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PARAMETRIZATION FOR NON-LINEAR PROBLEMS

WITH INTEGRAL BOUNDARY CONDITIONS

MIKLÓS RONTÓ AND KATERYNA MARYNETS∗

Abstract. We consider the integral boundary-value problem for a cer-
tain class of non-linear systems of ordinary differential equations of the
form

x
′(t) = f (t, x (t)) , t ∈ [0, T ],

Ax(0) +

Z

T

0

P (s)x(s)ds + Cx(T ) = d,

where f : [0, T ] × D → R
n is continuous vector function, D ⊂ R

n is a
closed and bounded domain.

By using an appropriate parametrization technique, the given prob-
lem is reduced to an equivalent parametrized family of two-point boun-
dary-value problems with linear boundary conditions without integral
terms. To study the transformed problem, we use a method based upon
a special type of successive approximations which are constructed ana-
lytically. We establish sufficient conditions for the uniform convergence
of that sequence and introduce a certain finite-dimensional determining
system whose solutions give all the initial values of the solutions of the
given boundary-value problem. Based upon properties of the functions
of the constructed sequence and of the determining equations, we give
efficient conditions for the solvability of the original integral boundary-
value problem.

1. Introduction

Recently, boundary-value problems with integral conditions for non-linear
differential equations have attracted much attention, see, e. g. [3, 17]. How-
ever, mainly scalar non-linear differential equations of special kinds have
been studied. According our best knowledge, there are only a few works
dealing with a constructive investigation of systems of non-linear differen-
tial equations of a general form with integral boundary restrictions (see,
e. g., [2, 6, 15,16]).

The aim of this paper is to extend the numerical-analytic technique, which
had been used earlier successfully in relation to different types of boundary-
value problems with two-point and multipoint linear and non-linear bound-
ary conditions [4,5,7,13], for a class of non-linear differential systems of the
form

x′(t) = f (t, x (t)) , t ∈ [0, T ],
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under the integral boundary conditions

Ax(0) +

∫ T

0
P (s)x(s)ds + Cx(T ) = d.

We use an approach based on an appropriate parametrization technique
[12,13], which allows us to reduce the given problem to an equivalent family
of parametrized two-point boundary-value problems with linear boundary
conditions without integral terms. To study the transformed problem, we
use a method based upon a special type of successive approximations con-
structed analytically. We give conditions sufficient for the uniform conver-
gence of this sequence and introduce a certain finite-dimensional “determin-
ing” system of algebraic or transcendental equations whose solutions give
all the initial values of the solutions of the given boundary-value problem.
Using properties of the functions of the sequence and determining equations
and applying an argument based on the Brouwer degree, we give efficient
conditions ensuring the solvability of the original integral boundary-value
problem.

2. Notation

(1) In the sequel, the operations | · |, ≥, ≤, max, min between matrices
and vectors are understood componentwise.

(2) L (Rn) is the algebra of n-dimensional square matrices with real
elements.

(3) 1m and 0m stand, respectively, for the unit and zero matrix of di-
mension m ≤ n.

(4) For any u ∈ R
n and any non-negative vector r ∈ R

n, we put

B(u, r) := {ξ ∈ R
n : |ξ − u| ≤ r} . (2.1)

(5) r(K) is the spectral radius of a matrix K.
(6) ∂Ω is the boundary of Ω.
(7) deg (Φ,Ω, 0) is the Brouwer degree of Φ over Ω with respect to zero.

3. Problem setting

We consider the non-linear system of differential equations subjected to
the integral boundary conditions

x′(t) = f (t, x (t)) , t ∈ [0, T ], (3.1)

Ax(0) +

∫ T

0
P (s)x(s)ds + Cx(T ) = d, (3.2)

where A is arbitrary and C is a given singular n × n matrix of the form

C =

(
C11 C12

C21 0n−p

)

,

where C11 is a p × p matrix, det C11 6= 0, C12 is a p × (n − p) matrix, C21

is a (n − p) × p matrix, and P : [0, T ] → L (Rn) is a continuous n × n
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matrix-valued function. We also assume that

det(1n−p − C21C
−1
11 C12) 6= 0. (3.3)

Here, we suppose that the vector function f : [0, T ] × D → R
n is contin-

uous, where D ⊂ R
n is a closed and bounded domain.

The problem is to find a solution of the system of differential equations
(3.1) with property (3.2) in the class of continuously differentiable vector
functions x : [0, T ] → D.

4. Parametrization of the integral boundary conditions

To replace (3.2) by certain linear two-point boundary conditions, similar-
ly to [5, 7, 12], we apply a “freezing” technique. Namely, we introduce the
vectors of parameters z = col (z1, z2, . . . , zn) , λ = col (λ1, λ2, . . . , λn) , and

η = col
(

0, 0, . . . , 0,
︸ ︷︷ ︸

p

ηp+1, ηp+2, . . . , ηn

)

by formally putting

z := x(0),

λ :=

∫ T

0
P (s)x(s)ds,

ηi := xi(T ), i = p + 1, p + 2, . . . , n,

(4.1)

in (3.2). Using parametrization (4.1), the integral boundary restrictions
(3.2) can be written as the linear ones:

Ax(0) + C1x(T ) = d − λ + η, (4.2)

where

C1 =

(
C11 C12

C21 1n−p

)

,

1n−p is a (n−p)× (n−p) unit matrix, and λ and η are the parameters with
meaning (4.1).

Remark 4.1. In view of assumption (3.3), the matrix C1 is non-singular in
condition (4.4).

Let us put
d(λ, η) := d − λ + η. (4.3)

Taking (4.3) into account, one can rewrite the parametrized boundary
conditions (4.2) in the form

Ax(0) + C1x(T ) = d(λ, η). (4.4)

The parametrization technique that we are going to use suggests that,
instead of the original boundary-value problem with the integral boundary
conditions (3.1), (3.2), we study the family of parametrized boundary value
problems (3.1), (4.4), where the boundary restrictions are linear. We then
go back to the original problem by choosing the values of the parameters
appropriately.
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Remark 4.2. The set of the solutions of the non-linear boundary-value prob-
lem with integral boundary conditions (3.1), (3.2) coincides with the set of
the solutions of the parametrized problem (3.1) with linear boundary re-
strictions (4.4), satisfying additional conditions (4.1).

5. Construction of the successive approximations

Assume that the function f in the right hand-side of (3.1) satisfies the
Lipschitz condition of the form

|f(t, u) − f(t, v)| ≤ K |u − v| , (5.1)

for all t ∈ [0, T ] , {u, v} ⊂ D, where K = (kij)
n
i,j=1 is a certain non-negative

constant matrix.
Let us put

P :=

{∫ T

0
P (s)x(s)ds : x ∈ C ([0, T ],D)

}

.

Furthermore, introduce the vector

δD(f) :=
1

2

[

max
(t,x)∈[0,T ]×D

f(t, x) − min
(t,x)∈[0,T ]×D

f(t, x)

]

, (5.2)

and assume that the set D∗ defined according to the formula

D∗ :=
{

z ∈ D : B
(

z + tT−1C−1
1 [d(λ, η) − (A + C1) z] ,

T

2
δD(f)

)

⊂ D

for all λ ∈ P, η ∈ D, t ∈ [0, T ]
}

is non-empty:

D∗ 6= ∅. (5.3)

Recalling notation (2.1), we see that the inclusion z ∈ D∗ holds if and
only if the vector [(1− tT−1)1n − tT−1C−1

1 A]z + tT−1C−1
1 d(λ, η) belongs to

D together with its “vector” T
2 δD(f)-neighbourhood for any λ ∈ P, η ∈ D,

and t ∈ [0, T ].

Remark 5.1. The technical assumption (5.3) means that the domain D,
where the right-hand side of the differential equation is assumed to satisfy
the Lipschitz condition, is wide enough.

Let us associate with the parametrized boundary-value problem (3.1),
(4.4) the sequence of functions defined recurrently by the formula

xm(t, z, λ, η) := z +

∫ t

0
f(s, xm−1(s, z, λ, η))ds

−
t

T

∫ T

0
f(s, xm−1(s, z, λ, η))ds

+
t

T
C−1

1 [d(λ, η) − (A + C1) z] (5.4)
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for t ∈ [0, T ], m = 1, 2, 3, . . . , where

x0(t, z, λ, η) := z +
t

T
C−1

1 [d(λ, η) − (A + C1) z] , t ∈ [0, T ], (5.5)

and the vectors z, λ, and η are considered as parameters.
It is easy to check that the functions xm (·, z, λ, η) satisfy linear parametrized

boundary conditions (4.4) for all m ≥ 1, z, η, λ ∈ R
n.

Remark 5.2. It follows from the definition of the set D∗ that the values of
function (5.5) do not escape from D for any z ∈ D∗, λ ∈ P, and η ∈ D.

The following statement establishes the convergence of sequence (5.4).

Theorem 5.1. Let condition (5.3) be fulfilled, and moreover, assume that
the matrix K appearing in the Lipschitz condition (5.1) satisfies the relation

r(K) <
10

3T
. (5.6)

Then, for all fixed z ∈ D∗, λ ∈ P, and η ∈ D:

(1) The functions of sequence (5.4) are continuously differentiable and
satisfy the parametrized boundary conditions (4.4):

Axm(0, z, λ, η) + C1xm(T, z, λ, η) = d(λ, η),

for all m = 1, 2, 3, . . ..
(2) Sequence (5.4) converges uniformly in t ∈ [0, T ] as m → ∞ to a

limit function

x∗(t, z, λ, η) := lim
m→∞

xm(t, z, λ, η). (5.7)

(3) The limit function x∗(·, z, λ, η) satisfies the parametrized linear two-
point boundary conditions:

Ax∗(0, z, λ, η) + C1x
∗(T, z, λ, η) = d(λ, η).

(4) Function (5.7) is a unique continuously differentiable solution of the
integral equation

x(t) = z +

∫ t

0
f(s, x(s))ds −

t

T

∫ T

0
f(s, x(s))ds

+
t

T
C−1

1 [d(λ, η) − (A + C1) z] , t ∈ [0, T ], (5.8)

or, which is the same, a solution of the Cauchy problem

x′(t) = f(t, x) + ∆(z, λ, η), t ∈ [0, T ], (5.9)

x(0) = z, (5.10)

where

∆ (z, λ, η) :=
1

T
C−1

1 [d(λ, η) − (A + C1)] z

−
1

T

∫ T

0
f(s, x∗(s, z, λ, η))ds. (5.11)
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(5) The error estimate

|x∗(t, z, λ, η) − xm(t, z, λ, η)|

≤
20

9
t

(

1 −
t

T

)

Qm(1n − Q)−1δD(f), t ∈ [0, T ], m ≥ 1, (5.12)

holds, where

Q :=
3T

10
K. (5.13)

Proof. We will prove that the sequence of functions (5.4) is a Cauchy se-
quence in the Banach space C([0, T ], Rn) of continuous vector functions
on [0, T ]. We first show that xm(t, z, λ, η) ∈ D for arbitrary (t, z, λ, η) ∈
[0, T ] × D∗ × P × D and m ≥ 0.

Indeed, it follows from Remark 5.2 that all the values of the function
x0(·, z, λ, η) lie in D. Let us now use the estimate of [14, Lemma 2.3] (see
also [8, Lemma 3] and [11, Lemma 2]) valid for all y ∈ C([0, T ], Rn):

∣
∣
∣
∣

∫ t

0

[

y(τ) −
1

T

∫ T

0
y(s)ds

]

dτ

∣
∣
∣
∣
≤

1

2
α1(t)

[

max
t∈[0,T ]

y(t) − min
t∈[0,T ]

y(t)

]

, (5.14)

where

α1(t) = 2t

(

1 −
t

T

)

, t ∈ [0, T ]. (5.15)

Considering relation (5.4) for m = 0 and applying estimate (5.14) with
y(t) := f(t, x0 (t, z, λ, η)), t ∈ [0, T ], we get

|x1 (t, z, λ, η) − x0 (t, z, λ, η)| ≤

≤

∣
∣
∣
∣

∫ t

0

[

f(t, x0 (s, z, λ, η)) −
1

T

∫ T

0
f(s, x0 (s, z, λ, η))ds

]

dt

∣
∣
∣
∣

≤ α1(t)δD(f) ≤
T

2
δD(f), t ∈ [0, T ]. (5.16)

In (5.16), we have used the inequality

|α1(t)| ≤
T

2
, t ∈ [0, T ] ,

which is obtained directly from (5.15), and the fact that x0(·, z, λ, η) has
values in D. Recall that the vector δD(f) is given by formula (5.2).

Therefore, by virtue of (5.16), we conclude that x1(t, z, λ, η) ∈ D when-
ever (t, z, λ, η) ∈ [0, T ]×D∗ ×P ×D. Using this and arguing by induction,
we can easily establish that all functions (5.4) are also contained in the
domain D for all m = 1, 2, 3 . . ., t ∈ [0, T ], z ∈ D∗, λ ∈ P, and η ∈ D.
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Furthermore, (5.4) gives

xm+1(t, z, λ, η) − xm(t, z, λ, η) =

=

∫ t

0

[
f(s, xm(s, z, λ, η)) − f(s, xm−1(s, z, λ, η))

]
ds−

−
t

T

∫ T

0

[
f (s, xm(s, z, λ, η)) − f (s, xm−1(s, z, λ, η))

]
ds (5.17)

for all m = 1, 2, 3, . . . . Introduce the notation:

rm(t, z, λ, η) := |xm(t, z, λ, η) − xm−1(t, z, λ, η)|

for all m = 1, 2, 3 . . ., t ∈ [0, T ], z ∈ D∗, λ ∈ P, and η ∈ D. By virtue of
equality (5.17), estimate (5.14) and the Lipschitz condition (5.1), we have

rm+1(t, z, λ, η) ≤ K
[(

1 −
t

T

)∫ t

0
rm(s, z, λ, η)ds+

+
t

T

∫ T

t

rm(s, z, λ, η)ds
]

, (5.18)

for any m = 0, 1, 2, . . . . According to (5.16),

r1(t, z, λ, η) = |x1(t, z, λ, η) − x0(t, z, λ, η)| ≤ α1(t)δD(f).

For m = 1, it follows from (5.18) that

r2(t, z, λ, η) ≤ KδD(f)

[(

1 −
t

T

)∫ t

0
α1(s)ds +

t

T

∫ T

t

α1(s)ds

]

≤ Kα2 (t) δD(f).

Using (5.20), we can easily obtain by induction that

rm+1(t, z, λ, η) ≤ Kmαm+1(t)δD(f), (5.19)

for all m = 0, 1, 2, . . ., where δD(f) is given by (5.2) and αm(·), m = 1, 2, . . . ,
are defined by the formula

αm+1(t) :=

(

1 −
t

T

)∫ t

0
αm(s)ds +

t

T

∫ T

t

αm(s)ds (5.20)

where m = 0, 1, 2, . . . and

α0(t) := 1

for all t ∈ [0, T ]. Clearly, α1 is given by (5.15).
Let us now recall the estimate of [11, Lemma 3]

αm+1(t) ≤
10

9

(
3

10
T

)m

α1(t), t ∈ [0, T ], m = 0, 1, 2, . . . , (5.21)

obtained for the sequence of functions (5.20). By virtue of the estimate
(5.21), from (5.19) we get

rm+1(t, z, λ, η) ≤
10

9
α1(t)Q

mδD(f) (5.22)
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for all t ∈ [0, T ] and m = 0, 1, 2, . . ., where the matrix Q is given by (5.13).
Therefore, in view of (5.22),

|xm+j(t, z, λ, η) − xm(t, z, λ, η)| ≤

≤ |xm+j(t, z, λ, η) − xm+j−1(t, z, λ, η)|+

+ |xm+j−1(t, z, λ, η) − xm+j−2(t, z, λ, η)| + . . . +

+ |xm+1(t, z, λ, η) − xm(t, z, λ, η)| =

=

j
∑

i=1

rm+i(t, z, λ, η) ≤
10

9
α1(t)

j
∑

i=1

Qm+iδD(f) =

=
10

9
α1(t)Q

m

j−1
∑

i=0

QiδD(f). (5.23)

Since, due to the condition (5.6), the maximal eigenvalue of the matrix
Q of the form (5.13) does not exceed 1, we have

j−1
∑

i=0

Qi ≤ (1n − Q)−1

and limm→∞ Qm = 0n, where 0n is the n × n zero matrix. Therefore, we
conclude from (5.23) that, according to the Cauchy criterion, the sequence
{xm(·, z, λ, η) : m ≥ 1} of the form (5.4) uniformly converges in the domain
[0, T ]×D∗ ×P ×D to a limit function x∗(·, z, λ, η). Since all the functions
xm(·, z, λ, η) of the sequence (5.4) satisfy the boundary conditions (4.4) for
all values of the introduced parameters, we conclude that the limit function
x∗(·, z, λ, η) also satisfies these conditions. Passing to the limit as m → ∞
in equality (5.4), we show that the limit function satisfies both the integral
equation (5.8) and the Cauchy problem (5.9), (5.10), where ∆ (z, λ, η) is
given by (5.11). �

Consider the Cauchy problem

x′(t) = f(t, x) + µ, t ∈ [0, T ], (5.24)

x(0) = z, (5.25)

where µ = col(µ1, . . . , µn) is a control parameter.

Theorem 5.2. Let z ∈ D∗, λ ∈ P, η ∈ D and µ ∈ R
n be fixed. Suppose that

for the system of differential equations (3.1) all conditions of Theorem 5.1
hold.

Then, for the solution x(·, z, λ, η, µ) of the initial-value problem (5.24),
(5.25) to satisfy the parametrized boundary conditions (4.4), it is necessary
and sufficient that µ be given by the formula µ = µz,λ,η, where

µz,λ,η :=
1

T

[

C−1
1 [d(λ, η) − (A + C1)z] −

∫ T

0
f(s, x∗(s, z, λ, η))

]

ds. (5.26)

In that case,

x (t, z, λ, η, µ) = x∗ (t, z, λ, η) , t ∈ [0, T ], (5.27)
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where x∗ (·, z, λ, η) is the function (5.7).

Proof. Sufficiency. Let us suppose that

µ = µz,λ,η (5.28)

in the right-hand side of the system of differential equations (5.24). By virtue
of Theorem 5.1, the limit function (5.7) of the sequence (5.4) is the unique
solution of the problem (5.24), (4.4) for the fixed values of parameters z, λ
and η and µ of form (5.28). Furthermore, the function x∗(·, z, λ, η) satisfies
the initial conditions (5.25), i. e., it is a solution of the Cauchy problem
(5.24), (5.25) for that µ. Thus, we have found the value of the parameter µ
given by (5.26), for which (5.27) holds.

Necessity. Now we show that the parameter value (5.26) is unique be-
cause for any other value µ = µ̄, µ̄ 6= µz,λ,η, the corresponding solution
x (·, z, λ, η, µ̄) of the initial value problem (5.29), (5.25),

x′(t) = f(t, x(t)) + µ̄, t ∈ [0, T ], (5.29)

does not satisfy the boundary conditions (4.4).
Indeed, assume that there exists a µ̄ such that µ̄ 6= µz,λ,η and the solution

x̄(t) := x (·, z, λ, η, µ̄) , t ∈ [0, T ],

of the Cauchy problem (5.29), (5.25) satisfies the two-point parametrized
boundary conditions (4.4). Let

xz,λ,η(t) := x (t, z, λ, η, µz,λ,η) , t ∈ [0, T ].

It is obvious that the functions xz,λ,η(·) and x̄(·) satisfy the integral equations

xz,λ,η(t) = z +

∫ t

0
f(s, xz,λ,η(s))ds + µz,λ,ηt (5.30)

and

x̄(t) = z +

∫ t

0
f(s, x̄(s))ds + µ̄t. (5.31)

By assumption, the functions xz,λ,η(·) and x̄(·) satisfy the parametrized
boundary conditions (4.4) and the initial conditions (5.25). Hence,

Axz,λ,η(0) + C1xz,λ,η(T ) = d(λ, η), (5.32)

xz,λ,η(0) = z, (5.33)

Ax̄(0) + C1x̄(T ) = d(λ, η), (5.34)

x̄(0) = z. (5.35)

Taking (5.32)–(5.35) into account, we get

xz,λ,η(T ) = C−1
1 [d(λ, η) − Az], (5.36)

x̄(T ) = C−1
1 [d(λ, η) − Az]. (5.37)
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Relations (5.30), (5.31) for t = T give

µz,λ,η =
1

T
C−1

1 [d(λ, η) − (A + C1)z] −
1

T

∫ T

0
f(s, xz,λ,η(s))ds, (5.38)

µ̄ =
1

T
C−1

1 [d(λ, η) − (A + C1)z] −
1

T

∫ T

0
f(s, x̄(s))ds. (5.39)

Substituting (5.38), (5.39) into the integral equations (5.30), (5.31), we
get that for all t ∈ [0, T ]

xz,λ,η(t) = z +

∫ t

0
f(s, xz,λ,η(s))ds+

+
t

T

[

C−1
1 [d(λ, η) − (A + C1)z] −

∫ T

0
f(s, xz,λ,η(s))ds

]

(5.40)

and

x̄(t) = z +

∫ t

0
f(s, x̄(s))ds+

+
t

T

[

C−1
1 [d(λ, η) − (A + C1)z] −

∫ T

0
f(s, x̄(s))ds

]

. (5.41)

As z ∈ D∗ and λ ∈ P, by analogy to the proof of Theorem 5.1, according
to the form of equations (5.40), (5.41) and the definition of the set D∗, it can
be shown that all the values of the functions xz,λ,η(·) and x̄(·) are contained
in D.

It is clear from (5.40), (5.41) that

xz,λ,η(t) − x̄(t) =

∫ t

0

[
f(s, xz,λ,η(s)) − f(s, x̄(s))

]
ds−

−
t

T

∫ T

0

[
f(s, xz,λ,η(s)) − f(s, x̄(s))

]
ds, t ∈ [0, T ]. (5.42)

By virtue of the Lipschitz condition (5.1), from the relation (5.42) we get
that the function

ω(t) := |xz,λ,η(t) − x̄(t)|, t ∈ [0, T ], (5.43)

satisfies integral inequalities

ω(t) ≤ K
(∫ t

0
ω(s)ds +

t

T

∫ T

0
ω(s)ds

)

≤ Kα1(t) max
s∈[0,T ]

ω(s), t ∈ [0, T ], (5.44)

where α1(·) is given by (5.15). Using (5.44) recursively, we arrive at the
inequality

ω(t) ≤ Kmαm(t) max
s∈[0,T ]

ω(s), t ∈ [0, T ], (5.45)

where m ∈ N is arbitrary and the functions αm, m ≥ 1, are given by the
formula (5.20).
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Taking (5.21) into account, from (5.45) we get the following estimate for
every m ∈ N:

ω(t) ≤ Kα1(t)
10

9

(
3T

10
K

)m−1

max
s∈[0,T ]

ω(s), t ∈ [0, T ].

By passing to the limit as m → ∞ in the last inequality and by virtue of
(5.6), we come to the conclusion that

max
s∈[0,T ]

ω(s) ≤ Qm max
s∈[0,T ]

ω(s) → 0.

According to (5.43), this means that the function xz,λ,η(·) coincides with
x̄(·). Using (5.38) and (5.39), we get that µz,λ,η = µ̄. This contradiction
proves the theorem. �

Let us find out the relation of the limit function x∗ (·, z, λ, η) of the se-
quence (5.4) to the solution of the parametrized two-point boundary-value
problem (3.1) with linear boundary conditions (4.4) or the equivalent non-
linear problem (3.1) with integral conditions (3.2).

Theorem 5.3. Under the conditions stated above, x∗(·, z∗, λ∗, η∗) is a so-
lution of the integral boundaryvalue problem (3.1), (3.2) if and only if the
components of the vectors

z∗ = col(z∗1 , z∗2 , . . . , z∗n),

η∗ = col(0, 0, . . . , 0
︸ ︷︷ ︸

p

, η∗p+1, η
∗

p+2, . . . , η
∗

p+n),

λ∗ = col(λ∗

1, λ
∗

2, . . . , λ
∗

n)

satisfy the determining system of algebraic or transcendental equations

∆(z, λ, η) = 0, (5.46)

V (z, λ, η) = 0, (5.47)

x∗

i (T, z, λ, η) − ηi = 0, i = p + 1, . . . , n, (5.48)

where

∆(z, λ, η) := C−1
1 [d(λ, η) − (A + C1)z] −

1

T

∫ T

0
f(s, x∗(s, z, λ, η))ds,

V (z, λ, η) :=

∫ T

0
P (s)x∗ (s, z, λ, η) ds − λ.

Proof. It suffices to apply Theorem 5.2 and notice that the differential equa-
tion (5.9) coincides with (3.1) if and only if (z∗, λ∗, η∗) satisfies the equation

∆(z∗, λ∗, η∗) = 0.

Moreover, from (4.1) it is clear that x∗(·, z∗, λ∗, η∗) coincides with the
solution of the integral boundary-value problem (3.1), (3.2), if and only if
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x∗(·, z∗, λ∗, η∗) satisfies the equations

∫ T

0
P (s)x∗(s, z, λ, η)ds = λ,

x∗

i (T, z, λ, η) = ηi, i = p + 1, . . . , n.

This means that x∗(·, z∗, λ∗, η∗) is the solution of the integral boundary-value
problem (3.1), (3.2) if and only if (5.46)–(5.48) hold. �

The next statement proves that the system of determining equations
(5.46)–(5.48) defines all possible solutions of the original non-linear boun-
dary-value problem (3.1) with integral boundary restrictions (3.2).

Lemma 5.1. Let all conditions of Theorem 5.1 be satisfied. Furthermore
there exist some vectors z ∈ D∗, λ ∈ P and η ∈ D that satisfy the system
of determining equations (5.46)–(5.48).

Then:

(1) The non-linear boundary-value problem (3.1), (3.2) with integral bound-
ary conditions has a solution x(·) such that

x(0) = z,
∫ T

0
P (s)x(s)ds = λ,

xi(T ) = ηi, i = p + 1, . . . n.

Moreover, this solution is given by the formula

x(t) = x∗(t, z, λ, η), t ∈ [0, T ], (5.49)

where x∗(·, z, λ, η) is the limit function of sequence (5.4).
(2) If the boundary-value problem (3.1), (3.2) has a solution x(·), then

this solution is given by (5.49), and the system of determining equa-
tions (5.46)–(5.48) is satisfied with

z = x(0),

λ =

∫ T

0
P (s)x(s)ds,

ηi = xi(T ), i = p + 1, . . . n.

(5.50)

Proof. We will apply Theorems 5.2 and 5.3. If there exist some z ∈ D∗,
λ ∈ P and η ∈ D that satisfy determining system (5.46)–(5.48), then ac-
cording to Theorem 5.3 function (5.49) is a solution of the given boundary-
value problem (3.1), (3.2). On the other hand, if x(·) is the solution of the
original boundary-value problem (3.1), (3.2), then this function is a solution
of the Cauchy problem (5.24), (5.25) with

µ = 0,

z = x(0).
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As x(·) satisfies integral boundary restrictions (3.2) and the corresponding
conditions (4.4), by virtue of Theorem 5.2, equality (5.49) holds. Moreover,

µ = µz,λ,η = 0,

where the vectors λ, η are defined by (5.50).However, µz,λ,η is given by
formula (5.26), and hence the first equation (5.46) of the determining system
is satisfied, if z, λ, and η are given by (5.50). Using (4.4), we obtain that
the other two equations (5.47), (5.48) of the determining system also hold.
So, we have specified values (z, λ, η) that satisfy the system of determining
equations (5.46)–(5.48), which proves the lemma. �

6. Remarks on the constructive applications of the method

Although Theorem 5.3 gives sufficient and necessary conditions for the
solvability and construction of the solution of the given problem, its ap-
plication faces with difficulties due the fact that the explicit form of the
functions ∆ : D∗×P×D → R

n, V : D∗×P×D → R
n, and x∗(·, z, λ, η) in

(5.46)–(5.48) is usually unknown. This complication can be overcome by us-
ing the properties of the function xm(·, z, λ, η) of the form (5.4) for a fixed m,
which will lead one, instead of the exact determining system (5.46)–(5.48),
to the mth approximate system of determining equations

∆m(z, λ, η) = 0, (6.1)

Vm(z, λ, η) = 0, (6.2)

xm,i (T, z, λ, η) − ηi = 0, i = p + 1, . . . n, (6.3)

where ∆m : D∗ × P × D → R
n and Vm : D∗ × P × D → R

n are given by
the formulas

∆m(z, λ, η) :=
1

T
C−1

1 [d(λ, η) − (A + C1)z]

−
1

T

∫ T

0
f(s, xm(s, z, λ, η))ds, (6.4)

Vm(z, λ, η) :=

∫ T

0
P (s)xm (s, z, λ, η) ds − λ, (6.5)

and xm (·, z, λ, η) is the vector-function defined according to relation (5.4).
It is important to note that, unlike to system (5.46)–(5.48) the mth ap-

proximate determining system (6.1)–(6.3) contains only terms involving the
function xm (·, z, λ, η) and, therefore, constructed explicitly.

In the next section we will show how, under certain natural assumptions,
the approximate determining system can be used in solvability analysis.

7. Existence of solutions of the integral boundary-value

problem

In the sequel, we need a lemma providing an estimate for functions (5.11)
and (6.4).
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Lemma 7.1. Let conditions of Theorem 5.1 be satisfied.
Then, for an arbitrary m ≥ 1, the exact and approximate determining

functions ∆ : D∗ × P × D → R
n and ∆m : D∗ × P × D → R

n defined by
(5.11) and (6.4) satisfy the estimate

|∆(z, λ, η) − ∆m(z, λ, η)| ≤
10T

27
KQm(1n − Q)−1δD(f), (7.1)

where (z, λ, η) ∈ D∗ × P × D of the form (4.1) are arbitrary and K, Q,
δD(f) are given respectively by (5.1), (5.13), and (5.2).

Proof. Let us fix arbitrary z, λ, η of the form (4.1). Using the Lipschitz
condition (5.1), estimate (5.12), and the equality

∫ T

0
α1(t)dt =

T 2

3
,

we have

|∆(z, λ, η) − ∆m(z, λ, η)| =

=

∣
∣
∣
∣

1

T

∫ T

0
f (s, xm(s, z, λ, η)) ds −

1

T

∫ T

0
f (s, x∗(s, z, λ, η)) ds

∣
∣
∣
∣
≤

≤
1

T

∫ T

0
K |x∗(s, z, λ, η) − xm(s, z, λ, η)| ds ≤

≤
1

T
K

∫ T

0

10

9
α1(s)Q

m (1n − Q)−1 δD(f)ds =

=
10

9T
KQm (1n − Q)−1 δD(f)

∫ T

0
α1(s)ds =

=
10T

27
KQm (1n − Q)−1 δD(f),

which completes the proof. �

Lemma 7.2. Let conditions of Theorem 5.1 be satisfied. Then for arbitrary
m ≥ 1 and (z, λ, η) ∈ D∗×P×D of the form (4.1), the functions x∗(·, z, λ, η)
and xm(·, z, λ, η) defined by (5.7), (5.4) satisfy the estimate

∣
∣
∣
∣

∫ T

0
P (s)[x∗ (s, z, λ, η) ds − xm (s, z, λ, η)]ds

∣
∣
∣
∣
≤

≤
10

9
B̄Qm (1n − Q)−1 δD(f) (7.2)

where Q, δD(f) are given by (5.13), (5.2) and

B̄ :=

∫ T

0
|P (s)|α1(s)ds.
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Proof. Let us fix arbitrary z, λ, η of the form (4.1). By virtue of the estimate
(5.12), we have:

∣
∣
∣
∣

∫ T

0
P (s)x∗ (s, z, λ, η) ds −

∫ T

0
P (s)xm (s, z, λ, η) ds

∣
∣
∣
∣

≤

∫ T

0
|P (s)| |x∗(s, z, λ, η) − xm(s, z, λ, η)| ds

≤

∫ T

0
|P (s)|

10

9
α1(s)Q

m (1n − Q)−1 δD(f)ds

=
10

9

∫ T

0
|P (s)|α1(s)dsQm (1n − Q)−1 δD(f)

=
10

9
B̄Qm (1n − Q)−1 δD(f).

The last estimate completes the proof. �

On the base of equations (5.46)–(5.48) and (6.1)–(6.3) let us introduce
the mappings Φ : D∗ × P × D → R

3n and Φm : D∗ × P × D → R
3n by

setting

Φ(z, λ, η) :=












∆(z, λ, η)
V (z, λ, η)

x∗

p+1(T, z, λ, η) − ηp+1

x∗

p+2(T, z, λ, η) − ηp+2
...

x∗

n(T, z, λ, η) − ηn












, (7.3)

and

Φm(z, λ, η) :=












∆m(z, λ, η)
Vm(z, λ, η)

xm,p+1(T, z, λ, η) − ηp+1

xm,p+2(T, z, λ, η) − ηp+2
...

xm,n(T, z, λ, η) − ηn












(7.4)

for all (z, λ, η) ∈ D∗ × P × D of the form (4.1).

Definition 7.1 ([10]). Let H ⊂ R
3n be an arbitrary non-empty set. For

any pair of functions fj = col (fj1, . . . , fj,3n) : H → R
3n, j = 1, 2, we write

f1 ⊲H f2 (7.5)

if and only if there exist a function

k : H → {1, 2, . . . , 3n}

such that

f1,k(x)(x) > f2,k(x)(x)

for all x ∈ H.
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Remark 7.1. Relation (7.5) means that at every point x ∈ H at least one
of the components of the vector f1(x) is greater then the corresponding
component of the vector f2(x).

Let us consider the set

Ω = D1 × Λ1 × D2, (7.6)

where D1 ⊂ D∗, Λ1 ⊂ P, D2 ⊂ D are certain bounded open sets.

Theorem 7.1. Assume that conditions of Theorem 5.1 hold and, moreover,
one can specify an m ≥ 1 and a set Ω ⊂ R

3n of the form (7.6) such that

|Φm| ⊲∂Ω





10T
27 KQm (1n − Q)−1 δD(f)
10
9 B̄Qm (1n − Q)−1 δD(f)
5T
9 Qm (1n − Q)−1 δD(f)



 . (7.7)

If, in addition,
deg (Φm,Ω, 0) 6= 0, (7.8)

then there exist some (z∗, λ∗, η∗) ∈ Ω such that the function

x∗(t) := x∗(t, z∗, λ∗, η∗), t ∈ [0, T ], (7.9)

is a solution of the boundary-value problem (3.1) (3.2) with the initial con-
dition

x∗(0) = z∗. (7.10)

Proof. Let us prove that the vector fields Φ and Φm are homotopic. For this
purpose, following [12], we consider the “linear deformation”

P (θ, z, λ, η) := Φm(z, λ, η) + θ [Φ(z, λ, η) − Φm(z, λ, η)] , (7.11)

where (z, λ, η) ∈ ∂Ω, θ ∈ [0, 1].
Obviously, P (θ, ·, ·, ·) is continuous mapping on ∂Ω for every θ ∈ [0, 1]

and, furthermore,

P (0, z, λ, η) = Φm(z, λ, η), P (1, z, λ, η) = Φ(z, λ, η)

for all (z, λ, η) ∈ ∂Ω.
For an arbitrary (z, λ, η) ∈ ∂Ω, in view of (7.11), we have

|P (θ, z, λ, η)| = |Φm(z, λ, η) + θ [Φ(z, λ, η) − Φm(z, λ, η)]| ≥

≥ |Φm(z, λ, η)| − |Φ(z, λ, η) − Φm(z, λ, η)| . (7.12)

On the other hand, recalling equalities (7.3), (7.4) and using approxima-
tion (5.4) and estimate (7.2), we obtain the inequalities

|Φ(z, λ, η) − Φm(z, λ, η)| ≤





10T
27 KQm (1n − Q)−1 δD(f)
10
9 B̄Qm (1n − Q)−1 δD(f)
5T
9 Qm (1n − Q)−1 δD(f)



 , (7.13)

whence, in view of (7.7), (7.12), (7.13), it follows that

|P (θ, ·, ·, ·)| ⊲∂Ω 0, θ ∈ [0, 1]. (7.14)

The relation (7.14) implies, in particular, that P (θ, ·, ·, ·) does not vanish
on ∂Ω for any value of θ ∈ [0, 1], i. e., deformation (7.11) is non-degenerate
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and, thus, Φm is homotopic to Φ. Using (7.8) and the property of invariance
of Brouwer degree under homotopy, we conclude that

deg (Φ,Ω, 0) = deg (Φ,Ω, 0) 6= 0.

The classical topological result (see, e. g., [1, Theorem A.2.4]) then guar-
anties the existence of vectors (z∗, λ∗, η∗) ∈ Ω such that

Φ (z∗, λ∗, η∗) = 0.

Therefore, the vector (z∗, λ∗, η∗) satisfies the system of determining equa-
tions (5.46)–(5.48).

Applying now Theorem 5.3, we find that the function (7.9) is a solution
of the original nonlinear boundary-value problem (3.1), (3.2) with the initial
value satisfying (7.10). �

8. Notes on proving the solvability

According to the approach developed here, the proof of the solvability of
the original boundary-value problem (3.1), (3.2) is based on Theorems 5.1
and 7.1. Theorem 5.1 ensures the convergence of the iteration method and,
in particular, justifies the further argument that involves functions of se-
quence (5.4) and their limit (5.7). On the other hand, applying Theorem 7.1,
one can use properties of finitely many functions of sequence (5.4) to estab-
lish that the solution of (3.1), (3.2) exists.

Remark 8.1. In order to apply Theorem 7.1, one has to:

• compute the vector δD(f) according to (5.2) (or estimate it from
above)

• construct the function xm(·, z, λ, η) analytically for a certain fixed
value m = m0, keeping z, λ, and η as parameters

• select a suitable set Ω and verify conditions (7.7), (7.8) for m = m0.

Remark 8.2. To verify condition (7.7) of Theorem 7.1 in concrete cases, one
has to use the recurrence formula (5.4) to compute the function xm(·, z, λ, η)
depending on z ∈ D∗, λ ∈ P, η ∈ D as parameters and verify whether at
least one of the components of the vector |Φm(z, λ, η)| is strictly greater
than the corresponding component of the appropriate vector in the right-
hand side at every point (z, λ, η) of ∂Ω.

After that, we need verify in (7.8) whether the topological degree of Φm is
not zero. This is rather difficult problem in general. However, there are suf-
ficient conditions applicable in a number of important cases. In particular,
when Φm is an odd mapping, i. e.,

Φm(−z,−λ,−η) = −Φm(z, λ, η)

for all (z, λ, η), then, according to the Borsuk theorem (see [1, Theorem
A2.12]), its Brouwer degree is an odd number and therefore, is not equal to
zero.
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Alternatively, it follows directly from the definition of the topological
degree (see [1, Definition A2.1]) that if the Jacobian matrix of the function
Φm in (7.4) is non-singular at its isolated zero (zm,0, λm,0, ηm,0), i. e.,

det
∂

∂z ∂λ ∂η
Φm(zm,0, λm,0, ηm,0) 6= 0,

then inequality (7.8) holds.

9. An illustrative example

Let us apply the numerical-analytic scheme described above to the system
of differential equations

x′

1(t) = 0.05x2 + x1x2 − 0.005t2 − 0.01t3 + 0.1,

x′

2(t) = 0.5x1 − x2
2 + 0.01t4 + 0.15t,

(9.1)

considered for t ∈
[
0, 1

2

]
with the two-point integral boundary conditions

Ax(0) +

∫ 1

2

0
P (s)x(s)ds + Cx

(
1

2

)

= d, (9.2)

where

A =

(
0 0
0 1

)

, C =

(
1 0
0 0

)

, d =

(
13/256
7/960

)

,

and

P (t) =

(
0 t/2

1/2 1/4

)

, t ∈ [0, 1
2 ].

It is easy to check that the pair of functions

x∗

1(t) = 0.1t, x∗

2(t) = 0.1t2

is an exact solution of the problem (9.1), (9.2).
Suppose that the boundary-value problem (9.1), (9.2) is considered in the

domain

D = {(x1, x2) : |x1| ≤ 0.42, |x2| ≤ 0.4} .

Following (4.1), introduce the parameters:

col (x1(0), x2(0)) =: col (z1, z2) ,
∫ T

0
P (s)x(s)ds =: col (λ1, λ2) ,

x2

(
1

2

)

=: η2.

(9.3)

The formal substitution (9.3) transforms the boundary restrictions (9.2)
to the linear conditions

Ax(0) + C1x

(
1

2

)

= d(λ, η), (9.4)

where η = col(0, η2), C1 = ( 1 0
0 1 ), d(λ, η) := d − λ + η. The matrix C1 is, of

course, non-singular.
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Put

f1(t, x1, x2) := 0.05x2 + x1x2 − 0.005t2 − 0.01t3 + 0.1,

f2(t, x1, x2)) := 0.5x1 − x2
2 + 0.01t4 + 0.15t.

Then (9.1) takes form (3.1) with T = 1
2 , n = 2, and it is then easy to check

that the matrix K from the Lipschitz condition (5.1) can be taken as

K =

(
0 0.05

0.5 0.8

)

,

and

r (K) < 0.84 <
10

3T
.

The vector δD (f) can be estmated as

δD (f) ≤

(
0.18925

0.3278125

)

.

The role of D∗ is played by the domain defined by inequalities:

z1 + 2t(0.05078125000 − λ1 − z1) ≤ 0.0473125,

z2 + 2t(0.007291666667 − λ2 + η2 − 2z2) ≤ 0.081953125.

The domain P is such that

P = {(λ1, λ2) : |λ1| ≤ 0.105, |λ2| ≤ 0.31} .

One can verify that, for the parametrized boundary-value problem (9.1),
(9.4), all the needed conditions are fulfilled, and we can proceed with ap-
plication of the numerical-analytic scheme described above. As a result, we
construct the sequence of approximate solutions.

The components of the iteration sequence (5.4) for the boundary-value
problem (9.1) under the linear parametrized two-point boundary conditions
(9.4) have the form

xm,1(t, z, λ, η) := z1 +

∫ t

0
f1 (s, xm−1,1(s, z, λ, η), xm−1,2(s, z, λ, η)) ds

−2t

∫ 1

2

0
f1 (s, xm−1,1(s, z, η, λ), xm−1,2(s, z, η, λ)) ds

+2t(0.05078125 − λ1 − z1), (9.5)

xm,2(t, z, λ, η) := z2 +

∫ t

0
f2 (s, xm−1,1(s, z, λ, η), xm−1,2(s, z, λ, η)) ds

−2t

∫ 1

2

0
f2 (s, xm−1,1(s, z, λ, η), xm−1,2(s, z, λ, η)))ds

+2t(0.007291666667 − λ2 + η2 − 2z2), (9.6)

for m = 1, 2, 3, . . . , where

x0,1(t, z, η, λ) = z1 + 2t(0.05078125 − λ1 − z1), (9.7)

x0,2(t, z, η, λ) = z2 + 2t(0.007291666667 − λ2 + η2 − 2z2). (9.8)
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The system of approximate determining equations of the form (6.1)–(6.3)
for the given example at the mth step is

∆m,1(z, λ, η) = 0, (9.9)

∆m,2(z, λ, η) = 0, (9.10)
∫ 1

2

0
P (s)xm(s, z, λ, η)ds = λ, (9.11)

xm,2

(
1

2
, z, λ, η

)

= η2, (9.12)

(9.13)

where

∆m,1(z, λ, η) := −2

∫ 1

2

0
f1 (s, xm−1,1(s, z, λ, η), xm−1,2(s, z, λ, η)) ds

+ 2(0.05078125 − λ1 − z1),

∆m,2(z, λ, η) = −2

∫ 1

2

0
f2 (s, xm−1,1(s, z, λ, η), xm−1,2(s, z, λ, η)) ds

+ 2(0.007291666667 − λ2 + η2 − 2z2).

Using (9.5)–(9.8) at the first iteration (m = 1) and applying Maple 13,
we get

x11 = −0.0025t4 + 0.1019859484t + 1.333333333t3λ1λ2−

− 1.333333333t3λ1η2 + 2.666666666t3λ1z2 + 1.333333333t3z1λ2−

− 1.333333333t3z1η2 + 2.666666666t3z1z2 + t2z1η2 − t2z1λ2−

− 3t2z1z2 − t2λ1z2 − 0.3333333334tλ1λ2+

+ 0.3333333334tλ1η2 − 0.1666666667tλ1z2 + 0.1666666666tz1λ2−

− 0.1666666666tz1η2 − 2.001215278tz1 − 0.6770833333t3λ2+

+ 0.06770833333t3η2 − 0.1354166667t3z2 − 0.009722222219t3λ1−

− 0.009722222219t3z1 − 0.05t2λ2 + 0.05t2η2 − 0.04921875t2z2+

+ 0.007291666665t2z1 + 0.04192708333tλ2 − 0.04192708333tη2−

− 1.997569444tλ1 + 0.0003645833334t2 − 0.001172960069t3 + z1
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and

x12 = −0.03571925636t − 1.333333333t3λ2
2 − 1.333333333t3η2

2−

− 5.333333333t3z2
2 − 0.5t2λ1 + 4t2z2

2 + 0.3333333334tλ2
2+

+ 0.3333333334tη2
2 + 0.25tz1 + 0.01944444444t3λ2−

− 0.01944444444t3η2 + 0.03888888888t3z2 − 0.01458333333t2z2 − 0.5t2z1−

− 2.004861111tλ2 + 2.004861111tη2 + 0.25tλ1 + 0.002t5+

+ 2.666666666t3λ2η2 − 5.333333333t3λ2z2+

+ 5.333333333t3η2z2 + 2t2λ2z2 − 2t2η2z2 − 0.6666666667tλ2η2+

+ 0.3333333334tλ2z2 − 0.3333333334tη2z2+

+ 0.100390625t2 − 0.00007089120366t3 + z2

for all t ∈
[
0, 1

2

]
. Here and below, we omit the obvious arguments reflecting

the dependence on z1, z2, λ1, λ2, and η2.
The computation shows that the approximate solutions of the determining

system (9.9)–(9.12) for m = 1 are

z1 ≈ z11 = −4.253290711 · 10−7,

z2 ≈ z12 = 7.295492706 · 10−7,

λ1 ≈ λ11 = 0.0007814848293,

λ2 ≈ λ12 = 0.007290937121,

η2 ≈ η12 = 0.0249993271.

Hence, the components of the first approximation to the first and second
components of solution are

x11 = −0.0025t4 + 0.09968792498t − 4.253290711 · 10−7+

+ 0.001249955722t2 − 8.714713042 · 10−8t3

and

x12 = 0.00008047566353t + 0.002t5 + 7.295492706 · 10−7+

+ 0.1000000588t2 − 0.0008332398387t3 .

The graphs of the first approximation and the exact solution of the original
boundary-value problem are shown on Figure 1.

The error of the first approximation is

max
t∈[0, 1

2
]
|x∗

1(t) − x11(t)| ≤ 2.1 · 10−5,

max
t∈[0, 1

2
]
|x∗

2(t) − x12(t)| ≤ 2.2 · 10−6.
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Figure 1: The first components of the exact solution (solid line) and its first
approximation (drawn with dots)

Similarly, the error of the second approximation is

max
t∈[0, 1

2
]
|x∗

1(t) − x21(t)| ≤ −4.03 · 10−8,

max
t∈[0, 1

2
]
|x∗

2(t) − x22(t)| ≤ 1.2 · 10−6.

Continuing calculations, one can get approximate solutions of the original
boundary-value problem with higher precision.
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