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EIGENFUNCTION EXPANSIONS OF A QUADRATIC PENCIL

OF DIFFERENTIAL OPERATORS WITH PERIODIC

GENERALIZED POTENTIAL

MANAF DZH. MANAFOV AND ABDULLAH KABLAN

Abstract. In this article we obtain the eigenfunction expansions of a qua-
dratic pencil of Sturm�Liouville operators with periodic coe�cients. The im-
portant point to note here is the given potential is a �rst order generalized
function.

1. introduction

The idea of expanding an arbitrary function in terms of the solutions of a second-
order di�erential equation goes back to the time of Sturm and Liouville, more than
a hundred years ago. The �rst satisfactory proofs were constructed by various au-
thors early in the twentieth century. The second-order linear di�erential equation
with real periodic coe�cients, commonly known as Hill's equation, has been inves-
tigated by many mathematicians. An account of much of this theory is given in [9].
Further results relating to spectral theory are given in [4]. A characterization of
the spectrum of Hill's operator is studied in [11]. The spectral problems of the
quadratic pencil of di�erential operators with periodic potential are investigated
in [7]. In the same place one can �nd wide bibliography. Di�erential operators
with periodic generalized potential are widely used in applications to quantum and
atomic physics to produce exact solvable models of complicated physical phenomena
in [1�3,5, 8, 12,15].

In this paper, we study the eigenfunction problems of the following quadratic
pencil of di�erential equation with generalized potential

(1.1) `α[y] := −y′′ + 2αλ

∞∑
n=−∞

δ(x− n)y + q(x)y = λ2y, x ∈ R,

where q(x) is a 1-periodic, real, non-negative and piecewise continuous function;
δ(x) is the Dirac's delta function; α 6= 0 is a real number and λ is a spectral
parameter.

The equation (1.1) is equivalent to the following many-point boundary problem:

(1.2) − y′′(x) + q(x)y = λ2y

(1.3)

(
y(n+)

y′(n+)

)
=

(
1 0

2αλ 1

)(
y(n−)

y′(n −)

)
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such that y(x) ∈ H2,2(R\Z)
⋂
H2,1(R), where the symbolHm,n denotes the Sobolev

space (see [14]).
In order to obtain an eigenfunction expansion of (1.1) we have to know the

structure of spectrum and we will expose this in Sections 2�4.

2. Hill's discriminant and Floquet theory

The Hill discriminant is at the heart of the spectral theory of the periodic Sturm�
Liouville operator. If y(x) is a solution of (1.1), then so is also y(x + 1). But
generally, y(x+ 1) is not the same as y(x) and, indeed, (1.1) does not need to have
a non-trivial solution with period 1, (see [4]). From (1.3), we give below that (1.1)
has the property that there is a non-zero constant ρ and a non-trivial solution y(x)
such that from the properties of the delta function

(2.1)

(
1 0

−2αλ 1

)(
y(x+ 1)

y′(x+ 1)

)
= ρ

(
y(x)

y′(x)

)
.

Let θ(x, λ) and ϕ(x, λ) be linearly independent solutions of (1.2) which satisfy the
initial conditions

(2.2) θ(0, λ) = 1, θ′(0, λ) = 0, ϕ(0, λ) = 0, ϕ′(0, λ) = 1.

Since θ(x + 1, λ) and ϕ(x + 1, λ) are also linearly independent solutions of (1.2),
they can be written as a linear combination of θ(x, λ) and ϕ(x, λ). Furthermore,
every solution of (1.2) has the form

y(x, λ) = c1θ(x, λ) + c2ϕ(x, λ)

where c1 and c2 are constants. To obtain a non-trivial solution of the system with
respect to c1 and c2 by using the facts above and condition (2.1), the following
equality must be satis�ed

ρ2 − [ϕ′(1, λ) + θ(1, λ)− 2αλϕ(1, λ)]ρ+ 1 = 0.

This is a quadratic equation for ρ and it is satis�ed by at least one non-zero value
of ρ. Suppose that this equation has distinct solutions ρ1 and ρ2. Since ρ1 and ρ2
are non-zero, we can de�ne µ1 and µ2 such that eµk = ρk, (k = 1, 2). Now de�ne
Yk(x, λ) = e−µkxyk(x, λ). Thus the general solution of (1.1) has the Floquet form

y(x, λ) = c1e
µ1xY1(x, λ) + c2e

µ2xY2(x, λ).

The function F (λ) de�ned by

(2.3) F (λ) = ϕ′(1, λ) + θ(1, λ)− 2αλϕ(1, λ)

is called a discriminant of (1.1) and we consider �ve cases as follows (see [4, pp.
6�7]):

(1) F (λ) > 2. There is a real number µ 6= 0 such that ρ = eµ, ρ = e−µ. Thus

(2.4) y(x, λ) = c1e
µxY1(x, λ) + c2e

−µxY2(x, λ).

(2) F (λ) < −2. The situation here is the same as in (1). Here µ must now be
replaced by µ+ iπ in (2.4).

(3) −2 < F (λ) < 2. There is a real number ν with 0 < ν < π (or −π < ν < 0)
such that

y(x, λ) = c1e
iνxY1(x, λ) + c2e

−iνxY2(x, λ).
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(4) F (λ) = ±2. Then there is only one non-trivial solution y1(x, λ). Let us
denote the other solution by y2(x, λ), de�ned as below, such that y1(x, λ) and
y2(x, λ) are linearly independent.

y1(x, λ) = eµxY1(x, λ),

y2(x, λ) = eµx
[
d1
ρ
xY1(x, λ) + Y2(x, λ)

]
.

where d1 is a constant and d1 = 0 if and only if θ′(1, λ) = 2αλ and ϕ(1, λ) = 0.
(5) If λ is not a real number, then the possible alternatives are: If F (λ) is real,

then one of the above cases is valid. If F (λ) is not real, then there is a complex
number µ such that ρ = eµ, ρ = e−µ and (1.1) has two linearly independent solutions
y1(x, λ) = eµxY1(x, λ), y2(x, λ) = e−µxY2(x, λ), where Y1(x, λ) and Y2(x, λ) are
periodic with period 1.

De�nition 2.1. The equation (1.1) is said to be (a) unstable if all non-trivial
solutions are unbounded in (−∞,∞), (b) conditionally stable if there is a non-
trivial solution which is bounded in (−∞,∞), (c) stable if all non-trivial solutions
are bounded in (−∞,∞).

From this de�nition and �ve cases above, we obtain the following theorem.

Theorem 2.2. For �xed λ ∈ (−∞,∞), the equation (1.1) is unstable if |F (λ)| > 2
and stable if |F (λ)| < 2 and also stable if |F (λ)| = 2 and θ′(1, λ) = 2αλ, ϕ(1, λ) = 0.
Finally if |F (λ)| = 2 and θ′(1, λ) 6= 2αλ or ϕ(1, λ) 6= 0 then (1.1) is conditionally
stable.

3. Stability and instability intervals

For 0 ≤ x ≤ 1 the equation

(3.1) y′′ + [λ2 − q(x)]y = 0

and the boundary conditions

(3.2) y(1) = eity(0), y′(1) = eit[y′(0) + 2αλy(0)]

are called a t-quasi-periodic boundary problem, where t ∈ [0, 2π).
First we de�ne the linear operator in the Hilbert space H = L2(0, 1) by Lt as

follows:
Lty := −y′′ + q(x)y

with domain

D(Lt)={y|y(x) ∈ H2,1(0, 1), `0[y] ∈ H, y(1) = eity(0), y′(1) = eit[y′(0)+2αλy(0)]}.

Theorem 3.1. The eigenvalues of the operator Lt are real and the eigenvalues
λn(t) are the values of λ which satisfy the equation F (λ) = 2 cos t.

Proof. Suppose that λ is an eigenvalue of the operator Lt and that y(x) is a cor-
responding eigenfunction such that (y, y) = 1. Taking the inner product of both
sides of (3.1) with y(x) and using (3.2) we get

λ2 + 2α|y(0)|2λ−
∫ 1

0

{
|y′(x)|2 + q(x)|y(x)|2

}
dx = 0.
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Since α is a real number and q(x) ≥ 0, the roots of this equation are real numbers.
Substituting ρ = exp(it) into (2.3), we obtain F (λ) = 2 cos t.

Theorem 3.2. The eigenvalues of the operator Lt are simple for t 6= mπ (m =
0,±1,±2, . . .).

Proof. We suppose that t 6= mπ (m = 0,±1,±2, . . .) and y1(x) and y2(x) are lin-
early independent eigenfunctions corresponding to the eigenvalue λ of the operator
Lt. Thus, for all λ, the solutions of the equation (3.1) especially θ(x, λ) and ϕ(x, λ)
can be written as a linear combination of the functions y1(x) and y2(x) and these
solutions satisfy the boundary conditions (3.2). It follows that

F (λ) = θ(1, λ) + ϕ′(1, λ)− 2αλϕ(1, λ)

= eitθ(0, λ) + eit[ϕ′(0, λ) + 2αλϕ(0, λ)]− 2αλϕ(0, λ) = 2eit.

From Theorem 3.1, we arrive at cos t = eit. But this equality holds only for t =
mπ (m = 0,±1,±2, . . .) which contradicts the assumption.

The periodic and quasi-periodic problems associated with (3.1) and (3.2) corre-
spond to the cases when m is an even (resp. odd) number and their eigenvalues are
the zeros of F (λ) = 2 (resp. F (λ) = −2).

Theorem 3.3. The eigenvalues of the operator Lt are of the second order if and
only if

ϕ(1, λ) = 0, θ′(1, λ) = 2αλ.

Proof. The proof of the theorem is immediately obtained from the fact that ϕ(x, λ)
and θ(x, λ) satisfy the conditions (3.2).

It follows from the formula in [16, p. 292], for large |λ|

(3.3) F (λ) = 2
√

1 + α2 sin(λ+ β) +O

(
e|Imλ|

|λ|

)
,

where tanβ = −1/α. From using the asymptotic formula (3.3) and applying
Rouché's theorem, we can see that the equation F (λ) = 2 cos t has countable many
roots: λk(t) (k = 0,±1,±2, . . .). Hence from Theorem 3.1, all eigenvalues λk(t)
(k = 0,±1,±2, . . .) are nonzero real numbers and satisfy the following inequalities

(3.4) · · · ≤ λ−2(t) ≤ λ−1(t) ≤ λ0(t) ≤ λ1(t) ≤ λ2(t) ≤ · · ·
Now we will give existence and certain form of stability and instability intervals

of the equation (1.1). For this, we will use the properties of the function F (λ).

Lemma 3.4. For q(x) 6= 0, F (0) > 2.

Lemma 3.5. If F (λ) < 2 then dF (λ)
dλ 6= 0.

Lemma 3.6. Let |F (λ)| = 2. Then dF (λ0)
dλ = 0 if and only if

(3.5) ϕ(1, λ0) = 0, θ′(1, λ0) = 2αλ0.

In addition
a) Let F (λ0) = 2. If dF (λ0)

dλ = 0 then d2F (λ0)
dλ2 < 0.

b) Let F (λ0) = −2. If dF (λ0)
dλ = 0 then d2F (λ0)

dλ2 > 0.
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The proofs of these lemmas are seen by using the method in [16, p. 290]. Con-
sidering all lemmas above, we can derive the following results:

Corollary 3.7. The functions F (λ) ∓ 2 do not have a zero of order higher than
second.

Corollary 3.8. The zeros of the function F (λ)− 2 are of the second order if and
only if F (λ) has a maximum value at these zeros. The zeros of the function F (λ)+2
are of the second order if and only if F (λ) has a minimum value at these zeros.

Theorem 3.9.

1) Let α±2k, α
±
2k+1 (k = 0,±1,±2, . . .) be eigenvalues of the periodic and quasi-

periodic boundary problem respectively. Then the numbers α±2k and α±2k+1 occur
in the order

· · · < α−−2 ≤ α
+
−2 < α−−1 ≤ α

+
−1 < α−0 ≤ α

+
0 < α−1 ≤ α

+
1 < α−2 ≤ α

+
2 < · · ·

2) In the intervals [α+
2k, α

−
2k+1], F (λ) decreases from +2 to −2. In the intervals

[α+
2k+1, α

−
2k+2], F (λ) increases from −2 to +2.

3) In the intervals (α−2k, α
+
2k), F (λ) > 2. In the intervals (α−2k+1, α

+
2k+1), F (λ) <

−2.

Thus the stability intervals of (1.1) are (α+
k−1, α

−
k ) and that the conditional

stability intervals are the closures of these intervals. The instability intervals of
(1.1) are (α−k , α

+
k ).

4. Nature of the spectrum of the operator L(λ)

We denote the pencil operator in L2(R) of the di�erential expression

d2

dx2
+ λ2 − 2αλ

∞∑
n=−∞

δ(x− n)− q(x)

by L(λ) and D is a maximal domain such that

D =
{
y | y(x) ∈ H2,2(R\Z) ∩H2,1(R), y(n+) = y(n−) = y(n),

y′(n+)− y′(n−) = 2αλy(n), −y′′ + 2αλ

∞∑
n=−∞

δ(x− n)y + q(x)y ∈ L2(R)
}
.

We note that the functions y′′ and 2αλ
∑∞
n=−∞ δ(x − n)y are (delta type) gen-

eralized functions of order 1, such that −y′′ + 2αλ
∑∞
n=−∞ δ(x − n)y in L2(R),

(see [10]).
Let us denote the set consisting of the conditional stability intervals of (1.1)

by S. We prove �rst in this section that the spectrum of L(λ) denoted by σ is
continuous, that is, L(λ) has no eigenvalues, and then that σ coincides with S.

Theorem 4.1. The spectrum of L(λ) is continuous.
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Proof. If L(λ) had an eigenvalue λ0 with corresponding eigenfunction ψ(x), we
would have L(λ)ψ(x) = 0. Then ψ(x) would be a non-trivial solution of (1.1). But
from cases 1�5 of §2, (1.1) has no such non-trivial solution ψ(x) in L2(−∞,∞) for
any complex number λ and this �nishes the proof.

Theorem 4.2. The sets σ and S are identical.

Proof. We show �rst that S ⊂ σ. We suppose then that if λ0 is any point in S
then λ0 is also in σ. Referring to cases 1�5 of §2, there is, for λ0 in S, at least one
non-trivial solution ψ(x) of (1.1), with λ = λ0, such that |ρ| = 1.

On the other hand, let g(x) be any function with a continuous second derivative
in [0, 1] such that

g(0) = 0, g(1) = 1, g′(0) = g′′(0) = g′(1) = g′′(1) = 0, 0 ≤ g(x) ≤ 1.

Now de�ne a sequence {fn(x)} as follows

fn(x) = bnψ(x)hn(x)

in (−∞,∞), where

hn(x) =


1, |x| ≤ (n− 1)

g(n− |x|), (n− 1) ≤ |x| ≤ n
0, |x| ≥ n

and bn is the normalization constant making ‖fn‖ = 1. Since hn(x) = 1 throughout
(−n, n) except for any interval of length 1 at each end, we have

bn ∼
(

2n

∫ 1

0

|ψ(x)|2dx
)− 1

2

as n→∞. In particular,

(4.1) bn → 0

as n→∞. It is clear that, fn(x) ∈ D and

L(λ0)fn(x) = bn[2ψ′(x)h′n(x) + ψ(x)h′′n(x)]

hence

‖L(λ0)fn(x)‖ ≤ |bn|[2 ‖ψ′(x)h′n(x)‖+ ‖ψ(x)h′′n(x)‖] ≤ K|bn|,
where K is a nonnegative number and does not depend on n. From (4.1), we get
that ‖L(λ0)fn(x)‖ → 0 as n→∞. It follows from Theorem 5.2.2 in [4, p. 81] that
λ0 is in σ, and therefore S ⊂ σ.

To prove the reverse inclusion σ ⊂ S, we suppose now that λ0 is not in S and
prove that λ0 is not in σ. For λ0 is not in S, the following three possibilities can
occur:

i) λ0 ∈ (−∞,∞) and |F (λ0)| > 2;
ii) Imλ0 6= 0 and |F (λ0)| is real;
iii) Imλ0 6= 0 and |F (λ0)| is not real.
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i) The analysis for F (λ0) > 2 and F (λ0) < −2 is virtually the same and so we
write it out only for F (λ0) > 2. Then there are solutions ψ1(x) and ψ2(x) of
(1.1), with λ = λ0. Thus, we de�ne the Green's function G(x, ξ;λ0) for the
equation L(λ0) = f(x) from using the method in [13] and then we de�ne the
linear operator R by

(4.2) y(x, λ0) = Rf(x) =

∫ ∞
−∞

G(x, ξ;λ0)f(ξ)dξ

where f(x) ∈ L2(−∞,∞). It can be seen that R is a bounded operator. This
means that λ0 is in the resolvent set of L(λ0) and so λ0 is not in σ.

ii) It is enough to show that |F (λ0)| > 2, then the same proof works for this case.
Indeed, if |F (λ0)| ≤ 2, then there's at least one t0 ∈ (−∞,∞) which satis�es
the equality F (λ0) = 2 cos t0. This means that λ0 is the eigenvalue and from
Theorem 3.1 this eigenvalue is a real number. This contradicts our assumption
Imλ0 6= 0.

iii) There are two linearly independent solutions of (1.1) for λ = λ0. Hence the
same proof as in i) works for this case, too.

Corollary 4.3. The operator L(λ) has a continuous spectrum consisting of the
intervals [α+

k−1, α
−
k ] (k = 0,±1,±2, . . .).

De�nition 4.4. In the sequel, the segments on the real axis [α+
k−1, α

−
k ] (k =

0,±1,±2, . . .) will be said to be the bands of the spectrum of the operator L(λ),
and the intervals (α−k , α

+
k ) (k = 0,±1,±2, . . .) will be called the gaps.

Theorem 4.5. The number of gaps in the spectrum of L(λ) is in�nite and the
lengths of gaps tend to in�nity as n→∞, (q(x) 6= 0).

Proof. If we apply arguments stated in [16, p. 296] for the function F (λ) = θ(1, λ)+
ϕ′(1, λ) + 2αλϕ(1, λ) then we �nd

(α+
2n)2 − (α−2n)2 = 4απn+O(1).

5. Eigenfunction expansions

In the present section, we obtain the eigenfunction expansions by using the above
results and the methods in [6] and [7]. First, we consider the Green's function of
the t-quasi periodic boundary problem (3.1), (3.2). After long processes, we have
the Green's function, (see [13]),

(5.1) Gt(x, ξ;λ) =
1

∆t(λ)
[θ(x, λ)ht(ξ, λ)− ϕ(x, λ)gt(ξ, λ)] + ω(x, ξ, λ),

where

(5.2) ∆t(λ) = −[F (λ)− 2 cos t],

(5.3) ht(ξ, λ) = ϕ(1, λ)θ(ξ, λ) + [e−it − θ(1, λ)]ϕ(ξ, λ),
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(5.4)
gt (ξ, λ) =

[
e−it − ϕ′(1, λ)

]
θ (ξ, λ) + θ′(1, λ)ϕ (ξ, λ)

−2αλ [θ(1, λ)ϕ (ξ, λ)− θ (ξ, λ)ϕ(1, λ)] ,

ω(x, ξ;λ) =

{
ϕ(x, λ)θ(ξ, λ)− θ(ξ, λ)ϕ(x, λ), 0 ≤ ξ ≤ x

0, x ≤ ξ ≤ 1.

Thus for all f(x) ∈ L2[0, 1], the solution of the t-quasi periodic boundary problem
(3.1), (3.2) can be written as

y(x, λ) =

∫ 1

0

Gt(x, ξ;λ)f(ξ)dξ.

Theorem 5.1. The following formula is correct for t 6= πm, (m = 0,±1,±2, . . .).

(5.5) Gt(x, ξ;λ) = −bk(t)ψk,t(x)ψk,t(ξ)

λ− λk(t)
+ ωk,t(x, ξ;λ),

where

(5.6) bk(t) =

{
ϕ(1, λk(t))

dF (λk(t))

dλ

}−1
,

(5.7) ψk,t(x) = ϕ(1, λk(t))θ(x, λk(t)) + [eit − θ(1, λk(t))]ϕ(x, λk(t))

and ωk,t(x, ξ;λ) is a regular function about a point λ = λk(t).

It is easy to check that ψk,t(x), determined by (5.7), satis�es the following two
equalities

(5.8) ψk,t (1) = eitψk,t (0) , ψ′k,t (1) = eit
[
ψ′k,t (0) + 2αλψk,t (0)

]
.

Consequently, these functions are the solutions of the t-quasi periodic boundary
problem (3.1), (3.2).

Theorem 5.2. We suppose that the function f(x) is twice (continuously) di�eren-
tiable and supp f(x) ⊂ (0, 1). Then as |λ| → ∞

(5.9)

1∫
0

Gt (x, ξ;λ) f (ξ) dξ =
f (x)

λ2
+O

(
1

λ3

)
.

So by using contour integration method, Parseval's equality, (5.5) and (5.9) we
arrive at

(5.10)

∞∑
k=−∞

bk (t)

∣∣∣∣ 1∫
0

f (x) ψ̄k,t (x) dx

∣∣∣∣2 = 0,

−
∞∑

k=−∞
λk (t) bk (t)

∣∣∣∣ 1∫
0

f (x) ψ̄k,t (x) dx

∣∣∣∣2 =
1∫
0

|f (x)|2 dx.

These equalities can also be derived for f(x) ∈ L2[0, 1]. Now we will obtain the
eigenfunction expansion on the real axis. Let f(x) be a continuous function and
vanish except on a �nite interval. Let us consider the following function (see [6])

(5.11) ft (x) =

∞∑
m=−∞

f (x+m) e−imt
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Since f(x) is a �nite function, this sum is also �nite. It is easy to check that the
function ψk,t(x) de�ned for −∞ < x <∞ satis�es the following equality

(5.12) ψk,t (x+ 1) = eitψk,t (x) .

Thus from (5.11) and (5.12), we get

(5.13)

1∫
0

ft (x) ψ̄k,t (x) dx =

∞∫
−∞

f (x) ψ̄k,t (x) dx.

Replacing ft(x) by f(x) in equalities (5.10) we obtain

(5.14)

∞∑
k=−∞

bk (t)

∣∣∣∣ 1∫
0

ft (x) ψ̄k,t (x) dx

∣∣∣∣2 = 0,

−
∞∑

k=−∞
λk (t) bk (t)

∣∣∣∣ 1∫
0

ft (x) ψ̄k,t (x) dx

∣∣∣∣2 =
1∫
0

|ft (x)|2 dx.

Furthermore, from (5.7) and (5.13) we have the following equality

1∫
0

ft (x) ψ̄k,t (x) dx = ϕ (1, λk)F1 (λk) +
[
e−it − θ (1, λk)

]
F2 (λk) ,

where λk = λk(t) and

(5.15) F1 (λ) =

∞∫
−∞

f (x) θ (x, λ) dx, F2 (λ) =

∞∫
−∞

f (x)ϕ (x, λ) dx.

Without loss of generality we can assume that f(x) is a real function. After some
operations we have

(5.16)

∣∣∣∣∣∣
1∫

0

ft (x) ψ̄ (x) dx

∣∣∣∣∣∣
2

= ϕ (1, λk (t)) Φ (λk (t)) ,

where

(5.17)
Φ (λk (t)) = ϕ (1, λ)F2

1 (λ)− [θ′ (1, λ)− 2αλθ (1, λ)]F2
2 (λ)

+ [ϕ′ (1, λ)− θ (1, λ)− 2αλϕ (1, λ)]F1 (λ)F2 (λ) .

By substituting (5.16) in (5.14) and using (5.6) we arrive at

(5.18)

∞∑
k=−∞

Φ (λk (t)) υ (λk (t)) λ̇k (t) = 0,

∞∑
k=−∞

λk (t) Φ (λk (t)) υ (λk (t)) λ̇k (t) =
1∫
0

|ft (x)|2 dx

where the dot denotes the derivative with respect to t and

(5.19) υ (λ) =
{

4− [θ (1, λ) + ϕ′ (1, λ)− 2αλϕ (1, λ)]
2
}− 1

2

.
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We integrate both sides of the equations (5.18) with respect to t over [0, π] and
take into account the conditional stability set of the equation (1.1). Then substitute
λ for λk(t) in all integrals we arrive at the following expansion formulas

(5.20)

0 =

 ∞∑
k=−∞

α−
2k+1∫
α+

2k

−
∞∑

k=−∞

α−
2k+2∫

α+
2k+1

Ψ (x, λ) υ (λ) dλ,

f (x) = 1
π

 ∞∑
k=−∞

α−
2k+1∫
α+

2k

−
∞∑

k=−∞

α−
2k+2∫

α+
2k+1

λΨ (x, λ) υ (λ) dλ,

where

Ψ (x, λ) = Φ1 (λ) θ (x, λ) + Φ2 (λ)ϕ (x, λ) ,

Φ1 (λ) =ϕ (1, λ)F1 (λ) +
1

2
[ϕ′ (1, λ)− θ (1, λ)]F2 (λ) ,

Φ2 (λ) =
1

2
[ϕ′ (1, λ)− θ (1, λ)− 2αλϕ(1, λ)]F1 (λ)

− [θ′ (1, λ)− 2αλθ(1, λ)]F2 (λ) ,

(5.21)

where the functions F1(λ) and F2(λ) are obtained from formulas (5.15) and υ (λ)
is given in (5.19).

We note that these results have been given for di�erential operators but not for
the quadratic pencil with regular potential in [16] and for higher order self-adjoint
di�erential operators in [17].
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