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ON THE OSCILLATORY BEHAVIOR OF EVEN ORDER NEUTRAL

DELAY DYNAMIC EQUATIONS ON TIME-SCALES

SAID R. GRACE, JOHN R. GRAEF†, SAROJ PANIGRAHI∗, AND ERCAN TUNC∗

Abstract. We establish some new criteria for the oscillation of the even order neutral
dynamic equation

(

a(t)
(

(x(t) − p(t)x(τ(t)))
∆n−1

)α)∆

+ q(t) (xσ(g(t)))
λ

= 0

on a time scale T, where n ≥ 2 is even, α and λ are ratios of odd positive integers, a, p and
q are real valued positive rd-continuous functions defined on T, and g and τ are real valued
rd-continuous functions on T. Examples illustrating the results are included.

1. Introduction

This paper is concerned with the oscillatory behavior of all solutions of the even order
neutral delay dynamic equation

(

a(t)
(

(x(t) − p(t)x(τ(t)))∆n−1
)α)∆

+ q(t) (xσ(g(t)))λ = 0 (1.1)

on an arbitrary time scale T ⊆ R with sup T = ∞ and n ≥ 2 an even integer. Whenever we
write t ≥ t1 we mean t ∈ [t1,∞)∩T = [t1,∞)T. We will use the basic concepts and notation
for the time scale calculus; we refer the reader to the monograph of Bohner and Peterson [3]
for additional details.

We shall assume that:

(i) α and λ are ratio of positive odd integers;
(ii) a, p, and q : T → R+ = (0,∞) are real-valued rd-continuous functions, a∆(t) ≥ 0 for

t ≥ t0, and
∞
∫

a−1/α(s)∆s = ∞; (1.2)

(iii) g, τ : T → T are rd-continuous functions such that g(t) ≤ t, τ(t) ≤ t, g∆ ≥ 0,
τ∆ > 0, lim

t→∞

g(t) = ∞, and lim
t→∞

τ(t) = ∞;

(iv) ξ(t) := (τ−1 ◦ g)(t) ≤ t, ξ∆(t) ≥ 0, lim
t→∞

ξ(t) = ∞.

We recall that a solution x of equation (1.1) is said to be nonoscillatory if there exists a
t0 ∈ T such that x(t)x(σ(t)) > 0 for all t ∈ [t0,∞)T; otherwise, it is said to be oscillatory.
Equation (1.1) is said to be oscillatory if all its solutions are oscillatory.

The study of dynamic equations on time-scales goes back to its founder Hilger [16] and
has received a lot of attention in the last ten years. Recently, there has been an increasing
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interest in studying the oscillatory behavior of first and second order dynamic equations on
time-scales; for example see [1, 9, 11] and the references contained therein.

As to the oscillation of neutral delay dynamic equations on time-scales, Mathsen et al.
[19] considered the first order equation

(x(t) − p(t)x(τ(t)))∆ + q(t)x(g(t)) = 0, t ∈ T, (1.3)

and established oscillation criteria that included some results for first order neutral delay
ordinary differential equations as special cases. Han et al. [15] established some results
on the oscillatory and asymptotic behavior of solutions of equation (1.1) with n = 3 and
0 < p(t) < 1. There are few results on the oscillation of solutions of higher order nonlinear
neutral delay differential equations on time-scales (see [2, 4, 5, 6, 7, 8, 17, 18]). The purpose
of this paper is to establish some new criteria for the oscillation of equation (1.1). In so
doing, we present conditions under which all bounded solutions of the equation

(

a(t)
(

x∆n−1

(t)
)α)∆

+ q(t)xλ(g(t)) = 0 (1.4)

with n even are oscillatory.
This paper is organized as follows. In Section 2, we study the oscillatory properties of

equation (1.1) with p(t) = 0, while Section 3 is devoted to the study of the oscillatory
behavior of equation (1.1) with −1 < p(t) < 0. In Section 4, we establish oscillation results
for (1.1) in case 0 < p(t) < 1. Applications to the time scales T = R and T = Z are given to
illustrate our results.

2. Oscillation of Equation (1.1) with p(t) = 0

In this section, we consider the equation
(

a(t)
(

x∆n−1

(t)
)α)∆

+ q(t) (xσ(g(t)))λ = 0, n is even. (2.1)

Since a∆(t) ≥ 0 for t ≥ t0, if x is a positive solution of equation (2.1) with x∆n−1
(t) > 0 for

t ≥ t0, we have

0 ≥
(

a(t)
(

x∆n−1

(t)
)α)∆

= a∆(t)
(

x∆n−1

(t)
)α

+ aσ(t)
((

x∆n−1

(t)
)α)∆

.

This implies
((

x∆n−1

(t)
)α)∆

≤ 0 for t ∈ [t0,∞)T.

Set z = x∆n−1
on [t0,∞)T. From [3, Theorem 1.90], we see that

0 ≥
((

x∆n−1

(t)
)α)∆

= (zα)∆ = αz∆

1
∫

0

[z + hµz∆]α−1dh ≥ αz∆

1
∫

0

zα−1dh = αzα−1z∆,

which implies

z∆ = x∆n

≤ 0 on [t0,∞)T.

We will make use of the following Kiguradze’s type lemma.
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Lemma 2.1. Let x(t) ∈ Cn
rd ([t0,∞), R+). If x∆n

(t) is of one sign on [t0,∞)T and not
identically zero on [t1,∞)T for any t1 ≥ t0, then there exist tx ≥ t0 and an integer m,
0 ≤ m ≤ n, with n + m even if x∆n

≥ 0 or m + n odd if x∆n

≤ 0 such that

m > 0 implies x∆k

> 0 for t ≥ tx and k ∈ {1, 2, ..., m− 1} (2.2)

and

m ≤ n − 1 implies (−1)m+kx∆k

> 0 for t ≥ tx and k ∈ {m, m + 1, ..., n − 1} .

(2.3)

Lemma 2.2. ([9]) Suppose |x|λ > 0 on [t0,∞)T, λ > 0, and λ 6= 1. Then

|x|∆

(|x|σ)
λ
≤

(

|x|1−λ
)∆

1 − λ
≤

|x|∆
(

|x|λ
) on [t0,∞)T. (2.4)

It will be convenient to employ the Taylor monomials (see [3, Sec. 1.6]) {hn(t, s)}∞n=0

which are defined recursively by

h0(t, s) = 1, hn+1(t, s) =

t
∫

s

hn(τ, s)∆τ, t, s ∈ T and n ≥ 1.

Now h1(t, s) = t − s for any time scale, but there are no general formulas for n ≥ 2.
We now present our main results in this section.

Theorem 2.1. Let t0 ∈ T. Suppose conditions (i)-(iii) and (1.2) hold. Equation (2.1) is
oscillatory if for every integer m ∈ {1, 3, ..., n − 1} and t ≥ t0:

∞
∫

t0

g∆(s)(hm−1(g(s), t0)hn−m−1(s, g(s))





1

a(s)

∞
∫

s

q(u)∆u





1/α

∆s = ∞ if λ > α; (2.5)

lim sup
t→∞

(hm(g(t), t0)hn−m−1(t, g(t)))





1

a(t)

∞
∫

t

q(s)∆s





1/α

> 1 if λ = α; , (2.6)

∞
∫

t0

a−λ/α(s)(hm(g(s), t0)hn−m−1(s, g(s)))λq(s)∆s = ∞ if λ < α. (2.7)

Proof. Let x(t) be a nonoscillatory solution of equation (2.1), say x(t) > 0 for t ≥ t0 ∈ T.
Since lim

t→∞

g(t) = ∞, we can choose t1 ≥ t0 such that g(t) ≥ t0 for all t ≥ t1. Notice that

(1.2) implies x∆n−1
(t) ≥ 0 for t ≥ t1. Hence,

(

a(t)
(

x∆n−1
(t)
)α)∆

≤ 0 and so x∆n

(t) ≤ 0 for

all t ≥ t1, and x∆n

(t) is not identically zero for all large t. Using Lemma 2.1, there exists an
integer m ∈ {1, 3, ..., n − 1} such that (2.2) and (2.3) hold for all t ≥ t1. From (2.2), we see
that

x∆m−1

(t) > 0, x∆m

(t) > 0, and x∆m+1

(t) < 0 (2.8)
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for t ≥ t1. Thus,

x∆m−1

(t) = x∆m−1

(t1) +

t
∫

t1

x∆m

(s)∆s ≥ h1(t, t1)x
∆m

(t) for t ≥ t1.

Integrating this inequality (m − 1)-times from t1 to t ≥ t1 and using the fact that x∆m

(t) is
decreasing on [t1,∞)T, we have

x∆(t) ≥ hm−1(t, t1)x
∆m

(t) and x(t) ≥ hm(t, t1)x
∆m

(t) for t ≥ t1.

Replacing t by g(t) in the above inequality, we obtain

x∆(g(t)) ≥ hm−1(g(t), t1)x
∆m

(g(t)) for t ≥ t2 (2.9)

where g(t) ≥ t1 for t ≥ t2. It follows that

x(g(t)) ≥ hm(g(t), t1)x
∆m

(g(t)) for t ≥ t2. (2.10)

From (2.3) and applying Taylor’s formula (see [3, Theorem 1.111]) there exists v ≥ u ≥ t1
such that

x∆m

(u) ≥ hn−m−1(v, u)x∆n−1

(v).

Setting v = t and u = g(t) gives

x∆m

(g(t)) ≥ hn−m−1(t, g(t))x∆n−1

(g(t)) for t ≥ t2. (2.11)

Combining the inequalities (2.9), (2.10), and (2.11), we have

x∆(g(t)) ≥ hm−1(g(t), t1)hn−m−1(t, g(t))x∆n−1

(t) for t ≥ t2, (2.12)

and so

x(g(t)) ≥ hm(g(t), t1)hn−m−1(t, g(t))x∆n−1

(t) for t ≥ t2. (2.13)

Now, integrating equation (2.1) for u ≥ t ≥ t2 and letting u → ∞, we obtain

x∆n−1

(t) ≥





1

a(t)

∞
∫

t

q(s) (xσ(g(s)))λ ∆s





1/α

,

or

x∆n−1

(t) ≥





1

a(t)

∞
∫

t

q(s)∆s





1/α

(xσ(g(t)))λ/α for t ≥ t2. (2.14)

If λ > α, we substitute (2.14) into (2.12) to obtain

x∆(g(t)) ≥ hm−1(g(t), t1)hn−m−1(t, g(t))x∆n−1

(t)

≥ (hm−1(g(t), t1)hn−m−1(t, g(t)))





1

a(t)

∞
∫

t

q(s)∆s





1/α

(xσ(g(t)))λ/α
,
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or

x∆(g(t)) (xσ(g(t)))−λ/α
g∆(t) ≥ (hm−1(g(t), t1)hn−m−1(t, g(t)))g∆(t)





1

a(t)

∞
∫

t

q(s)∆s





1/α

.

Applying the first inequality in (2.4) and then integrating from t2 to t gives a contradiction
to (2.5).

In case λ = α, substituting (2.14) into (2.13) gives

x(g(t)) ≥ (hm(g(t), t1)hn−m−1(t, g(t)))





1

a(t)

∞
∫

t

q(s)∆s





1/α

xλ/α(g(t)),

or

x1−λ/α(g(t)) ≥ (hm(g(t), t1)hn−m−1(t, g(t)))





1

a(t)

∞
∫

t

q(s)∆s





1/α

for t ≥ t2. (2.15)

Taking the lim sup of both sides of inequality (2.15) as t → ∞ gives a contradiction to
condition (2.6).

Finally, if λ < α, using (2.13) in (2.1), we have

−
(

a(t)
(

x∆n−1

(t)
)α)∆

= q(t) (xσ(g(t)))λ

≥ q(t)(hm(g(t), t1)hn−m−1(t, g(t)))λ
(

x∆n−1

(t)
)λ

for t ≥ t2. Setting w(t) = a(t)
(

x∆n−1
(t)
)α

, we have

−w∆(t) ≥ q(t)a−λ/α(t)(hm(g(t), t1)hn−m−1(t, g(t)))λwλ/α for t ≥ t2,

so

−w∆(t)w−λ/α(t) ≥ q(t)a−λ/α(t)(hm(g(t), t1)hn−m−1(t, g(t)))λ for t ≥ t2.

Applying the second inequality in (2.4), and integrating from t2 to t yields a contradiction
to condition (2.7). This completes the proof of the theorem. �

The following result is immediate.

Theorem 2.2. Let t0 ∈ T. Suppose conditions (i)-(iii) and (1.2) hold. If for every integer
m ∈ {1, 3, 5, ..., n− 1} and t ≥ t0 ∈ T ,

lim sup
t→∞

(hm(g(t), t0)hn−m−1(t, g(t)))



(a(t))−1

∞
∫

t

q(s)∆s





1/α

= ∞, (2.16)

then every bounded solution of equation (2.1) is oscillatory.

Proof. The conclusion follows from applying (2.16) to inequality (2.15). �
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As an example, we let T = R, i.e., the continuous case. Here equation (2.1) becomes

(

a(t)
(

x(n−1)(t)
)α
)

′

+ q(t)xλ(g(t)) = 0, (2.17)

where
∞
∫

a−1/α(s)ds = ∞, and Theorem 2.1 takes the following form.

Theorem 2.3. Let conditions (i)-(iii) hold. Equation (2.17) is oscillatory if for every integer
m ∈ {1, 3, ..., n − 1} and t ≥ t0:

∞
∫

t0

g′(t)

(

(g(t) − t0)
m−1

(m − 1)!

(t − g(t))n−m−1

(n − m − 1)!

)





1

a(t)

∞
∫

t

q(s)ds





1/α

dt = ∞ if λ > α;

lim sup
t→∞

(

(g(t) − t0)
m

m!

(t − g(t))n−m−1

(n − m − 1)!

)





1

a(t)

∞
∫

t

q(s)ds





1/α

> 1 if λ = α;

and
∞
∫

t0

(

(g(t) − t0)
m

m!

(t − g(t))n−m−1

(n − m − 1)!

)λ

a−λ/α(t)q(t)dt = ∞ if λ < α.

Next, we take T = Z, i.e., the discrete case. In this case, equation (2.1) takes the form

∆
(

a(t)(∆n−1x(t))α
)

+ q(t)(xσ(g(t)))λ = 0, (2.18)

where
∞
∑

a−1/α(t) = ∞. Theorem 2.1 becomes the following.

Theorem 2.4. Let conditions (i)-(iii) hold. Assume that for every integer m ∈ {1, 3, 5, ...,
n − 1} and t ≥ t0 ∈ N0, we have:

∞
∑

t=t0

(∆g(t))

(

(g(t) − t0)
(m−1)

(m − 1)!

(t − g(t))(n−m−1)

(n − m − 1)!

)

(

1

a(t)

∞
∑

s=t

q(s)

)1/α

= ∞ if λ > α;

lim sup
t→∞

(

(g(t) − t0)
(m)

m!

(t − g(t))(n−m−1)

(n − m − 1)!

)

(

1

a(t)

∞
∑

s=t

q(s)

)1/α

> 1 if λ = α;

∞
∑

t=t0

(

(g(t) − t0)
(m)

m!

(t − g(t))(n−m−1)

(n − m − 1)!

)λ

a−λ/α(t)q(t) = ∞ if λ < α.

Then equation (2.18) is oscillatory.
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3. Oscillation of Equation (1.1) with −1 < p(t) < 0

In this section we consider equation (1.1) with −1 < p(t) < 0 on T. Here, we let p∗(t) =
−p(t) so equation (1.1) becomes

(

a(t)
(

(x(t) + p∗(t)x(τ(t)))∆n−1
)α)∆

+ q(t)(xσ(g(t)))λ = 0, (3.1)

where n is even and 0 < p∗(t) < 1. We establish the following oscillation criterion for
equation (3.1).

Theorem 3.1. Let t0 ∈ T and assume that conditions (i)-(iii) and (1.2) hold. If for every
integer m ∈ {1, 3, 5, ..., n− 1} and t ≥ t0 ∈ T, conditions (2.5)–(2.7) hold with q(t) replaced
by q(t)(1 − p∗(σ(g(t))))λ, then equation (3.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (3.1), say x(t) > 0, x(τ(t)) > 0, and
x(g(t)) > 0 for t ≥ t0 ∈ T. Set

y(t) = x(t) + p∗(t)x(τ(t)) for t ≥ t0.

Then equation (3.1) takes the form
(

a(t)
(

y∆n−1

(t)
)α)∆

+ q(t)(xσ(g(t)))λ = 0, t ≥ t0. (3.2)

Clearly, y(t) > 0 and
(

a(t)
(

y∆n−1
(t)
)α)∆

≤ 0; hence y∆n

≤ 0 for t ≥ t0. By Lemma 2.1,

we see that y∆(t) > 0 for t ≥ t1 ∈ [t0,∞)T. Thus,

x(t) = y(t) − p∗(t)x(τ(t))
= y(t) − p∗(t)[y(τ(t) − p∗(τ(t))x(τ ◦ τ(t))]
≥ y(t) − p∗(t)y(τ(t)) ≥ (1 − p∗(t))y(t) for t ≥ t1.

(3.3)

Using (3.3) in equation (3.2), we obtain
(

a(t)
(

y∆n−1

(t)
)α)∆

+ q(t)(1 − p∗(σ(g(t))))λ (yσ(g(t)))λ ≤ 0 for t ≥ t1.

The remainder of the proof is exactly the same as that of Theorem 2.1 and hence is omitted.
�

4. Oscillation of equation (1.1) with 0 < p(t) < 1

In this section, we consider equation (1.1) with 0 < p(t) < 1 and establish the following
result.

Theorem 4.1. Let t0 ∈ T. Suppose conditions (i)-(iv) and (1.2) hold and assume that for
every integer m ∈ {1, 3, 5, ..., n − 1} and t ≥ t0 ∈ T, either:



























lim sup
t→∞

(hm(g(t), t0)hn−m−1(t, g(t)))

(

(a(t))−1
∞
∫

t

q(s)∆s

)1/α

> 1

and if λ = α;

lim sup
t→∞

(a(ξ(t)))−1
t
∫

ξ(t)

q(s)hλ
n−1(ξ(t), ξ(s))∆s > 1

(4.1)
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or






















∞
∫

t0

(hm(g(t), t0)h
λ
n−m−1(t, g(t))a−λ/α(t)q(s)∆s = ∞

and if λ < α.
∞
∫

t0

q(s)a−λ/α(s)hλ
n−1(t, ξ(s))∆s = ∞

(4.2)

Then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1.1) with x(t) > 0, x(τ(t)) > 0, and x(g(t)) >

0 for t ≥ t0 ∈ T. Set

z(t) = x(t) − p(t)x(τ(t)) for t ≥ t0. (4.3)

Then,
(

a(t)
(

z∆n−1

(t)
)α)∆

+ q(t)(xσ(g(t)))λ = 0 for t ≥ t0. (4.4)

It is easy to see that z∆n

(t) ≤ 0 is of one sign on [t0,∞)T. Now, we distinguish between two
cases: (I) z(t) > 0 or (II) z(t) < 0 for t ≥ t0.

Case (I). Assume that z(t) > 0 for t ≥ t0. Then x(t) ≥ z(t) for t ≥ t0 and equation (4.4)
becomes

(

a(t)
(

z∆n−1

(t)
)α)∆

+ q(t)(zσ(g(t)))λ ≤ 0 for t ≥ t0.

Proceeding as in the proof of Theorem 2.1, we arrive at the desired contradiction.
Case (II). Assume that z(t) < 0 for t ≥ t0. Then

y(t) := −z(t) = p(t)x(τ(t)) − x(t) ≤ p(t)x(τ(t)) ≤ x(τ(t)) for t ≥ t0,

so

x(g(t)) ≥ y(τ−1 ◦ g(t)) = y(ξ(t)) for t ≥ t1 ∈ [t0,∞)T . (4.5)

Using (4.5) in equation (4.4), we have
(

a(t)
(

y∆n−1

(t)
)α)∆

≥ q(t)(yσ(ξ(t)))λ for t ≥ t1. (4.6)

From the above, we also see that x(t) ≤ p(t)x(τ(t)) ≤ x(τ(t)) for t ≥ t0.
Thus, x(t) and hence y(t) are bounded functions for t ≥ t1. By Lemma 2.1, we see that

y(t) satisfies

(−1)ky∆k

(t) > 0 for t ≥ t1, k = 1, 2, ..., n. (4.7)

As in the proof of Theorem 2.1, for v ≥ u ≥ t1, we have

y(u) ≥ hn−1(v, u)
(

−y∆n−1

(v)
)

. (4.8)

For t ≥ s ≥ t1, letting u = ξ(s) and v = ξ(t) in (4.8) gives

y(ξ(s)) ≥ hn−1(ξ(t), ξ(s))
(

−y∆n−1

(ξ(t))
)

for t ≥ t2 ≥ t1. (4.9)

Also, letting u = ξ(t) and v = t in (4.8), we have

y(ξ(t)) ≥ hn−1(t, ξ(t))
(

−y∆n−1

(t)
)

for t ≥ t2 ≥ t1. (4.10)
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Integrating (4.6) from ξ(t) to t and using (4.9), we have

(

−y∆n−1

(ξ(t))
)α

≥ (a(ξ(t)))−1

t
∫

ξ(t)

q(s)yλ(ξ(s))∆s

≥ (a(ξ(t)))−1







t
∫

ξ(t)

q(s)hλ
n−1(ξ(t), ξ(s))∆s







(

−y∆n−1

(ξ(t))
)λ

or

(

−y∆n−1

(ξ(t))
)α−λ

≥ (a(ξ(t)))−1







t
∫

ξ(t)

q(s)hλ
n−1(ξ(t), ξ(s))∆s






.

Taking the lim sup of both sides of the above inequality as t → ∞, we arrive at the desired
contradiction if λ = α.

Setting 0 < w(t) = −a(t)
(

y∆n−1
(t)
)α

in (4.6) and using (4.10) yields

−w∆(t) ≥ q(t)a−λ/α(t)hλ
n−1(t, ξ(s))w

λ/α(t) for t ≥ t2.

The rest of the proof is similar to that of Theorem 2.1 for the case λ < α. This completes
the proof of the theorem. �

To illustrate this result, consider the case T = R. Then equation (1.1) takes the form
(

a(t)
(

(x(t) − p(t)x(τ(t)))(n−1)
)α)′

+ q(t)xλ(g(t)) = 0 (4.11)

and Theorem 4.1 becomes the following result.

Theorem 4.2. Let conditions (i)-(iv) and (1.2) hold and assume that for every integer
m ∈ {1, 3, 5, ..., n− 1} and t ≥ t0 ∈ T = R, either



























lim sup
t→∞

(

(g(t)−t0)m

m!
(t−g(t))n−m−1

(n−m−1)!

)

(

(a(t))−1
∞
∫

t

q(s)ds

)1/α

> 1

and if λ = α;

lim sup
t→∞

(a(ξ(t)))−1
t
∫

ξ(t)

(ξ(t),ξ(s))n−1

(n−1)!
q(s)ds > 1

or






















∞
∫

t0

(

(g(t)−t0)m

m!
(t−g(t))n−m−1

(n−m−1)!

)λ

(a(t))−λ/αq(t)dt = ∞

and if λ < α;
∞
∫

t0

(

(t−ξ(s))n−1

(n−1)!

)λ

(a(s))−λ/αq(s)ds = ∞.

Then equation (4.11) is oscillatory.
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Now if T = Z, equation (1.1) becomes

∆
(

a(t)
(

∆n−1(x(t) − p(t)x(τ(t))
)

)α
)

+ q(t)(xσ(g(t)))λ = 0, (4.12)

and Theorem 4.1 has the following formulation.

Theorem 4.3. Let conditions (i)-(iv) and (1.2) hold and assume that for every integer
m ∈ {1, 3, 5, ..., n− 1} and t ≥ t0 ∈ T = Z, either



























lim sup
t→∞

(

(g(t)−t0)(m)

m!
(t−g(t))(n−m−1)

(n−m−1)!

)

(

(a(t))−1
∞
∑

s=t

q(s)

)1/α

> 1

and if λ = α;

lim sup
t→∞

(a(ξ(t)))−1
∞
∑

s=ξ(t)

(ξ(t)−ξ(s))(n−1)

(n−1)!
q(s) > 1

or






















∞
∑

t=t0

(

(g(t)−t0)(m)

m!
(t−g(t))(n−m−1)

(n−m−1)!

)λ

(a(t))−λ/αq(t) = ∞

and if λ < α;
∞
∑

t=t0

(

(t−ξ(t))(n−1)

(n−1)!

)λ

(a(s))−λ/αq(t) = ∞.

Then equation (4.12) is oscillatory.

From the proof of Theorem 4.1, we extract the following result that is concerned with the
oscillatory behavior of all bounded solutions of equation (1.4).

Theorem 4.4. Let t0 ∈ T and let p(t) ≡ 0. Suppose conditions (i)-(iv) and (1.2) hold. If

lim sup
t→∞

t
∫

g(t)

q(s)hλ
n−1(g(t), g(s))∆s > 1 if λ = α,

or
t
∫

t0

q(s)(a(s))−λ/αhλ
n−1(g(t), g(s))∆s = ∞ if λ < α.

Then every bounded solution of equation (1.4) oscillates.

Proof. The proof follows from the proof of Case (II) of Theorem 4.1 and hence is omitted. �

Remark 4.5. Notice that Theorems 2.1 and 3.1 cover both super-linear and sub-linear delay
dynamic equations. The results here can easily be extended to dynamic equations of the
form

(

a(t)
(

(x(t) − p(t)x(τ(t)))∆n−1
)α)∆

+ f(t, xσ(g(t))) = 0,

where the functions a, p, g and τ are as in equation (1.1) and f : T × R → R is continuous,
xf(t, x) > 0 for x 6= 0 and t ∈ T and f satisfies a super-linear or sub-linear growth condition.
The details are left to the reader. We applied our results to the continuous and discrete cases
but they clearly apply to other types of time-scales such as T = hZ with h > 0, T = qN0 with
q > 1, T = N

2
0, etc. An interesting open problem is to find similar results for the cases where
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p(t) ≥ 1 and p(t) ≤ −1. The oscillatory character of equation (1.1) is different for these
cases and we refer the reader to the papers [14] and [21] for a discussion in the continuous
and discrete cases.
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