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OSCILLATORY BEHAVIOR OF HIGHER-ORDER NEUTRAL TYPE

DYNAMIC EQUATIONS

SAID R. GRACE, RAZIYE MERT, AND AĞACIK ZAFER∗

Abstract. The oscillation behavior of solutions for higher-order delay dynamic equations of

neutral type is investigated by making use of comparison with second-order dynamic equa-

tions. The method can be utilized to study other types of higher-order equations on time

scales as well.

1. Introduction

In this paper we consider the higher-order neutral dynamic equations of the form

[xα(t) + p(t)xα(h(t))]∆
n

+ f(t, x(σ(g(t)))) = 0 (1.1)

and

[xα(t) + p(t)xα(h(t))]∆
2n

+ f(t, x(σ(t))) = 0 (1.2)

on an arbitrary time scale T with sup T = ∞, where n ≥ 2 is an integer; σ : T → T is the
forward jump operator;

(i) α is the ratio of positive odd integers;
(ii) p : T → R is rd-continuous;
(iii) f(·, x) : T → R is rd-continuous for each fixed x ∈ R and f(t, ·) : R → R is continuous

for each fixed t ∈ T such that

f(t, u)

uλ
≥ q(t) for u 6= 0 (1.3)

with q : T → (0,∞) rd-continuous and λ a ratio of positive odd integers;
(iv) g, h : T → T are rd-continuous such that g(t) ≤ t, h(t) ≤ t, g is nondecreasing, h is

increasing, and limt→∞ g(t) = limt→∞ h(t) = ∞.

The theory of time scales was introduced by Hilger [1] which unifies continuous and discrete
analysis allows one to observe the discrepancies and similarities between discrete and continu-
ous calculus. It also helps avoid proving results separately for both differential equations and
difference equations. For a background material on time scale calculus, see [2].

The oscillation problem for dynamic equations on time scales has attracted a lot of attention
immediately after the discovery of time scale calculus. Although there are several such works in
the literature, the majority is restricted to second-order equations, see [3–20]. An important
reason for this is probably due to lack of an inequality included in a Kiguradze’s lemma
connecting higher-order derivatives and differences to lower-order ones. In this work, we will
show how another technique that is introduced by Grace et al. [21] can be used to derive new
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oscillation criteria for (1.1) and (1.2). For some works on higher-order dynamic equations we
refer to [22–25]. Further results in both continuous and discrete cases can be found in [26].

By a solution of (1.1) we mean a function x(t) nontrivial for t sufficiently large such that
xα(t) + p(t)xα(h(t)) is n times differentiable, and (1.1) is fulfilled. Such a solution x(t) of
(1.1) is called nonoscillatory if there exists a t0 ∈ T such that x(t)x(σ(t)) > 0 for all t ≥ t0;
otherwise, it is said to be oscillatory. Equation (1.1) is called oscillatory if all its solutions are
oscillatory. For (1.2) we just replace “n times” by “2n times”.

We will need the following three lemmas. The last lemma is a time scale version of the
well-known Kiguradze’s lemma. Indeed, the Lemma has another part in the continuous and
discrete cases, see [26, Lemma 1.13.2, Lemma 2.2.2], which is not available on an arbitrary
time scale. A special case, however, is given in [27] when σ(t) is linear.

Lemma 1.1 ([6]). Suppose |x|∆ is of one sign on [t0,∞)T and γ > 0, γ 6= 1. Then

|x|∆

(|x|σ)γ
≤

(|x|1−γ)∆

1 − γ
≤

|x|∆

|x|γ
on [t0,∞)T. (1.4)

Lemma 1.2 ([27]). Let n be even and consider the equation

x∆n

(t) + f(t, x(φ(t))) = 0, t ∈ [t0,∞)T, (1.5)

and the inequality

x∆n

(t) + f(t, x(φ(t))) ≤ 0, t ∈ [t0,∞)T, (1.6)

where f : [t0,∞)T × (0,∞) → (0,∞) is a function with the property f(·, w(·)) : [t0,∞)T →
(0,∞) is rd-continuous for any rd-continuous function w : [t0,∞)T → (0,∞) and f(t, ·) is

continuous and nondecreasing for each fixed t ∈ [t0,∞)T, and φ : T → T is rd-continuous such

that φ(t) ≤ t and limt→∞ φ(t) = ∞.
If inequality (1.6) has an eventually positive solution, then equation (1.5) also has an even-

tually positive solution.

One can easily see that (1.5) and (1.6) can be replaced, respectively, by

x∆n

(t) + f(t, x(σ(φ(t))) = 0, t ∈ [t0,∞)T,

and

x∆n

(t) + f(t, x(σ(φ(t))) ≤ 0, t ∈ [t0,∞)T.

The proof is similar, hence it is omitted.

Lemma 1.3 ([28]). Let x ∈ Cm
rd([t0,∞)T, R+). If x∆m

(t) is of constant sign on [t0,∞)T and

not identically zero on [t1,∞)T for any t1 ≥ t0, then there exist a tx ≥ t0 and an integer

ℓ, 0 ≤ ℓ ≤ m with m + ℓ even for x∆m

(t) ≥ 0, or m + ℓ odd for x∆m

(t) ≤ 0 such that

ℓ > 0 implies x∆k

(t) > 0 for t ≥ tx, k ∈ {0, 1, . . . , ℓ − 1} (1.7)

and

ℓ ≤ m − 1 implies (−1)ℓ+kx∆k

(t) > 0 for t ≥ tx, k ∈ {ℓ, ℓ + 1, . . . ,m − 1}. (1.8)
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2. The main results

Taylor monomials (see [2, Sect. 1.6]) hn, gn : T
2 → R, n ∈ N0 = {0, 1, . . .}, are defined

recursively as

hn+1(t, s) =

∫ t

s
hn(τ, s)∆τ, n ∈ N0

h0(t, s) = 1

and

gn+1(t, s) =

∫ t

s
gn(σ(τ), s)∆τ, n ∈ N0

g0(t, s) = 1.

It is easy to observe that h1(t, s) = g1(t, s) = t − s and that

hn(t, s) = (−1)ngn(s, t), n ∈ N0.

2.1. Oscillation of (1.1). In this section we give oscillation criteria for higher order neutral
type equation (1.1) containing two deviating arguments g(t) and h(t) when p(t) satisfies −1 ≤
p(t) ≤ 0 and 0 ≤ p(t) < 1. The other cases seem to be open.

We will make use of the following functions, where t0, β ∈ T with β > t0:

Qn−1(t, t0, β) :=

(

β − t0
σ(t) − t0

hn−2(g(t), β)

)λ/α

q(t)

Q∗

n−1(t, t0, β) :=

(

β − t0
σ(t) − t0

hn−2(g(t), β)(1 − p(σ(g(t))))

)λ/α

q(t)

Qℓ(t, t0, β) :=

∫

∞

t
gn−ℓ−2(τ, t)

(

β − t0
σ(τ) − t0

hℓ−1(g(τ), β)

)λ/α

q(τ)∆τ

Q∗

ℓ (t, t0, β) :=

∫

∞

t
gn−ℓ−2(τ, t)

(

β − t0
σ(τ) − t0

hℓ−1(g(τ), β)(1 − p(σ(g(τ))))

)λ/α

q(τ)∆τ

for ℓ ∈ {1, 2, . . . , n − 3}. It is assumed that the improper integrals converge.

We begin with the following theorem.

Theorem 2.1. Let t0, β ∈ T with β > t0, and assume that

−1 < p ≤ p(t) ≤ 0 (2.1)

and

η(t) := (h−1 ◦ σ ◦ g)(t) ≤ t.

Then equation (1.1) is oscillatory if

(i) for n even,

y∆∆(t) + mQℓ(t, t0, β)yλ/α(σ(t)) = 0 (2.2)

or

y∆∆(t) + mQℓ(t, t0, β)yλ/α(σ(g(t))) = 0 (2.3)
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for some 0 < m < 1 and for all ℓ ∈ {1, 3, . . . , n − 1} is oscillatory and

lim sup
t→∞

∫ t

η(t)
g

λ/α
n−1(η(t), η(s))q(s)∆s >

{

0 when λ < α
1 when λ = α;

(2.4)

(ii) for n odd, (2.2) or (2.3) for some 0 < m < 1 and for all ℓ ∈ {2, 4, . . . , n − 1} is

oscillatory and

lim sup
t→∞

∫ σ(t)

σ(g(t))
h

λ/α
n−1(σ(g(s)), σ(g(t)))q(s)∆s >

{

0 when λ < α
1 when λ = α

(2.5)

and

lim sup
t→∞

∫ t

η(t)
((η(s) − t0)gn−2(η(t), η(s)))λ/αq(s)∆s >

{

0 when λ < α
1 when λ = α.

(2.6)

Proof. Let x(t) be a nonoscillatory solution of equation (1.1). We may assume that x(t) is
eventually positive, since otherwise the substitution y := −x transforms equation (1.1) into an
equation of the same form subject to the assumptions of the theorem. Let x(t) > 0, x(g(t)) > 0
and x(h(t)) > 0 for t ≥ t0 ∈ T.

Hereafter we set

z(t) := xα(t) + p(t)xα(h(t)), t ≥ t0. (2.7)

In view of (1.3), from equation (1.1), we have

z∆n

(t) + q(t)xλ(σ(g(t))) ≤ 0, t ≥ t0, (2.8)

and so

z∆n

(t) < 0, t ≥ t0.

Thus, z∆i

(t), 0 ≤ i ≤ n − 1, are monotone. We consider the two possible cases: (i) z(t) > 0
for t ≥ t1 and (ii) z(t) < 0 for t ≥ t1 for some t1 ≥ t0.

Suppose that (i) holds. From (2.1) and (2.7), we see that there exists a t2 ≥ t1 such that

x(σ(g(t))) ≥ z1/α(σ(g(t))), t ≥ t2,

which together with (2.8) gives

z∆n

(t) + q(t)zλ/α(σ(g(t))) ≤ 0, t ≥ t2. (2.9)

By Lemma 1.3, there exist a t3 ≥ t2 and an integer ℓ ∈ {0, 1, . . . , n− 1} with n+ ℓ odd such
that (1.7) and (1.8) hold for all t ≥ t3.

Let ℓ ∈ {1, . . . , n − 1}. From

z∆ℓ−1

(t) = z∆ℓ−1

(t3) +

∫ t

t3

z∆ℓ

(s)∆s > (t − t3)z
∆ℓ

(t), t ≥ t3,

we obtain
(

z∆ℓ−1

(t)

t − t3

)∆

=
z∆ℓ

(t)(t − t3) − z∆ℓ−1

(t)

(t − t3)(σ(t) − t3)
< 0, t > t3. (2.10)
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Therefore, the function z∆ℓ−1

(t)/h1(t, t3) is decreasing on (t3,∞)T. By applying Taylor’s for-
mula, for some t4 > t3, we have

z(t) =
ℓ−1
∑

k=0

z∆k

(t4)hk(t, t4) +

∫ t

t4

hℓ−1(t, σ(τ))z∆ℓ

(τ)∆τ

≥ z∆ℓ−1

(t4)hℓ−1(t, t4), t ≥ t4. (2.11)

Combining (2.10) and (2.11), we obtain

z(t) ≥ hℓ−1(t, t4)
t4 − t3
t − t3

z∆ℓ−1

(t), t ≥ t4

and hence

z(σ(g(t))) ≥ hℓ−1(σ(g(t)), t4)
t4 − t3

σ(g(t)) − t3
z∆ℓ−1

(σ(g(t))), t ≥ t5 ≥ t4,

where we assume g(t) ≥ t4 for t ≥ t5. It is easy to see that the above inequality leads to

z(σ(g(t))) ≥ hℓ−1(g(t), t4)
t4 − t3

σ(t) − t3
z∆ℓ−1

(σ(g(t))) t ≥ t5 (2.12)

and

z(σ(g(t))) ≥ hℓ−1(g(t), t4)
t4 − t3

σ(t) − t3
z∆ℓ−1

(σ(t)), t ≥ t5. (2.13)

Using (2.12) and (2.13) in (2.9), respectively, we obtain

−z∆n

(t) ≥ q(t)h
λ/α
ℓ−1(g(t), t4)

(

t4 − t3
σ(t) − t3

)λ/α

(z∆ℓ−1

(σ(g(t))))λ/α , t ≥ t5

and

−z∆n

(t) ≥ q(t)h
λ/α
ℓ−1(g(t), t4)

(

t4 − t3
σ(t) − t3

)λ/α

(z∆ℓ−1

(σ(t)))λ/α, t ≥ t5.

Since limt→∞ hk(t, t2)/hk(t, t1) = 1 (see [25, Lemma 3.1]), for some t6 ≥ t5 sufficiently large,
we have

−z∆n

(t) ≥ mq(t)h
λ/α
ℓ−1(g(t), β)

(

β − t0
σ(t) − t0

)λ/α

(z∆ℓ−1

(σ(g(t))))λ/α , t ≥ t6 (2.14)

and

−z∆n

(t) ≥ mq(t)h
λ/α
ℓ−1(g(t), β)

(

β − t0
σ(t) − t0

)λ/α

(z∆ℓ−1

(σ(t)))λ/α, t ≥ t6, (2.15)

where 0 < m < 1 is a constant. Setting ℓ = n − 1 in (2.14) and (2.15) leads to

−z∆n

(t) ≥ mq(t)h
λ/α
n−2(g(t), β)

(

β − t0
σ(t) − t0

)λ/α

(z∆n−2

(σ(g(t))))λ/α , t ≥ t6

and

−z∆n

(t) ≥ mq(t)h
λ/α
n−2(g(t), β)

(

β − t0
σ(t) − t0

)λ/α

(z∆n−2

(σ(t)))λ/α, t ≥ t6.
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Thus,

y∆∆(t) + mQn−1(t, t0, β)yλ/α(σ(g(t))) ≤ 0, t ≥ t6

and

y∆∆(t) + mQn−1(t, t0, β)yλ/α(σ(t)) ≤ 0, t ≥ t6,

respectively, where y(t) := z∆n−2

(t). Employing Lemma 1.2 and the remark after, we see that

y∆∆(t) + mQn−1(t, t0, β)yλ/α(σ(g(t))) = 0

and

y∆∆(t) + mQn−1(t, t0, β)yλ/α(σ(t)) = 0

have eventually positive solutions, which contradicts the hypothesis.
If ℓ ∈ {1, 2, . . . , n − 3}, then by Taylor’s formula, we write

−z∆ℓ+1

(t) =

n−1
∑

k=ℓ+1

(−1)k−ℓz∆k

(s)gk−ℓ−1(s, t) +

∫ s

t
gn−ℓ−2(σ(τ), t)(−z∆n

(τ))∆τ

≥

∫ s

t
gn−ℓ−2(σ(τ), t)(−z∆n

(τ))∆τ, s ≥ t ≥ t3,

and hence

−z∆ℓ+1

(t) ≥

∫

∞

t
gn−ℓ−2(σ(τ), t)(−z∆n

(τ))∆τ, t ≥ t3. (2.16)

Using (2.14) and (2.15) in (2.16), respectively, and the fact σ(t) ≥ t, we have for t ≥ t6,

−z∆ℓ+1

(t) ≥ m

∫

∞

t
gn−ℓ−2(τ, t)h

λ/α
ℓ−1(g(τ), β)

(

β − t0
σ(τ) − t0

)λ/α

(z∆ℓ−1

(σ(g(τ))))λ/αq(τ)∆τ

≥ m(z∆ℓ−1

(σ(g(t))))λ/α

∫

∞

t
gn−ℓ−2(τ, t)h

λ/α
ℓ−1(g(τ), β)

(

β − t0
σ(τ) − t0

)λ/α

q(τ)∆τ

and

−z∆ℓ+1

(t) ≥ m(z∆ℓ−1

(σ(t)))λ/α

∫

∞

t
gn−ℓ−2(τ, t)h

λ/α
ℓ−1(g(τ), β)

(

β − t0
σ(τ) − t0

)λ/α

q(τ)∆τ.

Let w(t) := z∆ℓ−1

(t) for t ≥ t6. Then w(t) > 0 and satisfies

w∆∆(t) + mQℓ(t, t0, β)wλ/α(σ(g(t))) ≤ 0, t ≥ t6,

and

w∆∆(t) + mQℓ(t, t0, β)wλ/α(σ(t)) ≤ 0, t ≥ t6.

Employing Lemma 1.2 and the remark after, we see that

w∆∆(t) + mQℓ(t, t0, β)wλ/α(σ(g(t))) = 0

and

w∆∆(t) + mQℓ(t, t0, β)wλ/α(σ(t)) = 0

have eventually positive solutions, a contradiction to the hypothesis of the theorem.
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Finally, we consider the last case ℓ = 0, which is possible only if n is odd. By applying
Taylor’s formula and using (1.8) with ℓ = 0, we can easily find

z(u) ≥ hn−1(u, v)z∆n−1

(v), v ≥ u ≥ t3,

which implies that for some t7 ≥ t3,

z(σ(g(s))) ≥ hn−1(σ(g(s)), σ(g(t)))z∆n−1

(σ(g(t))), t ≥ s ≥ t7. (2.17)

Integrating (2.9) from σ(g(t)) ≥ t7 to σ(t), we get

z∆n−1

(σ(g(t))) ≥

∫ σ(t)

σ(g(t))
q(s)zλ/α(σ(g(s)))∆s. (2.18)

Using (2.17) in (2.18), we have

z∆n−1

(σ(g(t))) ≥
(

z∆n−1

(σ(g(t)))
)λ/α

∫ σ(t)

σ(g(t))
h

λ/α
n−1(σ(g(s)), σ(g(t)))q(s)∆s,

or
(

z∆n−1

(σ(g(t)))
)1−λ/α

≥

∫ σ(t)

σ(g(t))
h

λ/α
n−1(σ(g(s)), σ(g(t)))q(s)∆s.

Taking the limsup as t → ∞, we obtain a contradiction to condition (2.5).
Now suppose that (ii) holds. Then

y(t) := −z(t) = −xα(t) − p(t)xα(h(t)) ≤ xα(h(t)), t ≥ t1,

and so
x(σ(g(t))) ≥ y1/α((h−1 ◦ σ ◦ g)(t)) = y1/α(η(t)), t ≥ t2 ≥ t1. (2.19)

Clearly, inequality (2.8) implies that

y∆n

(t) ≥ q(t)xλ(σ(g(t))), t ≥ t2. (2.20)

In view of (2.19) and (2.20), we have

y∆n

(t) ≥ q(t)yλ/α(η(t)), t ≥ t2. (2.21)

Now, as in the proof of [22, Theorem 2], we may show that x(t) and hence y(t) is bounded
for t ≥ t0. To prove this, assume to the contrary that x(t) is unbounded. Then there exists a
sequence {tn} such that

lim
n→∞

tn = ∞, lim
n→∞

x(tn) = ∞, x(tn) = max{x(t) : t0 ≤ t ≤ tn}.

Since lim
t→∞

h(t) = ∞, for sufficiently large n, we have h(tn) > t0. From h(t) ≤ t, we see that

x(h(tn)) ≤ max{x(t) : t0 ≤ t ≤ h(tn)}

≤ max{x(t) : t0 ≤ t ≤ tn} = x(tn).

Therefore, for n sufficiently large, we have

y(tn) ≤ −xα(tn) − pxα(h(tn)) ≤ −(1 + p)xα(tn),

and hence
lim

n→∞

y(tn) = −∞,
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which contradicts to y(t) > 0 for t ≥ t1.
Let n be even. By Lemma 1.3,

(−1)ky∆k

(t) > 0, k = 0, 1, . . . n, t ≥ t3 ≥ t2.

By Taylor’s formula, we then have

y(u) ≥ gn−1(v, u)(−y∆n−1

(v)), v ≥ u ≥ t3,

and hence for some t4 ≥ t3,

y(η(s)) ≥ gn−1(η(t), η(s))(−y∆n−1

(η(t))), t ≥ s ≥ t4. (2.22)

Now, integrating (2.21) from η(t) ≥ t4 to t, we obtain

−y∆n−1

(η(t)) ≥

∫ t

η(t)
q(s)yλ/α(η(s))∆s. (2.23)

Using (2.22) in (2.23) gives us

−y∆n−1

(η(t)) ≥
(

−y∆n−1

(η(t))
)λ/α

∫ t

η(t)
g

λ/α
n−1(η(t), η(s))q(s)∆s,

i.e.,
(

−y∆n−1

(η(t))
)1−λ/α

≥

∫ t

η(t)
g

λ/α
n−1(η(t), η(s))q(s)∆s.

Taking the limsup as t → ∞ in the last inequality, we obtain a contradiction to (2.4).
Now suppose that n is odd. Then we see by Lemma 1.3 that for some t5 ≥ t2,

y(t) > 0, y∆(t) > 0, t ≥ t5,

(−1)k−1y∆k

(t) > 0, k = 2, . . . , n, t ≥ t5.

We write

y(t) = y(t5) +

∫ t

t5

y∆(s)∆s ≥ (t − t5)y
∆(t), t ≥ t5. (2.24)

Using (2.24) in (2.21), we have

y∆n

(t) ≥ q(t)(η(t) − t5)
λ/α(y∆(η(t)))λ/α, t ≥ t6 ≥ t5,

and hence

w∆n−1

(t) ≥ q(t)(η(t) − t5)
λ/αwλ/α(η(t)), t ≥ t6,

where w(t) := y∆(t). Moreover,

(−1)kw∆k

(t) > 0, k = 0, 1, . . . n − 1, t ≥ t5.

As in the above proof for the case n is even, we have

w(u) ≥ gn−2(v, u)(−w∆n−2

(v)), v ≥ u ≥ t5.

The rest of the proof is similar to the case (ii) when n is even. This completes the proof. �
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Theorem 2.2. Let t0, β ∈ T with β > t0. Assume that

0 ≤ p(t) < 1 when n is even

and there exists p < 1 such that

0 ≤ p(t) ≤ p when n is odd.

(i) If n is even,

y∆∆(t) + mQ∗

ℓ(t, t0, β)yλ/α(σ(t)) = 0 (2.25)

or

y∆∆(t) + mQ∗

ℓ(t, t0, β)yλ/α(σ(g(t))) = 0 (2.26)

for some 0 < m < 1 and for all ℓ ∈ {1, 3, . . . , n− 1} is oscillatory, then equation (1.1)
is oscillatory.

(ii) If n is odd, (2.25) or (2.26) for some 0 < m < 1 and for all ℓ ∈ {2, 4, . . . , n − 1} is

oscillatory and
∫

∞

t0

gn−1(σ(s), t0)q(s)∆s = ∞, (2.27)

then every solution x(t) of equation (1.1) is oscillatory or tends to zero as t → ∞.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say x(t) > 0, x(g(t)) > 0 and
x(h(t)) > 0 for t ≥ t0. Define the function z(t) by (2.7) and obtain the inequality (2.8). By
Lemma 1.3, there exist a t1 ≥ t0 and an integer ℓ ∈ {0, 1, . . . , n− 1} with n + ℓ odd such that
(1.7) and (1.8) hold.

We first consider the case ℓ ∈ {1, . . . , n − 1}. Clearly z∆(t) > 0 for t ≥ t1 and

xα(t) = z(t) − p(t)xα(h(t))

= z(t) − p(t)(z(h(t)) − p(h(t))xα((h ◦ h)(t)))

≥ z(t) − p(t)z(h(t)) ≥ (1 − p(t))z(t), t ≥ t2 ≥ t1.

Thus,

x(t) ≥ (1 − p(t))1/αz1/α(t), t ≥ t2. (2.28)

Using (2.28) in (2.8), we get

z∆n

(t) + q(t)(1 − p(σ(g(t))))λ/αzλ/α(σ(g(t))) ≤ 0, t ≥ t3 ≥ t2.

Proceeding as in case (i) of Theorem 2.1, we obtain a contradiction.
Let ℓ = 0. As in the proof of [22, Theorem 1], we can show that limt→∞ x(t) = 0. Since

z1/α(t) ≥ x(t) > 0 for t ≥ t0, it suffices to show that

lim
t→∞

z(t) = 0.

From z(t) > 0, z∆(t) < 0 for t ≥ t1, we see that

lim
t→∞

z(t) := L ≥ 0, L < ∞.

Assume on the contrary that L > 0. Choose 0 < ε < L(1 − p)/p. Then L < z(t) < L + ε for
t ≥ t4 ≥ t1, and

xα(t) ≥ z(t) − pz(h(t)) > L − p(L + ε) > Kz(t), t ≥ t5 ≥ t4,
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where K := (L − p(L + ε))/L + ε > 0. Thus, we have

x(t) > K1/αz1/α(t), t ≥ t5. (2.29)

Using (2.29) in inequality (2.8) results in

z∆n

(t) + Kλ/αq(t)zλ/α(σ(g(t))) ≤ 0, t ≥ t6 ≥ t5. (2.30)

By applying Taylor’s formula, it is easy to see that

z(t6) ≥

∫ t

t6

gn−1(σ(s), t6)(−z∆n

(s))∆s, t ≥ t6. (2.31)

From (2.30), (2.31), and z(t) > L for t ≥ t4, we obtain

z(t6) ≥ (KL)λ/α

∫ t

t6

gn−1(σ(s), t6)q(s)∆s, t ≥ t6,

which however contradicts (2.27). The proof is complete. �

We note that the oscillatory behavior of solutions of second-order dynamic equations of the
form (2.2) and (2.25) has been studied extensively in the literature. We refer the reader in
particular to [12–18] and the references cited therein.

2.2. Oscillation of (1.2). Here we consider even order neutral type equations of the form
(1.2) containing a single deviating argument h(t) and the term p(t) with 0 ≤ p(t) < 1. The
even order implies that the number l arising from Lemma 1.3 in a way as in the above proofs
is positive. It seems interesting to find similar oscillation criteria for odd order equations. The
possibility l = 0 is crucial there.

For t ∈ T and ℓ ∈ {1, 3, . . . , 2n − 1}, we define

Q̂ℓ(t) :=

∫

∞

t

∫

∞

s2n−ℓ−1

. . .

∫

∞

s1

(1 − p(σ(s)))λ/αq(s)∆s∆s1 . . . ∆s2n−ℓ−1,

where it is assumed that the integral is convergent.
The first result is as follows.

Theorem 2.3. Let α < λ and t0 ∈ T, and assume that

0 ≤ p(t) < 1. (2.32)

If for every ℓ ∈ {1, 3, . . . , 2n − 1},
∫

∞

t0

hℓ−1(s, t0)Q̂ℓ(s)∆s = ∞, (2.33)

then equation (1.2) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.2), say, x(t) > 0 and x(h(t)) > 0
for t ≥ t0. Define z(t) by (2.7) and obtain from (1.2),

z∆2n

(t) + q(t)xλ(σ(t)) ≤ 0, t ≥ t0. (2.34)
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Since z(t) > 0 and z∆2n

(t) < 0 for t ≥ t0, by Lemma 1.3, there exist a t1 ≥ t0 and an integer
ℓ ∈ {1, 3, . . . , 2n − 1} such that (1.7) and (1.8) hold for all t ≥ t1. Using (2.28) in (2.34), we
get

z∆2n

(t) + q(t)(1 − p(σ(t)))λ/αzλ/α(σ(t)) ≤ 0, t ≥ t2 ≥ t1. (2.35)

From (1.8), z∆ℓ

(t) > 0 and decreasing on [t1,∞)T. Now,

z∆ℓ−1

(s) − z∆ℓ−1

(t1) =

∫ s

t1

z∆ℓ

(τ)∆τ ≥ h1(s, t1)z
∆ℓ

(s)

gives

z∆ℓ−1

(s) ≥ h1(s, t1)z
∆ℓ

(s), s ≥ t1. (2.36)

Integrating inequality (2.36) (ℓ − 2)-times, ℓ > 1, from t1 to s ≥ t1, we have

z∆(s) ≥ hℓ−1(s, t1)z
∆ℓ

(s), s ≥ t1, ℓ ≥ 1. (2.37)

Next, we integrate inequality (2.35) from s1 ≥ t1 to v ≥ s1 and let v → ∞ to get

z∆2n−1

(s1) ≥

(
∫

∞

s1

(1 − p(σ(τ)))λ/αq(τ)∆τ

)

zλ/α(σ(s1)).

Integrating from s2 ≥ t1 to v ≥ s2 and then letting v → ∞ and using (1.8) leads to

−z∆2n−2

(s2) ≥

(
∫

∞

s2

∫

∞

s1

(1 − p(σ(τ)))λ/αq(τ)∆τ∆s1

)

zλ/α(σ(s2)).

Continuing in this manner, one can easily find

z∆ℓ

(s) ≥

(

∫

∞

s

∫

∞

s2n−ℓ−1

. . .

∫

∞

s1

(1 − p(σ(τ)))λ/αq(τ)∆τ∆s1 . . . ∆s2n−ℓ−1

)

zλ/α(σ(s)),

which we may write as

z∆ℓ

(s) ≥ Q̂ℓ(s)z
λ/α(σ(s)), s ≥ t1. (2.38)

From (2.37) and (2.38), we find

z−λ/α(σ(s))z∆(s) ≥ hℓ−1(s, t1)Q̂ℓ(s), s ≥ t1,

and hence
∫ t

t1

z−λ/α(σ(s))z∆(s)∆s ≥

∫ t

t1

hℓ−1(s, t1)Q̂ℓ(s)∆s.

By employing the first inequality in Lemma 1.1,

α

α − λ

∫ t

t1

(z1− λ

α (s))∆∆s ≥

∫ t

t1

hℓ−1(s, t1)Q̂ℓ(s)∆s.

Thus, we obtain
∫

∞

t1

hℓ−1(s, t1)Q̂ℓ(s)∆s ≤
α

λ − α
z1− λ

α (t1),

which contradicts (2.33). The proof is complete. �

The calculation of the repeated integrals in (2.33) is in general not easy for an arbitrary
time scale. Therefore, we give the following alternative theorems.
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Theorem 2.4. Let α < λ and t0 ∈ T, and assume that (2.32) holds. If
∫

∞

t0

hℓ−1(s, t0)

(
∫

∞

s
g2n−ℓ−1(σ(τ), s)(1 − p(σ(τ)))λ/αq(τ)∆τ

)

∆s = ∞,

for every ℓ ∈ {1, 3, . . . , 2n − 1}, then equation (1.2) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.2), say, x(t) > 0 and x(h(t)) > 0
for t ≥ t0. Define z(t) by (2.7). By Taylor’s formula, we see that

z∆ℓ

(s) ≥ −

∫

∞

s
g2n−ℓ−1(σ(τ), s)z∆2n

(τ)∆τ, s ≥ t1. (2.39)

Using inequality (2.35) in (2.39), we get

z∆ℓ

(s) ≥

∫

∞

s
g2n−ℓ−1(σ(τ), s)(1 − p(σ(τ)))λ/αq(τ)zλ/α(σ(τ))∆τ

≥

(
∫

∞

s
g2n−ℓ−1(σ(τ), s)(1 − p(σ(τ)))λ/αq(τ)∆τ

)

zλ/α(σ(s)), s ≥ t2 ≥ t1.

(2.40)
Combining (2.37) with (2.40), we find

z∆(s) ≥ hℓ−1(s, t1)

(
∫

∞

s
g2n−ℓ−1(σ(τ), s)(1 − p(σ(τ)))λ/αq(τ)∆τ

)

zλ/α(σ(s)), s ≥ t2.

Dividing both sides by zλ/α(σ(s)) and integrating from t2 to t ≥ t2, we have
∫ t

t2

z−λ/α(σ(s))z∆(s)∆s ≥

∫ t

t2

hℓ−1(s, t1)

(
∫

∞

s
g2n−ℓ−1(σ(τ), s)(1 − p(σ(τ)))λ/αq(τ)∆τ

)

∆s.

The rest of the proof is similar to that of Theorem 2.3 and hence it is omitted. This completes
the proof. �

Theorem 2.5. Let α > λ and t0 ∈ T, and assume that (2.32) holds. If for every ℓ ∈
{1, 3, . . . , 2n − 1},

∫

∞

t0

q(s)(1 − p(σ(s)))λ/α

(
∫ s

t0

hℓ−1(s, σ(u))g2n−ℓ−1(s, u)∆u

)λ/α

∆s = ∞, (2.41)

then equation (1.2) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.2), say, x(t) > 0 and x(h(t)) > 0
for t ≥ t0. Define the function z(t) by (2.7). As in the proof of Theorem 2.3, we see that (1.7)
and (1.8) hold for t ≥ t1 ≥ t0. It is not difficult to see that

z(t) ≥

∫ t

t1

hℓ−1(t, σ(u))z∆ℓ

(u)∆u

and

z∆ℓ

(u) ≥ g2n−ℓ−1(t, u)z∆2n−1

(t), t ≥ u ≥ t1.
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Therefore,

z(t) ≥

(
∫ t

t1

hℓ−1(t, σ(u))g2n−ℓ−1(t, u)∆u

)

z∆2n−1

(t), t ≥ t1.

Set w(t) := z∆2n−1

(t). Using this inequality in (2.35), we get for t ≥ t2 ≥ t1,

−w∆(t) ≥ q(t)(1 − p(σ(t)))λ/αzλ/α(σ(t))

≥ q(t)(1 − p(σ(t)))λ/αzλ/α(t)

≥ q(t)(1 − p(σ(t)))λ/α

(
∫ t

t1

hℓ−1(t, σ(u))g2n−ℓ−1(t, u)∆u

)λ/α

wλ/α(t).

We integrate the last inequality from t2 to t ≥ t2 and apply Lemma 1.1 (the second inequality
in (1.4)), to get

α

α − λ
w1− λ

α (t2) ≥

∫

∞

t2

q(s)(1 − p(σ(s)))λ/α

(
∫ s

t1

hℓ−1(s, σ(u))g2n−ℓ−1(s, u)∆u

)λ/α

∆s,

a contradiction with condition (2.41). �

To illustrate the last theorem let us consider as a special case the fourth-order equation

[xα(t) + p(t)xα(h(t))]∆
4

+ q(t)xλ(σ(t)) = 0. (2.42)

Clearly, conditions in (2.41) read as

∫

∞

t0

q(s)(1 − p(σ(s)))λ/α

(
∫ s

t0

g2(s, u)∆u

)λ/α

∆s = ∞ (2.43)

and
∫

∞

t0

q(s)(1 − p(σ(s)))λ/α

(
∫ s

t0

h2(s, σ(u))∆u

)λ/α

∆s = ∞. (2.44)

Note that h2(t, s) = g2(s, t) but there is no closed form expression for them on an arbitrary
time scale. However, if σ(t) = at + b with a ≥ 1 and b ≥ 0 (see [27]), then

h2(t, s) =
(t − s)(t − σ(s))

1 + a
,

which covers the time scales R, Z, qN, and etc. In this case, the conditions (2.43) and (2.44)
can be further simplified for an easier computation.

3. Concluding remarks

We have obtained oscillation criteria for higher-order neutral type equations (1.1) on arbi-
trary time scales via comparison with second-order dynamic equations with and without delay
arguments. Since there are several oscillation criteria for such second-order dynamic equa-
tions, one can provide several corresponding results for the higher-order case. This approach
has been used quite successfully for differential and difference equations, yet it is at its early
stages for dynamic equations on arbitrary time scales. As it is mentioned in Introduction, this
is because we do not have the full time scale version of the Kiguradze’s lemma, namely the
inequality between higher-order derivatives and lower-order ones.
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There are several techniques often used in oscillation theory of differential and difference
equations separately, but not available for a general time scale. The more tools are made
available for time scale calculus the better oscillation criteria can be obtained for higher-
order equations. In the present work, we have demonstrated only one method to study such
equations. Further work is underway and will be reported in due courses.
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