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ABSTRACT. In this paper, we obtain a precise estimation of the
hyper order of solutions for a class of higher order linear differen-
tial equation, and also investigate the exponents of convergence of
the fixed points of solutions and their first derivatives for the sec-
ond order case. These results generalize the results of Gundersen-
Steinbart, Wittich and Chen-Shon.
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1. INTRODUCTION

In this paper, we will use standard notations from the value dis-
tribution theory of meromorphic functions (see [15] [20]). We suppose
that f(z) is a meromorphic function in whole complex plane C. In
addition, we denote the order of growth of f(z) by o(f), and also use
the notation oy(f) to denote the hyper-order of f(z), defined by

i loglogT'(r,
@(f)zhmsup%r(f).

To give the precise estimate of fixed points, we define the exponent of
convergence of fixed points by 7(f)

log N (r, =
7(f) = lim sup ( ¢ Z))
r—00 log r

)

and also the hyper-exponent of convergence of (distinct) fixed points

by 72(f)(T2(f))

loglog N (r, 72)
To(f) = limsup g7 (f=2)

I

log log N (r, —iz )
To(f) = limsup Ues)”
r—00 log r
Recently, many scholars devoted to investigating the growth of so-

lutions of complex differential equations, see [1-3, 5-9, 11, 12, 16-19, 21].

*Corresponding author.
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Consider the second order homogeneous linear periodic differential
equation
[T+ PE)f + Q) f =0, (1.1)
where P(z) and )(z) are polynomials in z and not both constants. It
is well known that every solution of f is an entire.

Suppose f Z 0 is a solution of (1.1) and if f satisfies the condition
logT
lim sup log T(r /)

=0 1.2
r—00 r ’ ( )
then, we say that f is a nontrivial subnormal solution of (1.1).

Wittich [17] investigated the subnormal solution of (1.1), and obtained
the form of all subnormal solutions in the following theorem.

Theorem A. If f(# 0) is a subnormal solution of (1.1), then f must
have the form

f(z) =eZ(ho + hie* + -+ - + hype™) (1.3)

where m > 0 is an integer and ¢, hg, - - - , h,,, are constants with hg # 0

and h,, # 0.

Gundersen and Steinbart [12] refined Theorem A and got the following
theorem.

Theorem B. Under the assumption of Theorem A, the following state-
ments hold.

(i) if deg P > deg @ and @ # 0, then, any subnormal solution f # 0 of
(1.1) must have the form

f(z) = Z hpe %
k=0

where m > 1 is an integer and hg, hy, - - - , h,,, are constants with hy # 0
and h,, # 0.

(ii) if deg P > 1 and @ = 0, then any subnormal solution of equation
(1.1) must be a constant,
(iii) if deg P < deg @, then the subnormal solution of equation (1.1) is

f=0.

Chen and Shon [6] investigate more general equation than (1.1), and
get the following theorem.

EJQTDE, 2013 No. 19, p. 2



Set

aj(2) = aj0,2" + a2+ +apz + ag (1.4)

bk<2) = bkdkzd’“ + bk(dk,l)zd’“fl + -+ bklz + ka (15)
where d; > 0, my > 0(j = 1,...,n, k = 1,...,s) are integers.
Ajd;s - - - @jo; Oray, - -, bro are constants. ajq; # 0, bra, 7 0.
Theorem C. Let a,,(z2), ..., a1(z), bs(2), ..., b1(z) be polynomials and

satisfy (1.4) and (1.5), and a,(2)bs(2) # 0. Suppose that
P(e7) = an(2)e™ + -+ ar(2)e*,  Q(e) = by(2)e™ + -+ + bi(2)e”.
If n # s, then every solution f (% 0) of equation

"+ Pe)f +Q(e)f =0 (1.6)
satisfies oo(f) = 1.

For the higher-order linear homogeneous differential equation
FE + Py () f5 D+ 4 Py(e”) f =0, (1.7)

where Pj(e*) (j =0,...,k—1) are polynomials in z, many papers were
devoted to investigate the solutions of (1.7) (see [3] [5] [7] [8] [16]).

In [7] Chen and Shon consider the existence of subnormal solution of
(1.7) and obtain the following theorem.

Theorem D. Let P;(z)(j = 0,...,k — 1) be polynomials in z such
that all constant terms of P; are equal to zero and deg P; = m;, that
is,

Pj(ez) = ajmj ijz + aj(mj_l)e(mfl)z + 4 aﬂez,
where ajp;, @jom;—1), -+, a1 are constants and a;n,; # 0; m; > 1 are
integers. Suppose that there exists my (s € {0,...,k — 1}) satisfying

ms >max{m;:j=0,...,s—1Ls+1,....k—1} =m.
Then one has the following properties.

(i) If Py # 0, then (1.7) has no nontrivial subnormal solution and every
solution of (1.7) is of hyper order oo(f) = 1.

(i) If Ph=---=P;1 =0and P; #0(d < s), then any polynomials
with degree < d — 1 are subnormal solutions of (1.7) and all other so-
lutions f of (1.7) satisty oo(f) = 1.

It is natural to ask the following question: whether the result of Theo-
rem B can be generalized to the higher order case under the condition
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of Theorem C. In this paper, we first investigate the problem and ob-
tain the following result.

Set
Q. (z) = @ zdjmi+a, zdjmiil—k..._i_a. z+a. (1 8)
jm; — Wimidjm, Jmi(djm,; —1) jm;l jm;0 .

where dj,,, > 0(j =1,...,n) are integers, Ajmidym, s - - - Ajm;0 A€ CON-
stants, ajm,a;,, 7 0.

Theorem 1. Let aj,,,(2) be polynomials and satisfy (1.8). Suppose
that

PA(€%) = Qg ()™ + -+ + ajn(2)e” (1.9)
where a;m,,(2) # 0. If there exists an integer s(s € {0,...,k — 1})
satisfying
ms >max{m;:j=0,...,s—Ls+1,....k—1} =m, (1.10)
then every nonconstant solution f of equation
O+ Py () f5V 4+ Ry(e) f =0 (1.11)

satisfies oo(f) = 1 if one of the following condition holds.

(1) s=0or 1.
(2) s > 2 and degag;(z) > dega;;(z) (i # 0).

For almost four decades, a lot of results have been obtained on the fixed
points of general transcendental meromorphic function. However, there
are few studies on fixed points of differential polynomials generated by
solutions of differential equation. In 2000, Z.X.Chen [4] first pointed
out the relation between the exponent of convergence of distinct fixed
points and the rate of growth of solutions of second-order linear dif-
ferential equations with entire coefficients. In this paper, we continue
to investigate the relation between the hyper-exponent of convergence
of distinct fixed points and the rate of growth of solutions for a higher
order case.

Theorem 2. Under the assumption of Theorem 1, if 2P (e*)+ Py (e*) #
0, then we have every nonconstant solution f of equation (1.11) satisfies
72(f) =T2(f) = 0a(f) = 1.

In particular, we investigate the exponents of convergence of the fixed
points of solutions and their first derivatives for a second order equa-
tion (1.6). we will prove the following theorems:

EJQTDE, 2013 No. 19, p. 4



Theorem 3. Let a,(z), ..., a1(2), bs(2), - -+ ,b1(2) be polynomials
and satisfy (1.4) and (1.5), and a,(z)bs(z) # 0. Suppose that
P(e®) = an(2)e™ 4+ - -+ a1(2)e®, Q(e*) = bs(z)e™ + -+ -+ by(2)e.

If s # n, then every solution f (# 0) of equation (1.6) satisfy A(f—z) =
A" =2)=0(f) =00 and M(f — 2) = Xa(f' — 2) = o2(f).

2. SOME LEMMAS

Lemma 1. ([20]) Let f;(2)(j = 1,...,n)(n > 2) be meromorphic
functions, g;(z) (j = 1,--- ,n) be entire functions, and satisfy

(1) X, e® =0;

(2) when 1 < j < k < n, then ¢;(z) — gr(2) is not a constant;

(3) when 1 < j <n,1 <h<k<n, then
T(r, f;) =o{T(r,e )} (r —oo,r ¢ FE),

where E C (1,00) is of finite linear measure or logarithmic measure.
Then, f;(2) =0(j=1,---,n).

Lemma 2 Let P;(e*), mj, m,, m and a;;(z)satisfy the hypotheses
of Theorem 1. Then equation (1.11) has no nonconstant polynomial
solution.
Proof. Suppose that fo = b,2" +---+biz+by (n > 1, by,..., by are
constants, b, # 0) is a nonconstant solution of (1.11).
If n > s, then fo(s) # (0. Substituting fy into (1.11) and taking z = r,
we conclude that
|@smydam, | 7™ €™ byn(n — 1) - (n— s+ 1)|r"*(1 + o(1))

< |- B

k z k—1 z s+1

< V@I 1Pea(@) e @+ 4 PS5 (2)]
+ [Pea(@) @)+ | Bo(e) o(2)]
Mrde™ (14 o(1)). (2.1)

IA

Since ms > m we see that (2.1) is a contradiction.

Obviously, when s = 0 or 1, we can get that the equation (1.11) has
no nonconstant polynomial solution from the above process.

If n < s, then

Pu(e) /3" (2) + -+ Pole?) fol2) = 0. (22)
Set max{m; : i =0,--- ,n} = h. If m; < h, then we can rewrite
(mj+1)z

Pi(e®) = ajn(2)e" + -+ ajim 1) (2)e

+ @jm; ()€™ 4 Faj(z)e (j=0,...,n), (2.3)
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where a;n(2) = -+ = ajm,+1)(2) = 0.
Thus we conclude by (2.2) and (2.3) that

(@ () FS” + a@onn(2) 3" + -+ aonfo)e™ +
+ (g () + a4 agi fo)e?® +
+ (@ () F5 + o (D + -+ agufo)et = 0(2.4)

Set
Qj(2) = @i ()" + a1y () J" TV - agifo (G=1,...,h),
Since f; and a;;(z) are polynomials, we see that 2
m(r,Q;) = o{m(r, e(“‘ﬁ)z)} (I1<pB<a<h). (2.6)
By Lemma 1 and (2.4)-(2.6), we conclude that
Q1(2) = Qa(2) =--- = Qu(z) =0. (2.7)

Since deg fo > deg fj > --- > deg fé") and deg ag;(z) > dega;j(z) (i #
0), by (2.5) and (2.7), we get a contradiction.

Lemma 3. [11] Let f(z) be an entire function and suppose that
|f®)(2)| is unbounded on some ray argz = 6. Then, there exists an
infinite sequence of points z, = r,e? (n = 1,2,...), where r, — oo,
such that f*)(z,) — oo and

f9 ()]

0 (2)] <|z|® (1 +0(1) (j=0,....k—1). (2.8)

Lemma 4. [10] Let f(z) be a transcendental meromorphic function
with o(f) = 0 < oo, Let I' = {(k1,71),- -, (km,Jjm)} be a finite set
of distinct pairs of integers satisfying k; > j; > 0 for i = 1,2,... ,m.
Also let € > 0 be a given constant, then there exists a set £ C [0, 2m)
that has linear measure zero, such that if ¢ € [0,27) \ E, then there is
constant Ry = Ry(1) > 1 such that for all z satisfying arg z = ¢ and
|z| > Ry and for all (k, j) € I', we have

|fP(2)] (k—j)(o—1+¢)
o < | (29)

Remark 1 Obviously, in Lemma 4, if ¢» € [0,27) \ E is replaced by
¢ € [—%,3)\ E, then (2.9) still holds.
Lemma 5. [5] Let f(z) be an entire function with o(f) = ¢ < 0.

Suppose that there exists a set £ C [0,27) that has linear measure
EJQTDE, 2013 No. 19, p. 6



zero, such that for any ray argz = 0y € [0,27) \ E, |f(re?)| < Mrk
(M = M(6y) > 0 is a constant and k > 0 is a constant independent of
0p). Then f(z) is a polynomial with deg f < k.

Lemma 6. [8] Let Ay, ..., Ax_; be entire functions of finite order. If
f(z) is a solution of equation

FO + A fEV 4 A f =0,
then o5(f) < max{o(4,):j=0,....,k—1}.

Lemma 7. [9] Let g(z) be an entire function of infinite order with the
hyper-order o5 = o, and let v(r) be the central index of g. Then,
log1
lim sup loglog v(r) = 0y(g) = 0.
r—c0 log r

Lemma 8. [6] Let f(z) be an entire function of infinite order with oy =
a(0 <a<oo),and aset E C [1,00) have a finite logarithmic measure.
Then, there exists {z, = rpe}, such that |f(zx)| = M(ry, f), O €
-3, 37”), limy oo O = 0o € [—7F, 37”), ry € E, and r, — oo, such that
(1) if o2(f) = a (0 < a < 00), then for any given 1 (0 < &1 < @),

exp{ry '} < v(ry) < exp{rp*™}. (2.10)
(2) if o(f) = oo and o3(f) = 0, then for any given &5 (0 < 2 < 3), and
any large M (> 0), we have, as ry sufficiently large,

i < v(rg) < exp{r?}. (2.11)

Lemma 9. [10] Let f be a transcendental meromorphic function,
and o > 1 be a given constant. Then there exists a set £ C (1, 00)
with finite logarithmic measure and a constant B > 0 that depends
only on « and 4, j(i < j(i,7 € N)), such that for all z satisfying
|z| =r ¢ EU|0,1],

PO D) ogrytog Tar iy~ 2.12)

Remark 2 From the proof of Lemma 9, we can see that the exceptional
set F satisfics that if a, and b, (n,m = 1,2,...) denote all zeros
and poles of f, respectively, O(a,) and O(b,,) denote sufficiently small
neighborhoods of a,, and b,,, respectively, then

E = {]z] : z € (U;210(an)) U (U2, 0(bm)) }-

Hence, if f(z) is a transcendental entire function, and z is a point that
satisfies | f(z)| to be sufficiently large, then (2.12) holds. For details see
[7] Remark 2.10.
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Lemma 10.(See [14] and Satz 21.2 of [13]) Let ¢ be a non-constant
entire function, and let 0 < 6 < 1. There exists a set £ C [1,00)
of finite logarithmic measure with the following property. For r €
[1,00) \ E, the central index v(r) of g satisfies

v(r) < (log M(r,g))"*°.

Lemma 11. [3] Let Ay, ..., Ax_1, F' # 0 be finite order meromorphic
functions. If f is a meromorphic solution the equation

FO LA fE D 4 A f = F, (2.13)

with p(f) = +o0 and pa(f) = p, then f satisfies M) =Mf) =p(f) =
+o0 and Ao(f) = Ao (f) = p2(f) = p-

3. PROOF OF THEOREM 1

Suppose that f # 0 is a solution of (1.11), then, f is an entire function.
By Lemma 2, we see that f is transcendental.

First step.we prove that o(f) = oo.

Assume that f is transcendental with o(f) < oo. By Lemma 4, we

know that for any given ¢ > 0, there exists a set £ C [—Z, 3T) having
linear measure zero, such that if ¢ € [—%,3%) \ E, then there is a

constant Ry = Ro(¢) > 1 such that for all z satisfying argz = ¢ and
|z| =7 > Ry, we have

f(j)(z) (o—1+e)(j—s) . _
|f(s)<z)|§r j=s+1,... k. (3.1)
Case 1 Now we take a ray argz = ¢ € (—%,%) \ E. Then we have

cos® > 0. We assert that | f)(re?)| is bounded on the ray argz = 6.
If | f®)(re)| is unbounded on the ray argz = 6, then by Lemma 3,
there exists a sequence {z; = 7"} such that as 7, — oo, f*)(z) — oo
and

f(l)(zt) s—1 .
|f(8)(2’t)| <r;*(l4o(1)) i=0,...,s—1. (3.2)
By (1.11), we get that
TP N ey 1)
P =gt X BN e
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|Ps(e*)] = |asm, (z0)e™* 4+ -+« + a1(z)e™|
75| — [ asma 1) (2)e™ TV 4 - 4 fag (z)e”]
= |Gsmydym, rdsms (1 4 o(1))emertcosb

. Ha/s(ms_l)ds(ms—l) ‘T,ds(msfl)e(ms*l)f't cos@(l + 0(1)) 4.

> |agm, (2)e

+ |as1g, [r* e (1 + o(1))]
1
> S lasm.don, [oms emart<00(1 4 o(1)) (3.4)
and
djmj mr¢ CoS .
|1Pi(e”)] < 2l|ajm,a,,, [ e “A+o(1) j#s (3.5)
By substituting (3.1) (3.2) (3.4) and (3.5) into (3.3), we obtain that
1 Tt COS djijrko mrs COS
§|asmsd5ms |,rdsmse s 9(1+0(1)) < 2|a’jmjdjmj |’I“t e 9(1+O(1))
(3.6)

Since m; > m and cosf > 0, we know that when r, — oo, (3.6) is a

contradiction.
Hence when argz = 6 € (—2,%)\ E, we have |f®) re)| <

(=
the ray argz =0 € (—35,5) \ E,

| f(re®)| < Mr®. (3.7)

Case 2 Now we take a ray argz = 6 € (3,27) \ E. Then we have
cos® < 0. We assert that | f*)(re’)| is bounded on the ray argz = 6.
If | f®)(re?)| is unbounded on the ray argz = 6, then by Lemma 3,

there exists a sequence {z; = r;e?} such that as r, — oo, f#¥)(z) — oo

and
FO(z) .
|fk)(2’t)‘_ “140(1)) i=0,...,k—1. (3.8)
By (1.11), we get that
_ 2t f(kil) (Zt) 2t f(zt)
Since when r; — 00,
Py (€)] = lajm, (20)€™* + ajn,—1(2)e™ V% 4 4 aji ()€

< @gmyaz, e €™ 0 (L4 0(1)) + - -

+ [ajiay [P e (1 + o(1)). (3.10)
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By substituting (3.8) and (3.10) into (3.9), we obtain that

U< ryflan—1my_ydyrm, rfk_lmk’lemk*m s (14 0(1)) + - - -
+ ar-11d;_1, [ttt oSO (1 4 o(1))] + - - -
+ 'r’f[|a0m0d0m0 |'r’,flOmO emorteosbe(1 4 o(1))
+ o [aguag [ e (1 4 o(1)))]. (3.11)

Since cosf; < 0, when r, — oo, by (3.11), we get 1 < 0. This is a
contradiction. Hence |f®*) (re)| < M on theray argz = 6 € (Z,3%)\E.

202
So, on the ray argz = 6 € (£,%)\ E, we have

|f(re®)| < Mr*. (3.12)
Since the linear measure of £ U {—%,%} is zero, by Lemma 5, (3.7)

and (3.12), we know that f(z) is a polynomial. Thls contradlcts our
assumption that f(z) is transcendental. Therefore o(f) = oco.

Second step. We prove that oy(f) = 1.

By Lemma 6 and o(P;(e*)) =1(j =0,...,k — 1), we see that
oo(f) < max{o(P;(e*))} = 1. (3.13)

Now we suppose that there exists a solution fj satisfies oo(fy) = o < 1.
Then we have

log T'(r, fo)
r

lim sup ———————= = 0. (3.14)

By Lemma 9, we see that there exists a subset £; C (1, c0) having finite
logarithmic measure such that for all z satisfying |z| = r ¢ E; U [0, 1],

|f0”< 2)
fo(2)

where M (> 0) is some constant.

| < Mo[T(2r, fo)]F*Y, j=1,... Fk, (3.15)

From the Wiman-Valiron theory, there is a set Ey C (1,00) having
logarithmic measure ImFE> < oo, such that we can choose a z satisfying
|z| =r € [0,1] U Ey and |fo(z )\— M(r, fo), then we get

() _ )
fo(2) z
where v(r) is the central index of fy(z).
By Lemma 8, we see that there exists a sequence {zt = 1t} such

that ‘fO(Zt)‘ = M('f’tafo)a 0, € [_377) im0, = 0y € ﬂ g—ﬂ
EJQTDE, 2013 NG. fg p 10
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[0,1]U By U Ey, 1y — oo, and if a > 0, then for any given &1 (0 < &1 <
min{«a, 1 — a}) and for sufficiently large ry, we get by (2.10) that

exp{r{ '} < v(ry) < exp{r{™}; (3.17)

if @« = 0, then by o(fy) = oo and (2.11), we see that for any e (0 <
g2 < 1), and any large M (> 0), we have, as r; sufficiently large,

rM < v(r) < exp{r{*}. (3.18)
Since 0y may belong to (=%, %), or (3,28), or {—Z,Z}, we devide this

proof into three cases.

Case 1. Suppose 0y € (—=5,%). Then cosfp > 0. We take § =
1(Z2 —16]). Thus [0y — 6,60 + 6] C (—%,%). By 6, — 0, we sce that
there is a constant N (> 0), such that as ¢t > N, 6, € [0y — 0,0y + ],
and 0 < cos(|90\ +0) < cosb;. By (3.14), we see that for any given

£3 (0 < ez < (k+1 COS(|90| + 5))

[T(2Tt’f0)]k+1 < 653(k+1)2rt < 6% cos(|0o|+d)re < e%cosetrt (319>

holds for n > N.
By (3.15) (3.16) and (3.19), we see that

v(re) s _ @)
()7 (U o(1) = |7 ST < Mol (2 fo)1 < Myex =
(3.20)

By (1.11), we get

) (4 (4)
—f;0<it;)P( = +] %ﬁs O<<t’;>. (3.21)
Because cos6; > 0 and (1.9), we get that
|Po(€™)] = [asmydyy, [P €7 % (1 4 o(1)) (3.22)
and
1Pj(e)] < Myry™ i e™ 5% (140(1)) (j=0,...,5—1,5+1,...,k—1).

(3.23)
Substituting (3.16) (3.22) and (3.23) into (3.21), we get for sufficiently
large 7y,

(M)

Tdsmsemsrtcos€t<1 +o(1)) < (I/(Tt)>k<1 +0(1))

SMs dsms
Tt Tt
o di (1Y)
mre cos jm t)\j
Me t9t§:7yf@77yu+o(m3m>

=0
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By (3.17) or (3.18),
viry) >rM >, (3.25)
By (3.20) (3.24) and (3.25), we get

v\r
o, 1707501 4 0(1)) < k(a4 o(1))
t
< Myrfesrecost, (3.26)

Since my, —m > 1 > 1 and cosf; > 0, we see that (3.26) is a contra-
diction.

T 3

Case 2.Suppose 0y € (5,5 ). By costhy < 0 and 6, — 6y, we see
that for sufficiently large ¢, we have cosf; < 0. By (1.11) (3.16) and
cos; < 0, we get for sufficiently large r,

oMzt f;k()z(j)t) _ efmsztpk_l(ezt)m + .. .+67msth0(ez). (3.27)

f(z)
From (1.9) and cosé; < 0, we get

7 B = fagm, (e (e
< Briitem(ms=lrecostu(1 4 5(1)). (3.28)
Substituting (3.16) (3.28) into (3.27), from (3.25) we have
emmerteosby () < Mgrfe’(ms’l)” cosbi(1 + o(1)). (3.29)
If & > 0, from (3.17) we have
exp{r e marrcosh < Mgrfe_(ms_l)” cosfi(1 4 0(1)). (3.30)

Since cosf, < 0 and a < 1, we see (3.30) is a contradiction.
If & =0, from (3.18) we have

T,i\defmsrtcoset < M3T§l€f(msfl)ncos€t<1 +O<1)) (331)
Since cosf; < 0, we see (3.31) is also a contradiction.
Case 3. Suppose that 6y = 7 or g = —F. Since the proof for 0y = —3
is the same as the proof for ) = 7, we only prove the case that 6y = 7.

Since 0y — 6y, for any given g4 (0 < €4 < %), we see that there is an
integer K (>0),ast > K, 6, € [5 —¢e4,5 + ¢4 , and

z=re" cQ={z: g —eg < arg < g +e4}. (3.32)

By Lemma 9, we see that there exist a subset F3 C (1,00) having

logarithmic measure ImFs3; < oo, and a constant B > 0 such that for
EJQTDE, 2013 No. 19, p. 12



all z satisfying |z| = r & [0, 1] U E5, we have

@)
\f 03)@) | < BIT2r, [N (i=s+1,... k). (3.33)
fo ()
Now we consider the property of fo(re) on a ray argz =6 € Q\ {5}
If 0 €[5 —e3,%), then cosf > 0.
Since o3(fo) < 1, we get that fy satisfy (3.14). From T'(r, fés)) <

(s + 1)T(r, fo), we get that fés) also satisfies (3.14). So for any given

g5 (0 <e5 < m cos ), we have

1

[T(2T, fo(s))]kferl < 655(k73+1)2r < 657’0059. (334)

We assert that | £\*)(re?)| is bounded on the ray arg z = 6 € [Z—e3,%).
If |fés) (re??)| is unbounded on the ray arg z = 6, then by Lemma 3, there
exists a sequence {y; = R;e} such that as R; — oo, fo(s)(yj) — 00

and ‘

fo ()
1o ()
By Remark 2 and f{"(y;) — oo, we know that |y;| = R; ¢ Es. By
(3.33) and (3.34), we have for sufficiently large 7,

| | < Ri(140(1) i=0,...,5—1 (3.35)

()
| OS <yj)‘ < [T(2R;, fos))]k_‘g+1 < Beificost j=s+1,... k (3.36)
15 (ws)
Substituting (3.35) and (3.36) into (1.11), we get
[Gammn | R €0 (14 0(1)) = | = Pafe)
< SM Rd2 mR; cosG(1+O< ))
+(k — 5) Mgz 0 RhemBi eosf(1 4 o(1)), (3.37)

Since m, > m + 5 and cos# > 0, we get (3.37) is a contradiction.
Hence |f(§8) (re”)| is bounded on the ray argz = 6 € [5 —e4,5). Set
|9 (rei®)| < Mg, then on the ray argz = 6 € 5 —¢e4, %),

| fo(re®)| < Mqr®. (3.38)

On the other hand, since r; ¢ [0,1] U Ey U E5 U E3, by Lemma 10, and
(3.17) or (3.18), we see that for sufficiently large r

M

log M(ry, fo) > (v(r))? > 1,
where M (> 1) is some constant. Since {z;} satisfies | fo(2:)| = M (4, fo),

M
| fo(2t)| > exp{ry® }. (3.39)
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By (3.38) and (3.39), we see that for sufficiently large ¢, 0, & [§ —e3, ),
ie.,

0, [g, g +es). (3.40)
Thus there are two subcases: Subcase (i) there are infinitely many 6,
in (%, 75 +¢3); Subcase (ii) there are only finitely many 6; in (5, 5 + €3]
Now consider Subcase (i), all 6, € (3, §+¢3] form a subsequence 6;, of 6,
and a corresponding subsequence z;; = 7, e of 2. For a subsequence
{2,} C{z: % <argz =0 < T + e3}, using a similar method to that
in the proof of Case 2, we can get a contradiction.

Consider Subcase (ii), we see that for sufficiently large ¢,

7
Qt = 5
Thus, for sufficiently large ¢, cos#; = 0 and
| Pi(e”)] = lajm, (z)e™ ™ + - -+ aji(z)e™|
< fajmg (z0)| + -+ laj(z)| < Msr, (3.41)
where j = 0,...,k — 1 and Mg is a constant.
By (1.11) (3.16) (3.17) (or (3.18) ) and (3.41), we get that
(k)
v(re) v fo (z) ds V(7)1
—(—2)"(1+0(1)| =| - =——| < kEMyr*(——= 14 0(1)),
| (2 o)) = | = 2 < RMorf(FI)(1 + o(1)

ie.,
v(r) (14 o(1)) < kMyr® ™ (1 + o(1)).
By (3.17) (or (3.18) ), this is also a contradiction.

So we have oy(f) = a = 1.

4. PROOF OF THEOREM 2

From Theorem 1, we get oo(f) = 1.
Let g = f — z, then f = g + z. Substituting it into (1.11), we have

g(k) + Pk_l(ez)g(k_l) + -+ Py(e®)g = —zPy(e®) — Pi(€7). (4.1)
Since zPy(€*) — Pi(e*) # 0, from Lemma 11 and 03(g) = 1 we conclude
Aa(g) = A2(g) = 02(g) = 1. So we have To(f) = 7o(f) = 02(f) = 1.

5. PROOF OF THEOREM 3

From Theorem 1, we get o(f) = oc.

(i)Let g = f — z, then f = g + z. Substituting it into (1.6), we have
9"+ P(e)g + Q(e”)g = —P(e”) — Q(e”)z. (5.1)

Since n # s, we get that —P(e®) — Q(e®)z # 0. From Lemma 11, we

get AM(g) = o(g) = o(f) = oo and Xa(g) = 02(9) = 02(f) = 0. ie,
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Af —2)=ocand \(f —2) =

(ii) Differentiating both sides of (1.6), we get that
"+ PE) [+ (P(e) + Q) [+ Q'(e)f =0.  (52)
By (1.6), we get that
;o f// + P(ez)f'
Q(er)
Substituting (5.3) into (5.2), we get

PP - S P o) - S P <o 6a)

Let g = f ' — 2z, then f' =g+ 2, f"=¢ +1, f = ¢”. Substituting
these into (5.4), we get that

'+ P(E) = RN + P +Q(e) - TP
Q@) per e o @)
- T - P - (P + QL) - G P = 1169

Next we prove that h(z) # 0.
If h(z) =0, then %/((::)) — P(e®) = [P'(e®) + Q(e7) — Lee:)P(ez)]z.
Since Q(z) # 0, we have
Q'(e) = P(e9)Q(e”) = [P'(e7)Q(e7) + Q*(e”) — Q'(e) P(e7)]z. (5.6)
If n < s, taking z = r, we have
e*" (14 0(1)) < e™97(1 + 0(1)).

This is a contradiction.

So we have h(z) # 0.

From Lemma 11, we get A(g) =
Aa(g) = 02(g) = o2(f' — 2) = o2
)\Q(f, — Z) = 0.

) = o(f' = 2) = o(f) = o0 and

ie, A(f' —z) = oo and

olg) =0
(f) =0

(g
f)

If n > s, taking z = r, we have

P(e") =ay(r)e™ + -+ ai(r)e”, Q(e") = bs(r)e” + -+ by(r)e".
We get
P'(e") = (al,(r) + nay(r)e™ + (al,_1(r) + (n — Day_(r))e" D" + - ..
and

Q") = (B(r) + sba(r)e™ + (Hoy(r) + (s — b,y (r))el" 4
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So we have
|P(e)Q(e") + P(eNQ(e")r — P(e")Q'(e")r] = |(n — s)ran(r)bs(r)
Han(r)bs(r) + (@, (r)bs(r) = b (r)an(r))r] [ (1 + o(1)}5.7)
Since a,(r), bs(r) are polynomials and n > s, we get
deg((n — s)ran(r)bs(r)) > deglan(r)bs(r) + (ay, (r)bs(r) — by (r)an(r))r].
So we have

(= 8)ran(r)bs(r) + [an(r)bs(r) + (a5, (r)bs(r) = by (r)an(r))r]|

= Mr®(1+0(1)) £ 0.

From (5.6), we have

Mr®e™ (1 4 o(1)) = |P(e")Q(e") + P'(e")Q(e")r — P(e)Q'(€")r]

= 1Q'(e") = Q*(e")r| < Bre*"(1 + o(1)).(5.8)

Since n > s, we get a contradiction.

So we also have h(z) # 0.

From Lemma 11, we get A(g) = o(g9) = o(f' — 2) = o(f) = oo and

Aa(g) = 02(g9) = oo f' — 2) = 0o(f) = 0. ie, Mf' —2) = oo and

Xo(f —2)=o0.

ACKNOWLEDGEMENTS

The authors would like to thank the referee for his/her valuable sug-
gestions. This work was supported by the NSF of Shandong Province,
No.ZR2010AMO030, P. R. China and the NNSF of China (No. 11171013
& No.11041005).

REFERENCES

[1] B. Belaidi, Growth and oscillation theory of solutions of some linear differential
equations , Mat. Vesnik., 60 (2008), 233-246.

[2] W. J. Chen and J. F. Xu Growth of meromorphic solutions of higher-order
linear differential equations , Electronic Journal of Qualitative Theory of Dif-
ferential Equations., 1 (2009), 1-13.

[3] Z. X. Chen, Zeros of meromorphic solutions of higher order linear differential
equations, Analysis., 14 (1994), 425-438.

[4] Z. X. Chen, The fized points and hyper-order of solutions of second order com-
plex differential equations(in Chinese), Acta Math. Sci. Ser. A Chin. Ed., 20
(2000), 425-432.

[5] Z. X. Chen, On the growth of solutions of a class of higher order differtial
equations, Chin Ann of Math., 24B(4) (2003), 501-508.

[6] Z. X. Chen and K. H. Shon, The hyper order of solutions of second order
differential equations and subnormal solutions of periodic equations, Taiwanese
J. Math. 14 (2)(2010), 611-628.

EJQTDE, 2013 No. 19, p. 16



[7] Z. X. Chen and K. H. Shon, On subnormal solutions of periodic differential
equations, Abstract and Applied Analysis., vol. 2010, Article ID 170762, 16
pages, 2010.

[8] Z. X. Chen and K. H. Shon, Numbers of subnormal solutions for higher order
periodic differential equations, Acta Mathematica Sinica, English Series., 27
(9) (2011), 1753-1768.

[9] Z. X. Chen and C. C. Yang, Some further results on the zeros and growths of
entire solutions of second order linear differential equations, Kodai Math. J.,
22 (1999), 273-285.

[10] G. Gundersen, Estimates for the logarithmic derivative of a meromorphic func-
tion, plus similar estimates, J. London Math. Soc, 37 (1988), 88-104.

[11] G. Gundersen, Finite order solutions of second order linear differential equa-
tions, Trans. Amer. Math. Soc., 305 (1988), 415-429.

[12] G. Gundersen and M. Steinbart, Subnormal solutions of second order linear
differential equation with periodic coefficients, Results in Math., 25 (1994),
270-289.

[13] G. Jank and L. Volkmann, Einfihrung in die Theorie der ganzen und merom-
rophen Funktionen mit Anwendungen auf Differentialgleichungen, Birkh&user,
Basel-Boston, 1985

[14] J. K. Langley, Integer points of entire functions, Bull. London Math. Soc., 38
(2006) 239-249.

[15] I. Laine, Nevanlinna theory and complex differential equations, W. de Gruyter,
Berlin, (1993)

[16] K, Liu and L. Z. Yang, On the complex oscillation of higher order linear dif-
ferential equations, Bull. Korean Math. Soc., 46 (2009), 607—-615.

[17] H. Wittich, Subnormale Lésungen der Differentialgleichung w” + p(e*)w’ +
q(e*)w = 0, Nagoya Math. J., 30 (1967), 29-37.

[18] J. F. Xu, On the growth of meromorphic solutions of complex algebra ic differ-
ential equations, Journal of Shandong U niversity(Natural Science)., 45 (2010),
91-93.

[19] L. Z. Yang, Solution of a differential equation and its applications, Kodai Math.
J, 22 (1999), 458-464.

[20] H. X. Yiand C. C. Yang, Uniqueness theory of meromorphic functions. Science
Press, Beijing, (1995)

[21] G.W. Zhang and A. Chen, Fized points of the deriative and k-th power solu-
tions of complex linear differential equations in the unit disc, Electronic Journal
of Qualitative Theory of Differential Equations, 48 (2009), 1-9.

(Received September 7, 2012)

SCHOOL OF MATHEMATICS, SHANDONG UNIVERSITY, JINAN, SHANDONG PROVINCE,
250100, P.R.CHINA
E-mail address: nan1i32787310@gmail . com

SCHOOL OF MATHEMATICS, SHANDONG UNIVERSITY, JINAN, SHANDONG PROVINCE,
250100, P.R.CHINA
E-mail address: 1zyang@sdu.edu.cn

EJQTDE, 2013 No. 19, p. 17



