
Electronic Journal of Qualitative Theory of Differential Equations
2013, No. 49, 1-12; http://www.math.u-szeged.hu/ejqtde/

Oscillation of nonlinear impulsive differential
equations with piecewise constant arguments
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1. Introduction

In this paper, we consider an impulsive differential equation with piecewise
constant arguments of the form

x′ (t) + a (t)x (t) + x ([t− 1]) f(x [t]) = 0, t ̸= n, (1)

∆x (n) = dnx (n) , n ∈ N = {0, 1, 2, . . .} , (2)

with the initial conditions

x(−1) = x−1, x(0) = x0, (3)

where a : [0,∞) → R, f : R → R are continuous functions, dn : N → R −
{1}, ∆x (n) = x (n+) − x (n−) , x (n+) = lim

t→n+
x (t) , x (n−) = lim

t→n−
x (t) , [.]

denotes the greatest integer function, and x−1, x0 are given real numbers.
Since 1980’s differential equations with piecewise constant arguments have at-
tracted great deal of attention of researchers in mathematical and some of
the others fields in science. Piecewise constant systems exist in a widely ex-
panded areas such as biomedicine, chemistry, mechanical engineering, physics,
etc. These kind of equations such as Eq.(1) are similar in structure to those
found in certain sequential-continuous models of disease dynamics [1]. In 1994,
Dai and Sing [2] studied the oscillatory motion of spring-mass systems with
subject to piecewise constant forces of the form f(x[t]) or f([t]). Later, they
improved an analytical and numerical method for solving linear and nonlinear
vibration problems and they showed that a function f([N(t)]/N) is a good ap-
proximation to the given continuous function f(t) if N is sufficiently large [3].
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This method was also used to find the numerical solutions of a non-linear Froude
pendulum and the oscillatory behavior of the pendulum [4].
In 1984, Cooke and Wiener [5] studied oscillatory and periodic solutions of a lin-
ear differential equation with piecewise constant argument and they note that
such equations are comprehensively related to impulsive and difference equa-
tions. After this work, oscillatory and periodic solutions of linear differential
equations with piecewise constant arguments have been dealt with by many
authors [6, 7, 8] and the references cited therein. But, as we know, nonlinear
differential equations with piecewise constant arguments have been studied in a
few papers [9, 10, 11].
On the other hand, in 1994, the case of studying discontinuous solutions of
differential equations with piecewise continuous arguments has been proposed
as an open problem by Wiener [12]. Due to this open problem, the following
linear impulsive differential equations have been studied [13, 14]:{

x′(t) + a(t)x(t) + b(t)x([t− 1]) = 0, t ̸= n,
x(n+)− x(n−) = dnx(n), n ∈ N = {0, 1, 2, ...} , (4)

and {
x′(t) + a(t)x(t) + b(t)x([t]) + c(t)x([t+ 1]) = f(t), t ̸= n,
∆x (n) = dnx(n), n ∈ N = {0, 1, 2, ...} .

Now, our aim is to consider the Wiener’s open problem for the nonlinear prob-
lem (1)-(3). In this respect, we first prove existence and uniqueness of the
solutions of Eq. (1)-(3) and we also obtain sufficient conditions for the exis-
tence of oscillatory solutions. Finally, we give some examples to illustrate our
results.

2. Existence of solutions

Definition 1. It is said that a function x : R+ ∪ {−1} → R is a solution of Eq.
(1)-(2) if it satisfies the following conditions:
(i) x(t) is continuous on R+ with the possible exception of the points [t] ∈ [0,∞),
(ii) x(t) is right continuous and has left-hand limit at the points [t] ∈ [0,∞),
(iii) x(t) is differentiable and satisfies (1) for any t ∈ R+, with the possible
exception of the points [t] ∈ [0,∞) where one-sided derivatives exist,
(iv) x(n) satisfies (2) for n ∈ N.

Theorem 1. The initial value problem (1)-(3) has a unique solution x(t) on
[0,∞) ∪ {−1}. Moreover, for n ≤ t < n+ 1, n ∈ N, x has the form

x (t) = exp

−
t∫

n

a (s) ds


×

y(n)− y(n− 1)f(y(n))

t∫
n

exp

 u∫
n

a (s) ds

 du

 ,

(5)
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where y(n) = x (n) and the sequence {y(n)}n≥−1 is the unique solution of the
difference equation

y(n+ 1) =
1

1− dn+1
exp

−
n+1∫
n

a (s) ds


×

y(n)− y(n− 1)f(y(n))

n+1∫
n

exp

 u∫
n

a (s) ds

 du

 , n ≥ 0

(6)

with the initial conditions

y(−1) = x−1, y(0) = x0. (7)

Proof. Let xn (t) ≡ x(t) be a solution of (1)-(2) on n ≤ t < n+ 1. Eq. (1)-(2)
is rewritten in the form

x′ (t) + a (t)x (t) = −x (n− 1) f (x(n)) , n ≤ t < n+ 1. (8)

From (8), for n ≤ t < n+ 1 we obtain

xn (t) = exp

−
t∫

n

a (s) ds


×

x (n)− x (n− 1) f(x(n))

t∫
n

exp

 u∫
n

a (s) ds

 du

 .

(9)

On the other hand, if xn−1(t) is a solution of Eq.(1)-(2) on n− 1 ≤ t < n, then
we get

xn−1 (t) = exp

−
t∫

n−1

a (s) ds

 (10)

×

x (n− 1)− x (n− 2) f(x(n− 1))

t∫
n−1

exp

 u∫
n−1

a (s) ds

 du

 .

Using the impulse conditions (2), from (9) and (10), we obtain the difference
equation

x(n+ 1) =
1

1− dn+1
exp

−
n+1∫
n

a (s) ds


×

x(n)− x(n− 1)f(x(n))

n+1∫
n

exp

 u∫
n

a (s) ds

 du

 .
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Considering the initial conditions (7), the solution of Equation (6) can be ob-
tained uniquely. Thus, the unique solution of (1)-(3) is obtained as (5).

Theorem 2. The problem (1)-(3) has a unique backward continuation on
(−∞, 0] given by (5)-(6) for n ∈ Z− ∪ {0}.

3. Oscillatory solutions

Definition 2. A function x (t) defined on [0,∞) is called oscillatory if there
exist two real valued sequences {tn}n≥0, {t′n}n≥0 ⊂ [0,∞) such that tn → +∞,
t′n → +∞ as n → +∞ and x (tn) ≤ 0 ≤ x (t′n) for n ≥ N where N is sufficiently
large. Otherwise, the solution is called nonoscillatory.

Remark 1. According to Definition 2, a piecewise continuous function x :
[0,∞) → R can be oscillatory even if x (t) ̸= 0 for all t ∈ [0,∞) .

Definition 3. A solution {yn}n≥−1 of Eq.(6) is said to be oscillatory if the
sequence {yn}n≥−1 is neither eventually positive nor eventually negative. Oth-
erwise, the solution is called non-oscillatory.

Theorem 3. Let x (t) be the unique solution of the problem (1)-(3) on [0,∞) .
If the solution y(n), n ≥ −1, of Eq. (6) with the initial conditions (7) is
oscillatory, then the solution x (t) is also oscillatory.

Proof. Since x (t) = y (n) for t = n, the proof is clear.

Remark 2. We note that even if the solution y(n), n ≥ −1, of the Eq. (6) with
the initial conditions (7) is nonoscillatory, the solution x(t) of (1)-(3) might be
oscillatory.

In the following theorem give a necessary and sufficient condition for the exis-
tence of nonoscillatory solution x(t), when the solution of difference equation
(6)-(7) is nonoscillatory.

Theorem 4. Let {yn}n≥−1 be a nonoscillatory solution of Eq. (6) with the
initial conditions (7). Then the solution x(t) of the problem (1)-(3) is nonoscil-
latory iff there exist a N ∈ N such that

y(n)

y(n− 1)
> f(y(n))

t∫
n

exp

 u∫
n

a (s) ds

 du, n ≤ t < n+ 1, n > N. (11)

Proof. Without loss of generality we may assume that y(n) = x(n) > 0, y(n−
1) = x(n−1) > 0 for n > N. If x(t) is nonoscillatory, then x(t) > 0, t > T ≥ N.
So condition (11) is obtained from (5) easily.
Now, let us assume that (11) is true. We should show that x(t) is nonoscil-
latory. For contradiction, let x(t) be oscillatory. Therefore there exist se-
quences {tk}k≥0, {t′k}k≥0 such that tk → +∞, t′k → +∞ as k → +∞ and
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x (tk) ≤ 0 ≤ x (t′k) . Let nk = [tk]. It is clear that nk → +∞ as k → +∞. So,
from (5) we get

x (tk) = exp

−
tk∫

nk

a (s) ds


×

y(nk)− y(nk − 1)f(y(nk))

tk∫
nk

exp

 u∫
nk

a (s) ds

du

 .

Since y(nk) > 0, y(nk − 1) > 0 and x(tk) ≤ 0 we obtain

y(nk)

y(nk − 1)
≤ f(y(nk))

tk∫
nk

exp

 u∫
nk

a (s) ds

 du, nk ≤ tk < nk + 1

which is a contradiction to (11).
If y(n) = x(n) < 0, y(n− 1) = x(n− 1) < 0 for n > N, then the proof is done
by similar method.

Theorem 5. Suppose that 1− dn > 0 for n ∈ N and there exist a M > 0 such
that f(x) ≥ M for x ∈ (−∞,∞) and

lim
n→∞

sup (1− dn)

n+1∫
n

exp

 u∫
n−1

a (s) ds

 du >
1

M
. (12)

Then, all solutions of Eq. (6) are oscillatory.

Proof. We prove that the existence of eventually positive (or negative) solutions
leads to a contradiction. Let y(n) be a solution of Eq. (6). Assume that
y(n) > 0, y(n − 1) > 0, y(n − 2) > 0 for n > N, where N is sufficiently large.
From (6)

(1−dn)y(n) exp

 n∫
n−1

a (s) ds



= y(n− 1)− y(n− 2)f(y(n− 1))

n∫
n−1

exp

 u∫
n−1

a (s) ds

 du.

Since y(n− 2) > 0 and f(y(n− 1)) > 0, we have

(1− dn)y(n) exp

 n∫
n−1

a (s) ds

 < y(n− 1). (13)
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By using inequality (13) and Eq. (6), we obtain

y(n)

1− (1− dn)f(y(n))

n+1∫
n

exp

 u∫
n−1

a (s) ds

 du



> y(n)− y(n− 1)f(y(n))

n+1∫
n

exp

 u∫
n

a (s) ds

 du

= (1− dn+1)y(n+ 1) exp

 n+1∫
n

a (s) ds

 . (14)

Since y(n) > 0, y(n+ 1) > 0, 1− dn+1 > 0 and f(x) ≥ M, from (14), we get

1

M
≥ lim

n→∞
sup (1− dn)

n+1∫
n

exp

 u∫
n−1

a (s) ds

 du,

which is a contradiction to (12). The proof is the same in case of existence of
an eventually negative solution.

Corollary 1. Under the hypotheses of Theorem 5, all solutions of (1)-(2) are
oscillatory.

Remark 3. If f(x) = b, b > 0 is a constant function, then we have a linear
equation in the form{

x′(t) + a(t)x(t) + bx([t− 1]) = 0, t ̸= n,
x(n+)− x(n−) = dnx(n), n ∈ N = {0, 1, 2, ...} , (15)

which is a special case of (4). In this case, condition (12) reduces to the following
condition

lim
n→∞

sup (1− dn)b

n+1∫
n

exp

 u∫
n−1

a (s) ds

 du > 1,

which is stated in [13] for b(t) ≡ b > 0.

Now, consider following nonimpulsive equation

x′ (t) + a (t)x (t) + x ([t− 1]) f(x [t]) = 0, (16)

where a : [0,∞) → R, f : R → R are continuous functions.

Corollary 2. Assume that there exists a constant M > 0 such that f(x) ≥ M.
If

lim
n→∞

sup

n+1∫
n

exp

 u∫
n−1

a (s) ds

 du >
1

M
,
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then all solutions of Eq. (16) are oscillatory.

Theorem 6. Assume that
f(x) ≥ M > 0, (17)

1− dn ≥ K > 0, n = 0, 1, 2, ..., (18)

and

1

4KM
< lim

n→∞
inf exp

n+1∫
n

a(s)ds lim
n→∞

inf

n+1∫
n

exp(

u∫
n

a(s)ds)du < ∞. (19)

Then, all solutions of Eq. (6) are oscillatory.

Proof. Let y(n) be a solution of Eq. (6). Assume that y(n) > 0, y(n− 1) > 0
for n > N, where N is sufficiently large. From Eq. (6), we have

(1− dn+1)y(n+ 1) exp

n+1∫
n

a(s)ds =y(n)− y(n− 1)f(y(n))

×
n+1∫
n

exp

 u∫
n

a (s) ds

 du.

(20)

Let wn = y(n)
y(n−1) . Since wn > 0, we consider two cases:

Case 1. Let lim
n→∞

inf wn = ∞. Then from (20), we have

1 ≥ (1− dn+1)wn+1 exp

n+1∫
n

a(s)ds+
M

wn

n+1∫
n

exp

 u∫
n

a (s) ds

 du. (21)

Taking the inferior limit on both sides of inequality (21), we get

1 ≥ lim
n→∞

inf(1− dn+1) lim
n→∞

inf wn+1 lim
n→∞

inf exp

n+1∫
n

a(s)ds

+M lim
n→∞

inf
1

wn
lim

n→∞
inf

n+1∫
n

exp

 u∫
n

a (s) ds

 du,

which is a contradiction to the lim
n→∞

inf wn = ∞. So, we consider the second
case;

Case 2. Let 0 ≤ lim
n→∞

inf wn < ∞. Dividing Eq. (20) by y(n− 1), we have

y(n)

y(n− 1)
= (1− dn+1)

y(n+ 1)

y(n− 1)
exp

 n+1∫
n

a (s) ds


+f(y(n))

n+1∫
n

exp

 u∫
n

a (s) ds

 du,
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which yields

wn ≥(1− dn+1)wnwn+1 exp

 n+1∫
n

a (s) ds


+M

n+1∫
n

exp

 u∫
n

a (s) ds

 du.

(22)

Let lim
n→∞

inf wn = W, lim
n→∞

inf exp
n+1∫
n

a(s)ds = A,

lim
n→∞

inf
n+1∫
n

exp(
u∫
n

a(s)ds)du = B. Taking the inferior limit on both sides of

inequality (22), we have

W ≥ lim
n→∞

inf(1− dn+1)W
2A+MB (23)

Now, from (18), there are two subcases:
(i) If lim

n→∞
inf(1− dn+1) = ∞, then we obtain a contradiction from (23).

(ii) If lim
n→∞

inf(1− dn+1) < ∞, then from (23) we have

AKW 2 −W +MB ≤ 0,

or

KA

[(
W − 1

2KA

)2

+
4MBKA− 1

4K2A2

]
≤ 0,

which contradicts to (19). So Eq. (6) cannot have an eventually positive solu-
tion. Similarly, existence of an eventually negative solution leads us a contra-
diction. Thus all solutions of (6) are oscillatory.

Corollary 3. Under the hypotheses of Theorem 6, all solutions of (1)-(2) are
oscillatory.

Corollary 4. Assume that f(x) ≥ M > 0, and

1

4M
< lim

n→∞
inf exp

n+1∫
n

a(s)ds lim
n→∞

inf

n+1∫
n

exp(

u∫
n

a(s)ds)du < ∞.

then all solutions of (16) are oscillatory.

Remark 4. If f(x) = b, b > 0 is a constant, and dn ≡ 0 for all n ∈ N, then
Eq.(1)-(2) reduces to the linear nonimpulsive equation

x′(t) + a(t)x(t) + bx([t− 1]) = 0, (24)

which is the same as Eq.(1) with b(t) ≡ b in [7]. In this case, conditions (12)
and (19), respectively, correspond to conditions (2) and (8) in [7].
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Equation (24) is also special case of Eq.(1.1) in [9]. In this case, condi-
tion (19) reduces to condition (2.3) in [9] with b(t) ≡ b. Moreover, if a(t) ≡
a (constant), then condition (19) reduces to the condition

b >
ae−a

4(ea − 1)

which is known as the best possible for the oscillation [7, 9].

Remark 5. In the case of f(x) ≡ b, a(t) ≡ a, dn ≡ d, n ∈ N, a, b, d are
constants, Theorem 9 in [13] can be applied to Eq. (1)-(2) to obtain existence
of periodic solutions.

Consider the following equation.{
x′(t) + ax(t) + bx([t− 1]) = 0, t ̸= n,
x(n+)− x(n−) = dx(n), n ∈ N = {0, 1, 2, ...} . (25)

Corollary 5. Let 1−d > K > 0. A necessary and sufficient condition for every
oscillatory solution of Eq.(25) to be periodic with period k is

aea(1− d)

ea − 1
= b and a = − ln

(
2(1− d) cos

2πm

k

)
, (26)

where m and k are relatively prime and m = 1, 2, ..., [(k − 1)/4].

4. Examples

In this section, we give some examples to illustrate our results.
Example 1. Let us consider the following differential equation

x′ (t) + x (t) + (x2 [t] + 1)x ([t− 1]) = 0, t ̸= n, (27)

∆x (n) =
e− 1

e
x (n) , n ∈ N, (28)

which is a special case of (1)-(2) with a(t) = 1, f(x) = x2+1, dn = e−1
e , n ∈ N.

It is easily checked that the Eq. (27)-(28) satisfies all hypotheses of Theorem 6.
Thus every solution of equation (27)-(28) is oscillatory. The solution xn(t) of Eq.
(27)-(28) with the initial conditions x(−1) = 0, x (0) = 0.001 for n = 0, 1, 2, 3, 4
is demonstrated in Figure 1.
Example 2. Consider the equation

x′ (t) + x (t) + x ([t− 1]) = 0, t ̸= n, (29)

∆x (n) =
1

2
x (n) , n ∈ N, (30)

that is a special case of Eq. (1)-(2) with a(t) = 1, f(x) = 1 and dn = 1
2 , n ∈ N.

Since all hypotheses of Theorem 5 are satisfied, every solution of Eq.(29)-(30)
is oscillatory. Indeed, the solution x (t) of Eq.(29)-(30) is in the form

xn (t) = e−t+n[y(n)− y(n− 1)
(
et−n − 1

)
], n ≤ t < n+ 1, (31)
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1 2 3 4 5
t

-0.0025

-0.0020

-0.0015

-0.0010

-0.0005

0.0005

0.0010

x

Figure 1: Oscillatory solutions of Eq. (27)-(28) with the initial conditions
x(−1) = 0, x (0) = 0.001

where y(n) is the solution of the following linear difference equation

y(n+ 2)− 2e−1y(n+ 1) + (2− 2e−1)y(n) = 0, (32)

which has the complex characteristic roots

λ1,2 =
1

e
[1± i

√
−1− 2e+ 2e2].

So, Eq. (32) has only oscillatory solutions. Hence from Corollary 1, Eq. (29)-
(30) has only oscillatory solutions too. The solution xn(t), n = 0, 1, ...11, of
(29)-(30) with the initial conditions x(−1) =

√
2e2 − 2e− 1/(2− 2e), x(0) = 0

is given in Figure 2.

2 4 6 8 10 12
t

-2

-1

1

x

Figure 2: Oscillatory solutions of Eq. (29)-(30) with the initial conditions
x(−1) =

√
2e2 − 2e− 1/(2− 2e), x(0) = 0
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Example 3. Finally we consider the equation

x′ (t) + (ln 2)x (t) +
ln 4√
5− 1

x ([t− 1]) = 0, t ̸= n, (33)

∆x (n) =

√
5− 2√
5− 1

x (n) , n ∈ N. (34)

Since a(t) = ln 2, f(x) = ln 4√
5−1

and dn =
√
5−2√
5−1

, n ∈ N, verify the hypotheses

of Theorem 5, all solutions of Eq. (33)-(34) are oscillatory. On the other hand,
Since Eq. (33)-(34) satisfies the hypotheses of Corollary 5, all solutions of (33)-
(34) are periodic with period 5. This fact can be seen in Figure 3.

2 4 6 8 10 12
t

-1.0

-0.5

0.5

1.0
x

Figure 3: Oscillatory solutions of Eq. (33)-(34) with the initial conditions

x(−1) =
√

10 + 2
√
5/4, x(0) = 0.
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