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Abstract: This paper is devoted to investigate the existence of positive periodic solution

for a functional differential equation in the form ofλLx = −b(t) f (x(t − τ(t))), where Lx = x
′

(t) −

a(t)g(x(t))x(t). By using well-known fixed point index theory in a cone, values of λ are determined

for which there exist positive periodic solutions for the above functional differential equation. The

dependence of positive periodic solutionxλ(t) on the parameterλ is also studied, i.e.,

lim
λ→+∞

‖xλ‖ = +∞ or lim
λ→+∞

‖xλ‖ = 0.
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1 Introduction

Functional differential equations with periodic delays appear in some ecological models. For

example, the model of the survival of red blood cells in an animal [1], and the model of dynamic

disease [2], and so on. One of the important questions is whether these equations can support positive

periodic solutions. In recent years, periodic population dynamics has become a very popular subject,

and several different periodic models have been studied by many authors; see[3-25,34] and references

therein.

In this article, we will study the existence of eigenvalues corresponding to positive periodic solu-

tions of the first order functional differential equation with a parameter of the form

λLx = −b(t) f (x(t − τ(t))), (1.1)
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whereλ > 0 is a positive parameter,Lx = x
′

(t)−a(t)g(x(t))x(t), a, b ∈ C(R, [0,+∞)) areω-periodic,

f , g ∈ C([0,+∞), [0,+∞)) andτ(t) is a continuousω-periodic function.

S.Chow [3], H.Freedman and J.Wu [4], K.Hadeler and J.Tomiuk[5], Y.Kuang [6,7], Y.Kuang and

H.Smith [8], J.Mallet-Paret and R.Nussbaum [9] and many others studied the existence of periodic

solutions of this type or its generalized forms. This type ofequation has been proposed as models for

a variety of physiological processes and conditions including production of blood cells, respiration,

and cardiac arrhythmias. See, for example, the above references, and [2,10,11].

Recently, H.Wang [12] investigated the existence of positive solutions ofEq.(1.1) by a well-

known result of the fixed point index under conditionf (x) > 0 for x > 0. The author showed the

relationship between the asymptotic behaviors of the quotient f (x)
x (at zero and infinity) and the open

intervals (eigenvalue intervals) of the parameterλ such that the problem has zero, one and two positive

solution(s). However, to the best of our knowledge, little work has been done for the dependence of

positive periodic solutions ofEq.(1.1) on the parameterλ without conditionf (x) > 0 for x > 0. Thus,

it is worthwhile to studyEq.(1.1) in this case.

On the other hand, some new results are obtained for the existence of positive periodic solution of

Eq.(1.1) by using the fixed point index theory in a cone. Our results include and extend many results

of X.Liu and W.Li [13], D.Jiang, J.Wei and B.Zhang [14], S.Cheng and G.Zhang [15] and D.Jiang

and J.Wei [16] in the case ofg ≡ 1.

At the same time, we notice that the dependence of positive solution xλ(t) on the parameterλ

has received much attention, see [13,26-29] and the references cited therein. In [13], X.Liu and W.Li

considered the existence and uniqueness of positive periodic solution for the periodic equation in the

form of

x
′

(t) = −a(t)x(t) + λ f (x(t − τ(t))).

They examined the uniqueness of the solutions and their dependence on the parameterλ under con-

dition

(H) f : [0,∞)→ (0,∞) is nondecreasing, and there existsν ∈ (0, 1) such that

f (kx) ≥ kν f (x), f or k ∈ (0, 1) and x ∈ [0,+∞).

Using a similar condition to that of (H) in [13], J.Graef, L.Kong, and H.Wang [26], L.Kong [27],

T.He and Y.Su [28] and W.Li and X.Liu [29] also studied the dependence of positive solutionxλ(t) on

the parameterλ. But, to the best of our knowledge, there is no result for the dependence of positive

periodic solutionxλ(t) on the parameterλ of Eq.(1.1) without a similar condition to that of (H). The

objective of the present paper is to fill this gap.

The main purpose of this paper is to establish some new sufficient conditions for the existence
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of positive periodic solution ofEq. (1.1) by using well-known fixed point index theory in a cone. In

particular, we examine the dependence of positive periodicsolutionxλ(t) on the parameterλ, i.e.,

lim
λ→+∞

‖xλ‖ = +∞ or lim
λ→+∞

‖xλ‖ = 0.

We remark that our methods are entirely different from those used in [12-16,26-29].

Letω > 0 andR = (−∞,+∞). We make the following hypotheses:

(H1) a, b ∈ C(R, [0,+∞)) areω-periodic functions satisfying
∫ ω

0 a(t)dt > 0,
∫ ω

0 b(t)dt > 0.

(H2) τ ∈ C(R,R) isω-periodic functions.

(H3) f : [0,+∞)→ [0,+∞) is continuous andf (0) = 0;

(H4) g : [0,+∞) → [0,+∞) is continuous and 0< l ≤ g(x) < L < +∞, wherel, L are positive

constants.

For ease of exposition, we set

f0 = lim
x→0+

f (x)
x
, f∞ = lim

x→+∞

f (x)
x
.

We will also need the function

m(r) = min
{ f (x)

r
: x ∈

[

σL(1− σl)
1− σL

r, r
]}

,

whereσ = e−
∫ ω

0
a(t)dt.

The main results of the present paper are as follows.

Theorem 1.1.Assume that (H1) − (H4) hold. If 0 < f∞ < +∞, then there existsβ0 > 0 such that, for

everyR > β0, Eq. (1.1) has a positive periodic solutionxR(t) satisfying‖xR‖ = R associated with

λ = λR ∈ [λ0, λ̄0], (1.2)

whereλ0 andλ̄0 are two positive finite numbers.

Remark 1.1. Some ideas of the proof of Theorem 1.1 are from Theorem 3.2.1 in [30] and Lemma

2.6 in [31].

Theorem 1.2. Assume that (H1) − (H4) hold. If f∞ = +∞, then there exists̄β0 > 0 such that, for

everyR̄ > β̄0, Eq. (1.1) has a positive periodic solutionxR̄(t) satisfying‖xR̄‖ = R̄ associated with

λ = λR̄ ≥ λ̄, (1.3)

whereλ̄ is a positive finite number.

Theorem 1.3.Assume that (H1) − (H4) hold. If 0 < f0 < +∞, then there existsβ∗0 > 0 such that, for

every 0< r < β∗0, Eq. (1.1) has a positive periodic solutionxr(t) satisfying‖xr‖ = r associated with

λ = λr ∈ [λ∗0, λ̄
∗
0], (1.4)
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whereλ∗0 andλ̄∗0 are two positive finite numbers.

Theorem 1.4.Assume that (H1) − (H4) hold. If f0 = +∞, then there existsβ1 > 0 such that, for any

0 < r∗ < β1, Eq. (1.1) has a positive periodic solutionxr∗(t) satisfying‖xr∗‖ = r∗ associated with

λ = λr∗ ≥ λ
∗, (1.5)

whereλ∗ is a positive finite number.

Theorem 1.5.Assume that (H1)−(H4) hold. If there existr∗∗ > 0 andβr∗∗ > 0 such thatm(r∗∗) ≥ βr∗∗ ,

thenEq. (1.1) has a positive periodic solutionxr∗∗(t) satisfying‖xr∗∗‖ = r∗∗ associated with

λ = λr∗∗ ≥ λ
∗∗, (1.6)

whereλ∗∗ is a positive finite number.

Finally we consider the dependence of positive periodic solution xλ(t) on the parameterλ.

Theorem 1.6.Assume that (H1) − (H4) hold. Then the following two conclusions hold.

(H5) If f0 = 0 and f∞ = ∞, then for everyλ > 0 Eq. (1.1) has a positive periodic solutionxλ(t)

satisfying lim
λ→∞
‖xλ‖ = ∞;

(H6) If f0 = ∞ and f∞ = 0, then for everyλ > 0 Eq. (1.1) has a positive periodic solutionxλ(t)

satisfying lim
λ→∞
‖xλ‖ = 0.

Remark 1.2. Some ideas of the proof of Theorem 1.6 are from [30,32].

Remark 1.3. It is easy to point out some elementary functions, which satisfy conditions (H3) and

(H5), or satisfy conditions (H3) and (H6); for example,

f (x) = k1x2,

or

f (x) = k2x
1
2 ,

wherek1 andk2 are two positive real numbers.

2 Preliminaries

In order to establish the positive periodic solutions ofEq. (1.1), we shall consider the following

space:

X =
{

x : x(t) ∈ C(R,R), x(t + ω) = x(t)
}

.

ThenX is a real Banach space endowed with the usual linear structure as well as the norm

‖x‖ = sup
t∈[0,ω]

|x(t)|, x ∈ X.

EJQTDE, 2012 No. 25, p. 4



Define a coneK ⊂ X by

K =
{

x ∈ X : x(t) ≥
σL(1− σl)

1− σL
‖x‖, t ∈ [0, ω]

}

.

Also, define, forr a positive number,Ωr by

Ωr =

{

x ∈ X : ‖x‖ < r
}

.

Note that∂Ωr =

{

x ∈ X : ‖x‖ = r
}

.

Definition 2.1. By a solution ofEq. (1.1) we mean that a functionx ∈ X satisfying (1.1). x is a

positive solution ofEq. (1.1) if, in addition,x(t) > 0 for t ∈ (0, ω).

Let the mapAλ : K → X be defined by

Aλx(t) =
1
λ

∫ t+ω

t
Gx(t, s)b(s) f (x(s − τ(s)))ds, (2.1)

where

Gx(t, s) =
e−
∫ s

t a(v)g(x(v))dv

1− e−
∫ ω

0
a(v)g(x(v))dv

, s ∈ [t, t + ω]. (2.2)

Further, it follows from (2.2) that

σL

1− σL
≤ Gx(t, s) ≤

1

1− σl
, s ∈ [t, t + ω]. (2.3)

Lemma 2.1. (See[12]) Assume that (H1) − (H4) hold. Eq. (1.1) is equivalent to the fixed point

problem ofAλ in K.

Lemma 2.2. (See[12]) Assume that (H1) − (H4) hold. Then,Aλ(K) ⊂ K and Aλ : K → K is

completely continuous.

The following well-known results of the fixed point index andfixed point are crucial in our argu-

ments.

Lemma 2.3. (See[30]) LetK be a cone in a real Banach spaceE, Ω be a bounded open set ofE.

Assume that operatorA : K ∩ Ω̄→ K is completely continuous. If there exists ax0 > 0 such that

x − Ax , tx0, ∀x ∈ K ∩ ∂Ω, t ≥ 0,

theni(A,K ∩Ω,K) = 0.

Remark 2.1. It follows from the Corollary of Lemma 4.2 in [33] thatx0 > 0 implies thatx0 ∈ K and

x0 , 0.

Lemma 2.4.(See[30]) LetP be a cone in a real Banach spaceE. AssumeΩ1, Ω2 are bounded open

sets inE with 0 ∈ Ω1, Ω̄1 ⊂ Ω2. If

A : P ∩ (Ω̄2\Ω1)→ P
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is completely continuous such that either

(i) ‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂Ω1 and‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂Ω2, or

(ii) ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂Ω1 and‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂Ω2,

thenA has at least one fixed point inP ∩ (Ω̄2\Ω1).

3 Proof of main results

In this section, we prove the main results, and let us begin byintroducing some notation:

K ∩ ∂Ωr =

{

x : x ∈ K, ‖x‖ = r
}

,

wherer > 0 and

γ =

∫ ω

0
b(t)dt.

It follows from (H1) thatγ > 0.

Proof of Theorem 1.1.It follows from 0< f∞ < +∞ that there exist 0< l1 < l2, µ > 0 such that

l1x < f (x) < l2x (x ≥ µ). (3.1)

Now, we prove thatβ0 = µ

(

σL(1−σl)
1−σL

)−1
is required. Thus, whenx ∈ K ∩ ∂ΩR we have

x(t) ≥
σL(1− σl)

1− σL
‖x‖ =

σL(1− σl)
1− σL

R, t ∈ [0, ω].

Noticing R > β0, we have

x(t) ≥
σL(1− σl)

1− σL
‖x‖ =

σL(1− σl)
1− σL

R >
σL(1− σl)

1− σL
β0 = µ, t ∈ [0, ω],

which also implies thatR > µ.

Let λ0 = l1γ σL

1−σL . Then we may assume that

x − Aλ0 x , 0 (∀x ∈ K ∩ ∂ΩR); (3.2)

if not, then there existsxR ∈ K ∩ ∂ΩR such thatAλ0 xR = xR and therefore (1.1) already holds for

λR = λ0.

Defineψ(t) ≡ 1, for t ∈ R. Thenψ ∈ K with ‖ψ‖ ≡ 1.

We now show that

x − Aλ0 x , ζψ (∀x ∈ K ∩ ∂ΩR, ζ ≥ 0). (3.3)

In fact, if there existx1 ∈ K ∩ ∂ΩR, ζ1 ≥ 0 such thatx1 − Aλ0 x1 = ζ1ψ, then (3.2) implies that

ζ1 > 0. On the other hand,x1 = ζ1ψ + Aλ0 x1 ≥ ζ1ψ. So we can chooseζ∗ = sup{ζ |x1 ≥ ζψ}, then

ζ1 ≤ ζ
∗ < +∞, x1 ≥ ζ

∗ψ. Therefore

ζ∗ = ζ∗‖ψ‖ ≤ ‖x1‖ = R. (3.4)
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Consequently, for anyt ∈ [0, ω], (2.3) and (3.1) imply

x1(t) = λ0
−1
∫ t+ω

t
Gx1(t, s)b(s) f (x1(s − τ(s)))ds + ζ1ψ(t)

≥ λ0
−1 σL

1−σL

∫ t+ω

t
b(s) f (x1(s − τ(s)))ds + ζ1ψ(t)

= λ0
−1 σL

1−σL

∫ ω

0 b(s) f (x1(s − τ(s)))ds + ζ1ψ(t)

≥ λ0
−1l1 σL

1−σL

∫ ω

0 b(s)x1(s − τ(s))ds + ζ1ψ(t)

≥ λ0
−1l1 σL

1−σL

∫ ω

0
b(s)ζ∗ψ(s − τ(s))ds + ζ1ψ(t)

= λ0
−1l1 σL

1−σL ζ
∗
∫ ω

0 b(s)ds + ζ1ψ(t)

= λ0
−1l1γ σL

1−σL ζ
∗
+ ζ1ψ(t)

= ζ∗ + ζ1ψ(t),

which and (3.4) imply thatx1(t) ≥ (ζ∗ + ζ1)ψ(t), t ∈ [0, ω], which is a contradiction to the definition

of ζ∗. Thus, (3.3) holds and, by Lemma 2.3, the fixed point index

i(Aλ0,K ∩ ΩR,K) = 0. (3.5)

On the other hand, it is easy to see that

i(θ,K ∩ΩR,K) = 1, (3.6)

whereθ is the zero operator.

It follows therefore from (3.5) and (3.6), and the homotopy invariance property that there exist

xR ∈ K ∩ ∂ΩR and 0< νR < 1 such thatνRAλ0 xR = xR, which implies that

λR = λ0ν
−1
R > λ0.

From the proof above, for anyR > β0, there exists a positive solutionxR ∈ K ∩ ∂ΩR associated

with λ = λR > 0. Thus,

xR(t) = λ−1
R

∫ t+ω

t
GxR(t, s)b(s) f (xR(s − τ(s)))ds,

with ‖xR‖ = R.

On the other hand,

xR(t) = λ−1
R

∫ ω

0
GxR(t, s)b(s) f (xR(s − τ(s)))ds ≤

1

1− σl
λ−1

R l2R
∫ ω

0
b(s)ds =

1

1− σl
λ−1

R l2Rγ,

which implies that

‖xR‖ = R ≤
1

1− σl
λ−1

R l2Rγ,

and hence,

λR ≤
1

1− σl
l2γ = λ̄0.
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In conclusion,λR ∈ [λ0, λ̄0]. The proof is complete.�

Remark 3.1. If we use the theory of Leray-Schauder degree, then we can replace (3.5) and (3.6) with

deg(I − Aλ0,K ∩ ΩR,K) = 0,

and

deg(I,K ∩ ΩR,K) = 1,

respectively, whereI is the identical operator.

Proof of Theorem 1.2.It follows from f∞ = +∞ that there existl∗ > 0, µ̄ > 0 such that

f (x) > l∗x (x ≥ µ̄). (3.7)

Now, we prove that̄β0 = µ̄

(

σL(1−σl)
1−σL

)−1
is required. Thus, whenx ∈ K ∩ ∂ΩR̄ we have

x(t) ≥
σL(1− σl)

1− σL
‖x‖ =

σL(1− σl)
1− σL

R̄, t ∈ [0, ω].

Noticing R̄ > β̄0, we have

x(t) ≥
σL(1− σl)

1− σL
‖x‖ =

σL(1− σl)
1− σL

R̄ >
σL(1− σl)

1− σL
β̄0 = µ̄, t ∈ [0, ω].

Let λ̄ = l∗γ σL

1−σL , we proceed in the same way as in the proof of Theorem 1.1: replacing (3.2) we

may assume that

x − Aλ̄x , 0 (∀x ∈ K ∩ ∂ΩR̄), (3.8)

and replacing (3.3) we can prove

x − Aλ̄x , ζψ (∀x ∈ K ∩ ∂ΩR̄, ζ ≥ 0). (3.9)

Hencei(Aλ̄,K ∩ ΩR̄,K) = 0. Observingi(θ,K ∩ ΩR̄,K) = 1, we can show easily that there exist

xR̄ ∈ K ∩ ∂ΩR̄ and 0< νR̄ < 1 such thatνR̄Aλ̄xR̄ = xR̄. Hence (1.2) holds forλR̄ = λ̄ν
−1
R̄
> λ̄, and the

theorem is proved.�

Proof of Theorem 1.3.It follows from 0< f0 < +∞ that there exist 0< d1 < d2, µ1 > 0 such that

d1x < f (x) < d2x (0 < x ≤ µ1). (3.10)

Now, we prove thatβ∗0 = µ1 is required. Thus, whenx ∈ K ∩ ∂Ωr we have

0 ≤ x(t) ≤ ‖x‖ = r.

Noticing 0< r < β∗0, we have

0 ≤ x(t) ≤ ‖x‖ = r < β∗0 = µ1.
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Let λ∗0 = d1γ
σL

1−σL . Then we may assume that

x − Aλ∗0 x , 0 (∀x ∈ K ∩ ∂Ωr); (3.11)

if not, then there existsxr ∈ K ∩ ∂Ωr such thatAλ∗0 xr = xr and therefore (1.4) already holds for

λr = λ
∗
0.

We now show that

x − Aλ∗0 x , ζψ (∀x ∈ K ∩ ∂Ωr, ζ ≥ 0), (3.12)

whereψ is defined in the proof of Theorem 1.1.

In fact, if there existx2 ∈ K ∩ ∂Ωr, ζ2 ≥ 0 such thatx2 − Aλ∗0 x2 = ζ2ψ, then (3.11) implies that

ζ2 > 0. On the other hand,x2 = ζ2ψ + Aλ∗0 x2 ≥ ζ2ψ. So we can chooseζ∗ = sup{ζ |x2 ≥ ζψ}, then

ζ2 ≤ ζ
∗ < +∞, x2 ≥ ζ

∗ψ. Therefore

ζ∗ = ζ∗‖ψ‖ ≤ ‖x2‖ = r < µ1. (3.13)

Consequently, for anyt ∈ [0, ω], (2.3) and (3.10) imply

x2(t) = λ∗0
−1
∫ t+ω

t
Gx2(t, s)b(s) f (x2(s − τ(s)))ds + ζ2ψ(t)

≥ λ∗0
−1 σL

1−σL

∫ t+ω

t
b(s) f (x2(s − τ(s)))ds + ζ2ψ(t)

= λ∗0
−1 σL

1−σL

∫ ω

0 b(s) f (x2(s − τ(s)))ds + ζ2ψ(t)

≥ λ∗0
−1d1

σL

1−σL

∫ ω

0
b(s)x2(s − τ(s))ds + ζ2ψ(t)

≥ λ∗0
−1d1

σL

1−σL

∫ ω

0 b(s)ζ∗ψ(s − τ(s))ds + ζ2ψ(t)

= λ∗0
−1d1

σL

1−σL ζ
∗
∫ ω

0 b(s)ds + ζ2ψ(t)

= λ∗0
−1d1γ

σL

1−σL ζ
∗
+ ζ2ψ(t)

= ζ∗ + ζ2ψ(t),

which and (3.13) imply thatx2(t) ≥ (ζ∗+ ζ2)ψ(t), t ∈ [0, ω], which is a contradiction to the definition

of ζ∗. Thus, (3.12) holds and, by Lemma 2.3, the fixed point index

i(Aλ∗0,K ∩ Ωr,K) = 0. (3.14)

On the other hand, it is easy to see that

i(θ,K ∩ Ωr,K) = 1. (3.15)

It follows therefore from (3.14) and (3.15), and the homotopy invariance property that there exist

xr ∈ K ∩ ∂Ωr and 0< νr < 1 such thatνrAλ∗0 xr = xr, which implies that

λr = λ
∗
0ν
−1
r > λ∗0.
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From the proof above, for any 0< r < β∗0, there exists a positive solutionxr ∈ K ∩ ∂Ωr associated

with λ = λr > 0. Thus,

xr(t) = λ
−1
r

∫ t+ω

t
Gxr (t, s)b(s) f (xr(s − τ(s)))ds,

with ‖xr‖ = r.

On the other hand,

xr(t) ≤
1

1− σl
λ−1

r

∫ ω

0
b(s) f (xr(s − τ(s)))ds ≤

1

1− σl
λ−1

r d2r
∫ ω

0
b(s)ds =

1

1− σl
λ−1

r d2rγ,

which implies that

‖xr‖ ≤
1

1− σl
λ−1

r d2rγ,

and hence,

λr ≤
1

1− σl
d2γ = λ̄

∗
0.

Henceλr ∈ [λ∗0, λ̄
∗
0]. The proof is complete.�

Proof of Theorem 1.4.The proof is similar to that of Theorem 1.3, we omit it here.�

Proof of Theorem 1.5. In fact, for anyx ∈ K ∩ ∂Ωr∗∗, we haveσ
L(1−σl)
1−σL r∗∗ ≤ x ≤ r∗∗, and hence it

follows from the definition ofm(r∗∗) andm(r∗∗) ≥ βr∗∗ > 0 that

f (x) ≥ r∗∗βr∗∗ ≥ βr∗∗ x, ∀x ∈ K ∩ ∂Ωr∗∗ .

Let λ∗∗ = βr∗∗γ
σL

1−σL . Next by a similar manner as in Theorem 1.3 one can prove this theorem. So it is

omitted. �

Proof of Theorem 1.6. We need only prove this theorem under condition (H5) since the proof is

similar when (H6) holds. Letλ > 0. Consideringf0 = 0, there existsr1 > 0 such that

f (x) ≤ ε1x, ∀0 ≤ x ≤ r1,

whereε1 > 0 satisfies
1

1− σl
λ−1ε1γ ≤ 1.

Thus, forx ∈ K ∩ ∂Ωr1, we have

(Aλx)(t) ≤ 1
1−σlλ

−1
∫ ω

0 b(s) f (x(s − τ(s)))ds

≤ 1
1−σl λ

−1ε1‖x‖
∫ ω

0 b(s)ds

=
1

1−σl λ
−1ε1‖x‖γ

≤ ‖x‖,

and therefore,

‖Aλx‖ ≤ ‖x‖, ∀x ∈ K ∩ ∂Ωr1. (3.16)
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Next, turning tof∞ = ∞, there exists ˆr satisfying 0< r1 < r̂ such that

f (x) ≥ ε2x, ∀x ≥ r̂,

whereε2 > 0 satisfies

λ−1σ
2L(1− σl)

(1− σL)2
ε2γ ≥ 1.

Let r2 =
r̂

σL(1−σl)
1−σL

. Then, forx ∈ K ∩ ∂Ωr2, we have

x(t) ≥
σL(1− σl)

1− σL
‖x‖ =

σL(1− σl)
1− σL

·
r̂

σL(1−σl)
1−σL

= r̂, t ∈ [0, ω].

Hence, forx ∈ K ∩ ∂Ωr2, it follows from (2.3) that

(Aλx)(t) = λ−1
∫ t+ω

t
Gx(t, s)b(s) f (x(s − τ(s)))ds

≥ λ−1 σL

1−σL

∫ t+ω

t
b(s) f (x(s − τ(s)))ds

= λ−1 σL

1−σL

∫ ω

0 b(s) f (x(s − τ(s)))ds

≥ λ−1 σL

1−σL ε2

∫ ω

0 b(s)x(s − τ(s))ds

≥ λ−1 σL

1−σL ε2
σL(1−σl)

1−σL ‖x‖
∫ ω

0
b(s)ds

= λ−1σ2L(1−σl)
(1−σL)2 ε2‖x‖γ

≥ ‖x‖,

and hence,

‖Aλx‖ ≥ ‖x‖, ∀x ∈ K ∩ ∂Ωr2. (3.17)

Applying (i) of Lemma 2.4 to (3.16) and (3.17) yields that operatorAλ has a fixed pointxλ ∈

K ∩ (Ω̄r2\Ωr1). Thus it follows that for everyλ > 0 Eq. (1.1) has a positive solutionxλ(t).

It remains to prove‖xλ‖ = +∞ asλ → +∞. In fact, if not, there exist a numberm > 0 and a

sequenceλn → +∞ such that

‖xλn‖ ≤ m (n = 1, 2, 3, · · · ).

Furthermore, the sequence{‖xλn‖} contains a subsequence that converges to a numberη(0 ≤ η ≤ m).

For simplicity, suppose that{‖xλn‖} itself converges toη.

If η > 0, then‖xλn‖ >
η

2 for sufficiently largen (n > N), and therefore

λn =
‖
∫ ω

0 Gxλn
(t,s)b(s) f (xλn (s−τ(s)))ds‖

‖xλn ‖

≤
1

1−σl

∫ ω

0 b(s) f (xλn (s−τ(s)))ds

‖xλn ‖

≤
1

1−σl

∫ ω

0 b(s)dsM

‖xλn ‖

=

1
1−σl γM

‖xλn ‖

≤
2 1

1−σl γM

η
(n > N),
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where,M = max
‖x‖≤m

f (x), which contradictsλn → +∞.

If η = 0, then‖xλn‖ → 0 for sufficiently largen (n > N), and therefore it follows from (H5) that

for anyε > 0 there existsr3 > 0 such that

f (xλn) ≤ εxλn , ∀0 ≤ xλn ≤ r3,

and hence we obtain

λn =
‖
∫ ω

0
Gxλn

(t,s)b(s) f (xλn (s−τ(s)))ds‖

‖xλn ‖

≤
1

1−σl

∫ ω

0 b(s) f (xλn (s−τ(s)))ds

‖xλn ‖

≤
1

1−σl γε‖xλn ‖

‖xλn ‖

=
1

1−σl γε.

Sinceε is arbitrary, we haveλn → 0 (n → +∞) in contradiction withλn → +∞. Therefore,‖xλ‖ →

+∞ asλ→ +∞ and our proof is complete.�

Remark 3.2. Comparing with [12], the main features of this paper are as follows. First, the technique

used in Theorem 1.1 (or Theorem 1.3) is different from that of Theorem 1.3 in [12]. Secondly, from

the proof of Theorem 1.3 in [12], it is not difficult to see that professor Wang did not consider the

existence of positiveω-periodic solution in the casef0 = 0 and f∞ = ∞ or f0 = ∞ and f∞ = 0. In

Theorem 1.6, I not only consider the existence of positive periodic solution under the casef0 = 0

and f∞ = ∞ or f0 = ∞ and f∞ = 0, but also examine its dependence on the parameterλ. In the

proof, it is easy to see that we allow thatf (0) = 0, and it is a difficulty to overcome to prove that

λn → 0 (n→ +∞) asη = 0.

4 Conclusion and discussion

In this paper, values ofλ are determined for which there exist positive periodic solutions for a

class of functional differential equations by using well-known fixed point index theory in a cone. The

dependence of positive periodic solutionxλ(t) on the parameterλ is also studied, i.e.,

lim
λ→+∞

‖xλ‖ = +∞ or lim
λ→+∞

‖xλ‖ = 0.

Needless to say, many more applications of theory of eigenvalue problems for fixed point index

theory in a cone can be done, and some of them will be given in subsequent papers. Furthermore,

many of the obtained results have direct generalizations tothe study of positive periodic solutions for

impulsive functional differential equations.

On the other hand, it is worth mentioning that there are stillmany problems that remain open in

this vital field except for the results obtained in this paper: for example, whether or not we can obtain

some new results for functional differential equations withp-Laplace operator by employing the same

technique of this paper, and whether or not our concise criteria can guarantee the existence of positive

periodic solutions for higher-order nonlinear functionaldifferential equations. More efforts are still
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needed in the future.
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