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Abstract: We investigate the existence of positive solutions to a three-point bound-
ary value problem of second order impulsive differential equation. Our analysis rely
on the Avery-Peterson fixed point theorem in a cone. An example is given to illustrate
our result.
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1. Introduction

Impulsive differential equations have very good applications in economics, biology,
ecology and other fields(see[1-3]). Many authors are interested in the boundary value
problem of impulsive differential equations (see [4-23]). For example, in [6,7], R. P.
Agarwal and D. O’Regan studied the existence of solutions for the boundary value
problems

yl/<t> + ¢(t)f(t7 y@)) =0, te (07 1) \ {tlv ty, -, tWL}v
Ay/<tk) = Jk(:y(tlz))? k= 17 27 Ty,

y(0) =y(1) =0,
by using Krasnoselskii’s fixed point theorem and the Leggett Williams fixed point
theorem, respectively. Using the fixed point index theory, T. Jankowski ([23]) ob-

tained the existence of solutions for the boundary value problem

2'(t) + a(t) f(z(at))) =0, t € (0,1)\{ty, ta, -, tm},
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Ay'(te) = Qu(z(te)), k=1,2,---,m,
2(0) =0, Bz(n) = =z(1).
Tn paper [26], quite general impulsive boundary value problems
u”(t) + p()' () + q)u(t) + g() f(t,u(t)) =0, t€(0,1), t#T,
Augr) = I(u(1)),
Aufy_,) = N(u(7)),
aru(0) — byt (0) = aful, asu(1) — by (1) = Blul.

are treated.
Motivated by the excellent results mentioned above and the methods used in [24],

in this paper, we examine the second order impulsive equation

u'(t) + () f(tu(t) =0, L€ (0, )\ {tr,ta,- -~ tm},

Au(tk) = Ik(u(tk)), k‘ = 1, 2, e, M, (11)
Au,@k) = Jk<u<tk>>7 k= 1,2,---,m,
u(0) = au(§), (1) =0,

where o, £ € (0,1), 0 <ty <ty < -+ <ty <1,&F#t, k=1,2,---,m, Au(ty) =
w(th) —u(ty), u(ty) (respectively u(t;)) denotes the right limit (respectively left
limit) of u(t) at t = t,. Also Au'(ty) = u'(t}) — ¥/(¢;). Our result complements
the results of [6,7,23] and it can solve the problems which cannot be solved by the
results of [26](see example 3.1).

We define the Banach space:

PC[0,1] = {u: [0,1] — R, there exists uy € Clty, tx+1] such that u(t) = u(¢)

for t € (t,tgsa], k=0,1,---,m, u(0) =u(0+0)},

with the norm

[ull = sup{|u(®)] : ¢ € [0, 1\ {t2, -t} },

where tyg =0, t,41 = 1.

A positive solution of the problem (1.1) means a function v € PC|0, 1] which
satisfies (1.1) with u(t) > 0, ¢ € [0, 1].

In this paper, we will always suppose that the following conditions hold:

(C1) ¢ € C(0,1) with ¢ >0 on (0,1) and ¢ € L'[0,1].

(Cy) f:1]0,1] x [0,00) — [0, 00) is continuous.

(C3) Iy, Jy :[0,00) — R are continuous for k = 1,2, -, m.
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(Cy) There exists a function Q : {u : u € PC[0,1], v > 0} — [0,4+00) and a
constant 0 < ¢y < 1 such that

cof(u) < wp(t,u) < Qu), (t,u)€[0,1] x{u:ue PCI0,1], u> 0},

where
wolt,u) = 77— D [Iu(u(te)) + (€ = ) Je(u(t))]
Oy <e
+tzt T(u(ty)) — 8 +1(—;a)tk Ji(u(tr))| — ; W‘]’“(u(tk))'

2. Preliminaries

For y € L]0, 1], let’s consider the following problem:
H()+y()20 tE(Ovl)\{t17t27"'7tm}7
AU(tk)—[k< (k)), ]{Z:LQ,"', m,
Au'(ty) = Ji(u(tr)), k=1,2,---,m,
u(0) = au(§), (1) =

Lemma 2.1 Let u > 0. Then u is a solution of the problem (2.1) if and only if

(2.1)

it satisfies .
ult) = [ Gt $)y(s)ds + wolt,u), (2.2)
0
where
s, s <&, s <t,
as+ (1—a)t, t<s<¢,
l—a| at+(1—-a)s, £<s<t,
al+(1—a)t, £<s,t<s,

G(t,s) =

wo(t, u) is the same as in condition (Cy).
Proof. Let u be a solution of the problem (2.1), then

W(t) = —y(t). 23)
For t € (0,t], integrating (2.3) from 0 to ¢, we have

dit) =~ [ y(s)ds

t
u(t) = co + it — / (t — s)y(s)ds.
0
So, we have

u(ty) = ity — /0t1<t1 — 5)y(s)ds + ¢z, (2.4)
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t1
L) = ¢ —/0 y(s))ds. (2.5)
For t € (11, t5], integrating (2.3) from ¢; to ¢, we have
t
u(t) = by + by (t — 1) —/t (t — 8)y(s)ds. (2.6)

By (2.1), (2.4), (2.5) and (2.6), we have

b = h(u(t) + ety — | "t = $)y(s)ds + oo,

t1
by = Ji(u(ty) + 1 — /0 y(s)ds.
Thus,

t

u(t) = Li(u(ty)) + et — /0 (t —s)y(s)ds + Ji(u(ty))(t —t1) + ca.

For t € (ty, tx41], by the same way, we can get
; k
u(t) =it + ¢o — /0 (t = s)y(s)ds + D _(t — t) Ji(u(ts) + > Li(u(ty)). (2.7)
i=1 i=1

By «/(1) = 0 and (2.7), we have

m

cl—/ ds—zzlJi ti)).

It follows from (2.7) and u(0) = au(§) that

cx = T2le [ wlohts = (€~ ohlonds = 32 €ut) + X6 -ttt

-« fo<t
+ Zﬁ L (u(tr))]
So, we get
ult) :/Olty(s)ds+ 1‘):5& /01 (s)ds — 1f‘a/j(g—s) (s)ds—/ot(t—s)y(s)ds
+1 i‘a > Un(ulte)) + (€ — te) Je(u(te)] + D l[k _af +1(i—aoz)tk T (u(ty))
<€ <t
- AR )
- / ty(s)ds + | _éa /01 y(s)ds — | fa /06(5 — s)y(s)ds — /Ot(t — 5)y(s)ds + wo(t, u).

For t < &, we obtain

u(t) = /Ot i y(s)ds + /t5 wy(s)ds + /; wy(s)ds + wo(t, u).

11—« 11—« 11—«
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For t > &, we have

u) = [y ds+/‘%*1‘“ “ypds + [ EEZ O i ).

11—« 11—«

So, we get
1
ult) = / G(t, 8)y(s)ds + wolt, w).
0
Conversely, if u(t) satisfies (2.2), it’s easy to get that u(t) is a solution of (2.1). O

Lemma 2.2. The function G(t, s) is continuous on [0, 1] x [0, 1] and it satisfies
pog(s) < G(t,s) <g(s), t,sel0,1],

where g(s) = %, po = af.
—«
Proof. The proof of this lemma is easy. So, we omit it. O

Now we define a cone P on PC|0, 1] and an operator T : P — PC|0, 1] as follows:

P ={ue PC[0,1] : u(t) > O,ti%fl]u(t) > pllul|}, where p = min{co, po}-
€lo,

1
Tu(t) = /0 G(t, $)6(s)f (5, u(s))ds + wo(t, u).
Obviously, if u € P is a fixed point of T', it is a solution of the problem (1.1).
Lemma 2.3. Assume (C;) — (Cy) hold. Then T : P — P is a completely
continuous operator.
Proof. By (C4), (Cs) and (Cy), we have Tu(t) > 0, v € P. By (C4) and Lemma

2.2, we can get
ITu(t)] = |/ (t, 8)B(s) f (s, u(s))ds + wolt, u)|
</ u(s))ds + Q(u),

and

inf, Tu(t) = inf, [ /0 LGt 9)0(s) f (5, u(s))ds + wolt, )

t€[0,1] te[o,ll
> po [ 9(5)0(5)f (s, u(s))ds + o)
> pl[Tul].
This shows that T': P — P. By the continuity of f, I, Jx, k = 1,2,---,m, we
can easily obtain that T': P — P is continuous. Let S C P be bounded. Obviously,
T(S) C P is bounded. For u € S, t,t' € (t, ty41], we have

[Tu(t) — Tu()| < o 1G(t,s) = G(t', s)|é(s) f (s, u(s))ds + |wo(t, u) — wo(t', u)]
< Jo 1G(t,5) = G(t', 5)|o(s) f (5, u(s))ds + |t — | pIREACICOIE
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By (C1), the uniform continuity of G on [0, 1] x [0, 1], the boundedness of f on [0, 1] x
S and the boundedness of J, on S, we obtain that T(S) is quasi-equicontinuous on
[0,1]. By [1], T is a compact map. So, T': P — P is completely continuous. O
In order to obtain our main results, we need the following definitions and theorem.
Definition 2.1. A map ¢ is said to be a non-negative, continuous and concave

functional on a cone P of a real Banach space E iff ¢ : P — R, is continuous and

p(te + (1 —t)y) = to(x) + (1 —1)o(y),

for all z,y € P and t € [0,1].
Definition 2.2. A map @ is said to be a non-negative, continuous and convex

functional on a cone P of a real Banach space F iff ® : P — R, is continuous and
Dtz + (1 — t)y) < t0(x) + (1 — )B(y),

for all z,y € P and t € [0,1].

Let ¢ and © be non-negative, continuous and convex functional on P, ¢ be a
non-negative, continuous and concave functional on P, and ¥ be a non-negative
continuous functional on P. Then, for positive numbers a, b, ¢ and d, we define the

following sets:
P(e,d) ={z € P:p(r) <dj,

P(o,®,b,d) ={x € P:b< ®(x),p(x) <d},
P(p,0,®,b,c,d) ={zx € P:b< ®(z),0(z) <c px) <d},
R(p,V,a,d) ={x € P:a<V(x),p(x) <d}.

We will use the following fixed point theorem of Avery and Peterson to study the
problem (1.1), (2.1).

Theorem 2.1[25]. Let P be a cone in a real Banach space E. Let ¢ and © be
non-negative, continuous and convex functionals on P, ® be a non-negative, contin-
uous and concave functional on P, and ¥ be a non-negative continuous functional
on P satisfying W(kz) < kVU(z) for 0 < k < 1, such that for some positive numbers
M and d,

D(x) < W(x) and |l2]| < Mip(x)

for all x € P(¢,d). Suppose that

T: P(p,d) — P(p,d)

is completely continuous and there exist positive numbers a, b, ¢ with a < b, such

that the following conditions are satisfied:
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(S1) {x € P(p,0,®,b,¢,d) : P(z) > b} # D and ®(Tz) > bforxz € P(p,0,P,b,¢,d);
(S2) ®(T'x) > b for x € P(p, ®,b,d) with O(Tz) > ¢;
(S3) 0 ¢ R(p,¥,a,d) and U(Tz) < a for x € R(p, ¥, a,d) with ¥(z) = a.

Then T has at least three fixed points =1, =3, 3 € P(p,d), such that
o(x;) <d, fori1=1,2,3,

and
b<®(xy), a < V(xg), P(xg) <D,

U(z3) < a.
3. Main results
We define a concave function ®(z) = i%fl] |z(t)| and convex functions ¥(z) =
tefo,

O(x) = p(x) = ||
Theorem 3.1. Suppose (C) — (Cy) hold. In additions, we assume that there

b
exist positive constants yu, L, a, b, ¢, d with a < b < ; =c<d,u>Dy+ Dy 0<
L < p(Dy + D3), where Dy = [y g(s)¢(s)ds, Dy, D3 > 0, such that the following

conditions hold: J N
(Ay) f(t,u) < —, for (t,u) € [0,1]x[0, d], and wo(t, u) < fd, foru e P, ||u| < d;

D
, for (t,u) € [0,1] x lb, é], and wq(t,u) > T?’b, foru e P, b <
p

D
(A3) f(t,u) < g, for (t,u) € [0,1]x0, a], and wy(t,v) < —2a, foru € P, ||u]| < a.
Then the problem (1.1) has at least two positive solutions when f(¢,0) =0, t €
[0,1] and at least three positive solutions when f(¢,0) Z 0, ¢ € [0, 1].

Proof. Take u € P(p,d). By assumption (A;), we have

1 D
P(Tu) = |[Tul < [ g(s)o(s)f (s, u(s))ds + —2d
d Dy, Diy, D
< ;/0 9(s)o(s)ds +—td = “Ld 4 “Rd < d
Thus, T': P(p,d) — P(p,d).

Let’s prove that condition S; holds.

1
Take u(t) = blp + ), t € [0,1]. By simple calculation, we can get that
b(p+1) b
g =22 o
p
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and

Therefore,

u € P(p,0,9,b,c,d) means that b < u(t) <

O(Tu) = inf

te0,1

> b.

1
O(u) = inf |u(t)| = LD
te0,1] 2p

{u€ P(p,0,®,b,c,d):b< ®(u)} #0.

, t €10,1]. By (Az), we get

D o

[Tuto) 2 0 [ [ 951605115, us))ds + D3| 2 p2(Dy+ Dy) > b

L

So, condition S; holds.
Now we will show that condition S; holds.

b
Take u € P(p, ®,b,d) and ||[Tu|| > — = ¢. Considering T'u € P, we get
p

b
O(Tu) = inf |Tu(t)| > p||Tul| > p-— =0,
p

t€[0,1]

This shows that condition S, is satisfied.

In the following we will show that the condition Sj is satisfied. Since ¥(0) =
0, 0<a, 0¢ R(p,V,a,d). Assume that u € R(p, ¥V, a,d) with U(u) = [|u]| = a.
Then, by (Asz), we have

W(Tw) = [ Tu(t)]| < [ 9(s)6(5)7 s, u(s))ds + D <

a

(Dl + DQ) < a.
1

Thus, condition Sj is satisfied. By Theorem 2.1, we get that the problem (1.1) has

at least three solutions uy, us, uz € P satisfying

|lwi|| <d, i=1,2,3, and b < inf |uy(t)],
t€[0,1]

@< fuell, inf us(t)] <, s <.

Obviously, ui(t) > 0, us(t) > 0, t € [0,1]. If f(¢,0) £ 0, t € [0,1], then u =0
is not a solution of (1.1). So, uz # 0. This, together with ug € P, means that
ug(t) >0, t €[0,1). O

Example 3.1.

Consider the following boundary value problem

:\
=
+
~

(t’u(t)) =0, te (0’ 1) \ {%}v
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where

1
%UQt, te0,1], ue [O, %} ,
1
Za2 _ _Z 1
Fta) = ) 51— 0+ (60 + 2/ (u—2), € [0,1], we [b1)
30 + /ut, te0,1], u € [1,16],
30 + 4t, t €[0,1], u € [16,00).
. 1 1 1
Corresponding to Theorem 3.1, we take a = £ = Z,CO = é,p = 1—6,,u 2,D =
1 2 1 1 1 —y/w
/O g(s)ds = 2.0y = 2. D5 = 0,1 = =, h(w) = =V, Ji(w) = 6—[,9@) -
3/ u(:
(8), and
128
3/ u(d 1
<8), t> -,
wot,u) = 128 8
<3 1) 1 <1) s < 1
— —ju(= —.
8 64 87 78

1 1
It is easy to check that EQ(U) < wp(t,u) < Qu). Let a = 5,() = 1,d = 68. By
simple calculation, we can get that the conditions of Theorem 3.1 are satisfied. So,

the problem (3.1) has at least three solutions uy, ug, u3 € P satisfying
|lwil| <68, i=1,2,3,

and

1 1
1< ®(w), 5 < luall, @(uz) <1, fJus| <5,

where uy, uy are positive solutions of (3.1).

Remark. Corresponding to the condition (Cj5) in [26], we get (di] + e N)(w) =
5—?2\/5, (dol +eaN)(w) = 61—4\/5 The problem (3.1) cannot be solved by the The-
orems in [26] because the condition (C3) in [26] is not satisfied. So, our result may

be considered as a complementary result of [26].
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