thatzAixg = Xz. Hence (1.2) holds foig = Avz! > 4, and the
theorem is proved.(d

Proof of Theorem 1.3.1t follows from 0 < fp < +oo that there exist & d; < dp, w1 > 0 such that
dix < f(X) < dox (0 < X < pg). (3.10)
Now, we prove thag; = u; is required. Thus, wher € K N dQ; we have
O<x@®) <Xl =r.

Noticing O< r < g;, we have

0<x(t) <Xl =T <8y = p.
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Let g = dlylj'—;L- Then we may assume that

X=Apx#0 (Yxe KnNo), (3.11)

if not, then there existg; € K N dQ; such tha‘rmsxr = X and therefore (1.4) already holds for
/lr = /18
We now show that

X=ApX# Y (YXe KNy, {>0), (3.12)

wherey is defined in the proof of Theorem 1.1.
In fact, if there exist; € K N dQy, ¢ > 0 such thatx, — Aﬂaxz = o, then (3.11) implies that
{2 > 0. Onthe other hand; = (oY + Ay X2 > {oy. So we can choosg” = supldlx; > {y}, then

(o S < +00, Xo = *Y. Therefore

=l < Xl =1 < . (3.13)
Consequently, for anye [0, w], (2.3) and (3.10) imply

Xo(t) = 4571 [ Gy, (t, 909 F (ol — T(S)ds+ Lawr(t)
> 2575 [ (9 Fxe(s— T(9))ds + L2 (d)
= 4575 [b(9) f(xe(s— 7(9))ds+ Zau (D)
> 257 1% [ B(9%e(s— 7(9)ds+ Lau(t)
> A5 Ydig%r [ D9 W (s~ T(9)ds + Lau(t)
= A7 th7 S [y b(9)ds + Ly (D)
= A5y 1S+ GuD)
="+ Ly(1),

which and (3.13) imply thata(t) > (&* + &) (t), t € [0, w], which is a contradiction to the definition
of 7*. Thus, (3.12) holds and, by Lemma 2.3, the fixed point index

i(Ar. KN Qr, K)=0. (3.14)
On the other hand, it is easy to see that
i0,KNQ,K)=1 (3.15)

It follows therefore from (3.14) and (3.15), and the homegtowariance property that there exist
X € KN oY, and O< v, < 1 such that/rA,lsxr = X, which implies that

_ %, -1 *
A= At > 2,
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From the proof above, for any0r < g, there exists a positive solutiop € K N d<Q, associated
with A = A, > 0. Thus,

x(t) = 4t ft " G (L 9B F(x (5 (s

with ||| = .

On the other hand,

% (1) < %Af_l fo "9 F(x (= 7(s)ds <

o' 1-¢!

« 1
A7 tdor fo b(s)ds = m/lr‘ldzry,

which implies that

A71dory,

1
<
Il < 7=

and hence,

Ar <

dhy = A
—O'I Zy 0

Hencea, €[4, /Tg]. The proof is complete.[
Proof of Theorem 1.4.The proof is similar to that of Theorem 1.3, we omit it heril
Proof of Theorem 1.5. In fact, for anyx € K N 9Q«, we have‘TLl(_l—;‘f')r** < X < r*, and hence it

follows from the definition om(r**) andm(r**) > gy~ > 0 that

f(X) = r™Brsx = Br=+X, ¥YXE KN OQpss.

L

Let 4™ = frwy7Z%r. Next by a similar manner as in Theorem 1.3 one can provelteém. So it is
omitted. [J

Proof of Theorem 1.6. We need only prove this theorem under conditibty)(since the proof is

similar when Hg) holds. Lett > 0. Consideringfp = 0, there exists; > 0 such that
f(X) <ex, YOS X<y,

whereg; > 0 satisfies

1
m/l_lgl')/ <1l

Thus, forx e K N dQ;,, we have

(AX(t) < =527t fow b(s) f(x(s - 7(9)))ds

—o

=4l [ b(s)ds

=

IA

1 —
A el Xly

IA

[IX],
and therefore,

IAX < [IXI, VX € K NaQy,. (3.16)
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Next, turning tof,, = oo, there exists satisfying O< ry < f such that

f(X) > e2x, VX>T

wheree; > 0 satisfies

2L
o -oY)
pi 1—82’)/ > 1
(1-o0t)?
Letr, = m Then, forx € K N 4Q;,, we have
o-(1-o') ot(1-o') s o
XO 2 1INl =~ gy = tel0.wl.
1-ot

Hence, forx e K N 9Q.,, it follows from (2.3) that

(AX(®) = 7 [ Gyt 9(9) F(X(s - 7(9))ds

t+w

> /l—lla'l‘
o [ b(9) f(X(s— 7(9))ds
> 1 e [ B(9X(s— 7(9)ds
S e e ‘T>||x||f0 b(s)ds

1-oT 1-ot

= /l_l

= 1) oy
> IXl,
and hence,
IALXI] = [IXl, VX e KNaQy,. (3.17)

Applying (i) of Lemma 2.4 to (3L6) and (317) yields that operatoA, has a fixed poink, €
Kn (ﬁrz\er). Thus it follows that for everyl > 0 Eq. (1.1) has a positive solutioxy(t).

It remains to provd|x,|| = +c0 asd — +oo. In fact, if not, there exist a numben > 0 and a
sequence, — +oo such that

Furthermore, the sequen(ix,, |l} contains a subsequence that converges to a nuni@er n < m).
For simplicity, suppose thalx,, ||} itself converges tq.

If n > 0, then|x,,|l >  for sufficiently largen (n > N), and therefore

Il Jo Gxy, (69)B(S) f (Xan (S—7(3)))ds
Xl
< 7 Jo B9 (xin (s-7(8)))ds
= Xanl
1_—{r| Iy b(s)dsM
Xn I

M

Xl

1

2
10" (n> N),

An =

IA

I/\
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where,M = ||nﬂax f(X), which contradictsl, — +oo.
X[|<m

If n = 0, then||x,,|| — O for suficiently largen (n > N), and therefore it follows fromHs) that

for anye > 0 there existss > 0 such that
f(X/ln) < 8X/1n’ VO < X/ln < r3’

and hence we obtain .
1y Gxy, 69D f (X (5-7(9))) s

A= T T
< Id Jo B (xin (s-7(8)))dls
=7 Xl
1 VElXanll
< 1-g!
= Xl
_ 1
=17

Sincee is arbitrary, we hava, — 0 (n — +o0) in contradiction withl, — +co. Therefore]|x,|| —
+00 asd — +oo and our proof is complete[]
Remark 3.2. Comparing with [12], the main features of this paper are Bevis. First, the technique
used in Theorem 1.1 (or Theorem 1.3) iffelient from that of Theorem 1.3 in [12]. Secondly, from
the proof of Theorem 1.3 in [12], it is not fiiicult to see that professor Wang did not consider the
existence of positiveo-periodic solution in the casg = 0 andf, = oo or fp = 0 andf, = 0. In
Theorem 1.6, | not only consider the existence of positiveéopé solution under the casky = 0
and f, = o or fg = oo and f,, = 0, but also examine its dependence on the parametén the
proof, it is easy to see that we allow th§{0) = 0, and it is a dficulty to overcome to prove that
An > 0 (N — +o0) asy = 0.
4 Conclusion and discussion

In this paper, values of are determined for which there exist positive periodic Sohs for a

class of functional dferential equations by using well-known fixed point indexaityein a cone. The

dependence of positive periodic solutirg(t) on the parametet is also studied, i.e.,
lim [[xy]l = +c0 or lim ||xy]| = 0.
A—+00 A—+00

Needless to say, many more applications of theory of eidgeevaroblems for fixed point index
theory in a cone can be done, and some of them will be givenhsesjuent papers. Furthermore,
many of the obtained results have direct generalizatiotisetgtudy of positive periodic solutions for
impulsive functional dierential equations.

On the other hand, it is worth mentioning that there are stilhy problems that remain open in
this vital field except for the results obtained in this pager example, whether or not we can obtain
some new results for functionalftérential equations witp-Laplace operator by employing the same
technique of this paper, and whether or not our conciserizritan guarantee the existence of positive

periodic solutions for higher-order nonlinear functiod#ferential equations. Moreferts are still
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needed in the future.
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