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Abstract

In this paper, we investigate the existence of periodic solution for a class of nonlin-

ear functional integral equation. We prove a fixed point theorem in a Banach algebra.

As an application, an existence theorem about periodic solutions to the addressed

functional integral equation is presented. In addition, an example is given to illustrate

our result.
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1 Introduction

This paper has four main motivations. The first motivation is that recently, the study on

the existence of solutions to various kinds of functional integral equations has became one

of the most attractive topics in the theory of integral equations. Many authors have made

a lot of interesting contributions on this topic. For example, we refer the readers to [1–7, 9–

15, 17, 18, 20] and references therein. The second motivation is that in recent years, some

authors have focused on the resolution of the operator equation x = AxBx+Cx in Banach

algebras, and obtained many valuable results (see, e.g., [2–5, 7, 9–13, 18] and references

∗The work was supported by the NSF grant of China (11101192), the Key Project of Chinese Ministry

of Education (211090), the NSF grant of Jiangxi Province, and the Foundation of Jiangxi Provincial
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therein). Moreover, in these papers, the authors applied successfully their abstract results

to the study on the existence of solutions to functional integral equations. The third

motivation is that the authors of [19] studied the existence of periodic solutions for the

following Fredholm integral equation:

y(t) = h(t) +

∫

R

k(t, s)f(s, y(s))ds, t ∈ R,

by using nonlinear alternative of Leray-Schauder type. The fourth motivation is that

in [16], the authors investigated the existence of almost periodic type solutions to the

following functional integral equation:

y(t) = e(t, y(α(t))) + g(t, y(β(t)))

[
h(t) +

∫

R

k(t, s)f(s, y(γ(s)))ds

]
, t ∈ R.

Motivated by all the above works, in this paper, we first establish a fixed point theorem

in a Banach algebra, and then, with its help, we discuss the existence of periodic solution

for the following general functional integral equation:

x(t) =
n∑

i=1

fi(t, x(ai(t))) ·
∫

R

ki(t, s)gi(s, x(bi(s)))ds, t ∈ R, (1.1)

where n is a fixed positive integer, and fi, ai, ki, gi and bi (i = 1, . . . , n) satisfy some

conditions recalled in Section 2.

Throughout the rest of this paper, we denote by R the set of real numbers, R
+ the set

of nonnegative real numbers, by N the set of positive integers, by C(R+,R+) the set of all

continuous and nondecreasing functions φ : R
+ → R

+ with φ(0) = 0, and by PT (R) the

Banach algebra of all T -periodic continuous functions from R to R with the usual norm

‖x‖ = sup
t∈R

|x(t)| = max
t∈[0,T ]

|x(t)|, x ∈ PT (R)

and the multiplication defined by

(x · y)(t) = x(t) · y(t), x, y ∈ PT (R), t ∈ R.

Definition 1.1. Let X be a Banach space. A mapping A : X → X is called D-Lipschitzian

if there exists a function φ ∈ C(R+,R+) such that

‖Ax−Ay‖ ≤ φ(‖x− y‖)

for all x, y ∈ X. In addition, the function φ is called a D-function of A.
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2 Main results

Theorem 2.1. Let n be a positive integer, and C be a nonempty, closed, convex and

bounded subset of a Banach algebra X. Assume that the operators Ai : X → X and

Bi : C → X, i = 1, 2, . . . , n, satisfy

(a) for each i ∈ {1, 2, . . . , n}, Ai is D-Lipschitzian with a D-function φi;

(b) for each i ∈ {1, 2, . . . , n}, Bi is continuous and Bi(C) is precompact;

(c) for each y ∈ C, x =
n∑

i=1
Aix ·Biy implies that x ∈ C;

Then, the operator equation x =
n∑

i=1
Aix · Bix has a solution provided that

n∑

i=1

Miφi(r) < r, ∀r > 0,

where Mi = sup
x∈C

‖Bix‖, i = 1, 2, . . . , n.

Proof. For each y ∈ C, define an operator on X by

Syx =

n∑

i=1

Aix · Biy, x ∈ X.

Denote

ψ(r) :=

n∑

i=1

Miφi(r), r > 0.

Then ψ is continuous and nondecreasing. Moreover, ψ(r) < r for all r > 0. For all

x1, x2 ∈ X, we have

‖Syx1 − Syx2‖

=

∥∥∥∥∥

n∑

i=1

Aix1 ·Biy −
n∑

i=1

Aix2 ·Biy

∥∥∥∥∥

≤
n∑

i=1

‖Aix1 −Aix2‖ · ‖Biy‖

≤
n∑

i=1

Miφi(‖x1 − x2‖)

= ψ(‖x1 − x2‖).

Then, by using the well-known results in [8], we know that Sy has a unique fixed point xy

in X.
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Now, define an operator S on C by

Sy = xy, y ∈ C,

where xy is the unique fixed point of Sy in X. Then,

Sy = xy = Syxy =

n∑

i=1

Aixy · Biy, y ∈ C.

By the assumption (c), we know that Sy = xy ∈ C for all y ∈ C. In addition, for all

y, z ∈ C, we have

‖Sy − Sz‖

=

∥∥∥∥∥

n∑

i=1

Aixy · Biy −
n∑

i=1

Aixz ·Biz

∥∥∥∥∥

≤
n∑

i=1

‖Aixy · Biy −Aixz · Biy +Aixz ·Biy −Aixz ·Biz‖

≤
n∑

i=1

Miφi(‖xy − xz‖) +

n∑

i=1

‖Aixz‖ · ‖Biy −Biz‖

= ψ(‖Sy − Sz‖) +

n∑

i=1

‖Aixz‖ · ‖Biy −Biz‖

≤ ψ(‖Sy − Sz‖) + M·
n∑

i=1

‖Biy −Biz‖, (2.1)

where

‖Aixz‖ ≤ ‖Aie‖ + ‖Aixz −Aie‖

≤ ‖Aie‖ + φi(‖xz − e‖)

≤ max
1≤i≤n

‖Aie‖ + φi

(
‖e‖ + sup

y∈C
‖y‖
)

≤ max
1≤i≤n

‖Aie‖ + max
1≤i≤n

[
φi

(
‖e‖ + sup

y∈C
‖y‖
)]

:= M

for a fixed element e ∈ C.

Next, let us show that S(C) is precompact and S : C → C is continuous. Let {ym} be

a sequence in C. Noting that every Bi(C) is precompact, there exists a subsequence {yk}
of {ym} such that every {Biyk} is convergent for each i = 1, 2 . . . , n. For all k1, k2 ∈ N,

by (2.1), we have

‖Syk1
− Syk2

‖ ≤ ψ(‖Syk1
− Syk2

‖) + M·
n∑

i=1

‖Biyk1
−Biyk2

‖. (2.2)
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Since ψ is continuous and nondecreasing, we have

lim sup
k1,k2→∞

ψ(‖Syk1
− Syk2

‖)

:= inf
k∈N

sup
k1,k2≥k

ψ(‖Syk1
− Syk2

‖)

= ψ

(
inf
k∈N

sup
k1,k2≥k

‖Syk1
− Syk2

‖
)

:= ψ

(
lim sup
k1,k2→∞

‖Syk1
− Syk2

‖
)
,

which together with (2.2) yield that

lim sup
k1,k2→∞

‖Syk1
− Syk2

‖ ≤ ψ

(
lim sup
k1,k2→∞

‖Syk1
− Syk2

‖
)

since every {Biyk} is convergent. Noting that ψ(r) < r for all r > 0, we conclude that

lim sup
k1,k2→∞

‖Syk1
− Syk2

‖ = 0,

which means that {Syk} is a Cauchy sequence, and thus {Syk} is convergent. So S(C) is

precompact. In addition, letting yk → y in C, it follows from (2.1) that

‖Syk − Sy‖ ≤ ψ(‖Syk − Sy‖) + M·
n∑

i=1

‖Biyk −Biy‖.

Noting that Biyk → Biy, i = 1, 2, . . . , n, we conclude

lim sup
k→∞

‖Syk − Sy‖ ≤ ψ

(
lim sup

k→∞
‖Syk − Sy‖

)
,

which yields that

lim
k→∞

‖Syk − Sy‖ = 0,

i.e., Syk → Sy. Thus, S : C → C is continuous.

Now, by using Schauder’s fixed point theorem, we know that S has a fixed point

y0 ∈ C. Then, we have

y0 = Sy0 = xy0
=

n∑

i=1

Aixy0
· Biy0 =

n∑

i=1

Aiy0 · Biy0,

i.e., y0 is a solution of the operator equation x =
n∑

i=1
Aix · Bix.
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Remark 2.2. In the case of n = 1, Theorem 2.1 is due to [12, Theorem 2.1]. However,

due to some misprints, [12, Theorem 2.1] is essentially proved in the case of n = 1 and

φ1(r) = αr for some constant α > 0.

Next, we consider the existence of periodic solution for Eq. (1.1).

Theorem 2.3. Let p ≥ 1 and 1
p + 1

q = 1. Assume that the following assumptions hold:

(H1) For each i ∈ {1, 2, . . . , n}, ai, bi : R → R are continuous functions such that

x(ai(·)) ∈ PT (R) for all x ∈ PT (R).

(H2) For each i ∈ {1, 2, . . . , n}, fi(·, x) ∈ PT (R) for any fixed x ∈ R and there exists a

function φi ∈ C(R+,R+) such that

|fi(t, x) − fi(t, y)| ≤ φi(|x− y|), ∀t ∈ R, ∀x, y ∈ R.

(H3) For each i ∈ {1, 2, . . . , n}, gi(·, x) is measurable for all x ∈ R, gi(t, ·) is continuous

for almost all t ∈ R, and for each r > 0, there exists a function µr
i ∈ Lp(R) such

that |gi(t, x)| ≤ µr
i (t) for all |x| ≤ r and almost all t ∈ R.

(H4) For each i ∈ {1, 2, . . . , n}, ki : R × R → R satisfies that the map t → k̃i(t) is a

continuous T -periodic function from R to Lq(R), where [k̃i(t)](s) = ki(t, s), ∀t, s ∈ R.

(H5) There exists a constant M > 0 such that

n∑

i=1

Ki‖µM
i ‖p · φi(r) < r, ∀r > 0,

where Ki = max
t∈[0,T ]

‖k̃i(t)‖q; and

n∑

i=1

[
sup

t∈R,|x|≤λ
|fi(t, x)| ·Ki · ‖µM

i ‖p

]
< λ, ∀λ > M.

Then Eq. (1.1) has a continuous T -periodic solution.

Proof. Let

(Aix)(t) = fi(t, x(ai(t))), x ∈ PT (R), t ∈ R,

and

(Bix)(t) =

∫

R

ki(t, s)gi(s, x(bi(s)))ds, x ∈ PT (R), t ∈ R.
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For each x ∈ PT (R), it follows from (H1) and the periodicity of fi and ki that Aix and

Bix are both T -periodic; in addition, it is not difficult to verify that Aix and Bix are both

continuous. Thus, both Ai and Bi map PT (R) into PT (R).

We will use Theorem 2.1 to prove that Eq. (1.1) has a T -periodic solution. Next, let

us verify all the assumptions of Theorem 2.1. Denote

C = {x ∈ PT (R) : ‖x‖ ≤M}.

First, by (H2), for all x, y ∈ PT (R), we have

‖Aix−Aiy‖ = max
t∈R

|fi(t, x(ai(t))) − fi(t, y(ai(t)))|

≤ max
t∈R

φi

(
|x(ai(t)) − y(ai(t))|

)

≤ φi(‖x− y‖),

which means that Ai is D-Lipschitzian with a D-function φi, i.e., the assumption (a) of

Theorem 2.1 holds.

Next, let us show that for each i ∈ {1, 2, . . . , n}, Bi is continuous. Let xk → x in

PT (R). We have

|(Bixk)(t) − (Bix)(t)| ≤
∫

R

|ki(t, s)| · |gi(s, xk(bi(s))) − gi(s, x(bi(s)))|ds

≤
(∫

R

|ki(t, s)|qds
)1/q

·
(∫

R

|gi(s, xk(bi(s))) − gi(s, x(bi(s)))|pds
)1/p

≤ sup
t∈R

‖k̃i(t)‖q ·
(∫

R

|gi(s, xk(bi(s))) − gi(s, x(bi(s)))|pds
)1/p

≤ Ki ·
(∫

R

|gi(s, xk(bi(s))) − gi(s, x(bi(s)))|pds
)1/p

. (2.3)

On the other hand, Let r′ = sup
k

‖xk‖ + 1. Then r′ < +∞. By (H3), for almost all t ∈ R,

we have

|gi(t, xk(bi(t))) − gi(t, x(bi(t)))| ≤ 2µr′

i (t)

and

lim
k→∞

gi(t, xk(bi(t))) = gi(t, x(bi(t))).

Thus, by using the Lebesgue’s dominated convergence theorem, we get

lim
k→∞

∫

R

|gi(s, xk(bi(s))) − gi(s, x(bi(s)))|pds = 0,

which and (2.3) yield that Bixk → Bix in PT (R).
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Now, let us prove that every Bi(C) is precompact. Since for all t ∈ R and x ∈ C,

|(Bix)(t)| ≤
∫

R

|ki(t, s)| · |gi(s, x(bi(s)))|ds

≤
∫

R

|ki(t, s)| · |µM
i (s)|ds

≤
(∫

R

|ki(t, s)|qds
)1/q

·
(∫

R

|µM
i (s)|pds

)1/p

≤ Ki · ‖µM
i ‖p < +∞,

Bi(C) is uniformly bounded. In addition, for all t1, t2 ∈ R and x ∈ C, we have

|(Bix)(t1) − (Bix)(t2)| ≤
∫

R

|ki(t1, s) − ki(t2, s)| · |gi(s, x(bi(s)))|ds

≤
(∫

R

|ki(t1, s) − ki(t2, s)|qds
)1/q

·
(∫

R

|µM
i (s)|pds

)1/p

= ‖k̃i(t1) − k̃i(t2)‖q · ‖µM
i ‖p. (2.4)

Since t→ k̃i(t) is a continuous T -periodic function from R to Lq(R), t→ k̃i(t) is uniformly

continuous on R. Combining this with (2.4), we know that Bi(C) is equicontinuous.

Then, by using the well-known Arzéla-Ascoli Theorem, Bi(C) is precompact. Thus, the

assumption (b) of Theorem 2.1 holds.

Next, we show that the assumption (c) of Theorem 2.1 holds. Let y ∈ C and x =
n∑

i=1
Aix ·Biy. Denote ‖x‖ = λ. We claim that λ ≤M . In fact, if λ > M , by (H5), we have

λ = ‖x‖ =

∥∥∥∥∥

n∑

i=1

Aix ·Biy

∥∥∥∥∥

≤ sup
t∈R

n∑

i=1

|fi(t, x(ai(t)))| ·
∣∣∣∣
∫

R

ki(t, s)gi(s, y(bi(s)))

∣∣∣∣ ds

≤
n∑

i=1

[
sup

t∈R,|x|≤λ
|fi(t, x)| ·Ki · ‖µM

i ‖p

]

< λ,

which is a contradiction. So λ ≤M , and thus x ∈ C.

At last, it follows from

n∑

i=1

Ki‖µM
i ‖p · φi(r) < r, ∀r > 0

and

sup
x∈C

‖Bix‖ ≤ Ki‖µM
i ‖p
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that
n∑

i=1

[
sup
x∈C

‖Bix‖ · φi(r)

]
< r, ∀r > 0.

Now, by Theorem 2.1, there exists x0 ∈ C such that

x0 =
n∑

i=1

Aix0 ·Bix0,

which means that x0(t) is a continuous T -periodic solution of Eq. (1.1).

To complete this paper, we give an example to illustrate how Theorem 2.3 can be used.

Example 2.4. Let n = 2, p = 1, q = ∞,

a1(t) = t− 1, b1(t) = t2, a2(t) = 2t, b2(t) = |t|,

f1(t, x) =
x

10
sin t, g1(t, x) =

sin(xet
2

)

2(1 + t2)
, k1(t, s) =

cos t

1 + s2
,

and

f2(t, x) =
cos t sinx

20
, g2(t, x) =

arctan(tx)

1 + t2
, k2(t, s) = e−s2

sin t.

It is easy to see that (H1) and (H2) hold with T = 2π, φ1(r) = r
10 and φ2(r) = r

20 . In

addition, we have

|g1(t, x)| ≤
1

2(1 + t2)
, |g2(t, x)| ≤

π

2
· 1

1 + t2
.

Thus (H3) holds with µr
1(t) ≡ 1

2(1+t2)
and µr

2(t) ≡ π
2 · 1

1+t2
. By a direct calculation, we can

get (H4) holds and

K1 = π, K2 =
√
π.

Letting M = 1, we have

2∑

i=1

Ki‖µM
i ‖1 · φi(r) ≤

π2r

20
+
π2√π · r

40
< r, ∀r > 0,

and
2∑

i=1

[
sup

t∈R,|x|≤λ
|fi(t, x)| ·Ki · ‖µM

i ‖1

]
≤ π2λ

20
+
π2√π

40
< λ, ∀λ > 1.

Thus, (H5) holds.

By using Theorem 2.3, we know that the following functional integral equation

x(t) =
sin t cos t · x(t− 1)

20
·
∫

R

sin[x(s2)es
2

]

(1 + s2)2
ds+

sin t cos t sin[x(2t)]

20
·
∫

R

arctan[sx(|s|)]
1 + s2

e−s2

ds

has a continuous 2π-periodic solution.
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[1] R. P. Agarwal, J. Banaś, B. C. Dhage, S. D. Sarkate, Attractivity results for a non-

linear functional integral equation, Georgian Math. J. 18 (2011), 1–19.
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[5] J. Banaś, L. Olszowy, On a class of measures of non-compactness in Banach algebras

and their application to nonlinear integral equations, Z. Anal. Anwend. 28 (2009),

475–498.
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