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Abstract. In this paper, we establish the existence of at least two distinct weak solutions
for some singular elliptic problems involving a p-biharmonic operator, subject to Navier
boundary conditions in a smooth bounded domain in RN . A critical point result for
differentiable functionals is exploited, in order to prove that the problem admits at least
two distinct nontrivial weak solutions.
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1 Introduction and main result

Singular elliptic problems have been intensively studied in the last decades. Among others,
we mention the works [1,7,11,12,14,20,21,25,26]. Stationary problems involving singular non-
linearities, as well as the associated evolution equations, describe naturally several physical
phenomena and applied economical models. For instance, nonlinear singular boundary value
problems arise in the context of chemical heterogeneous catalysts and chemical catalyst ki-
netics, in the theory of heat conduction in electrically conducting materials, singular minimal
surfaces, as well as in the study of non-Newtonian fluids and boundary layer phenomena for
viscous fluids. Moreover, nonlinear singular elliptic equations are also encountered in glacial
advance, in transport of coal slurries down conveyor belts and in several other geophysical
and industrial contents.

Recently, motivated by this large interest, the problem{
∆2

pu = |u|p−2u
|x|2p + g(λ, x, u) in Ω

u, ∆u|∂Ω = 0,
(1.1)

where g : ]0,+∞[×Ω×R→ R is a suitable function, has been extensively investigated.
For instance, when p = 2, Wang and Shen [25] considered the problem (1.1), assuming that

the nonlinearity has the form g(λ, x, u) = f (x, u). In this setting, the existence of non-trivial
solutions by using variational methods is established. Successively, Berchio et al. [1] consid-
ered the case g(λ, x, u) = (1 + u)q, study the behavior of extremal solutions to biharmonic
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Gelfand-type equations under Steklov boundary conditions. Also in [7,20,21], the authors are
interested in the existence and multiplicity solutions for this kind of singular elliptic problems.
Precisely, the existence of multiple solutions is proved by Chung [7] through a variant of the
three critical point theorem by Bonanno [2]. Pérez-Llanos and Primo [21] studied the optimal
exponent q to have solvability of problem with g(λ, x, u) = uq + c f . Sign-changing solutions
is investigated by Pei and Zhang [20].

Also in presence of p-biharmonic operator, singular equations have been investigated. For
instance, Xie and Wang, in [26] proved that the problem (1.1) has infinitely many solutions
with positive energy levels. Later, Huang and Liu [11] obtained the existence of sign-changing
solutions of p-biharmonic equations with Hardy potential by using the method of invariant
sets of descending flow.

In this paper, we want to investigate the following problem{
∆2

pu + |u|p−2u
|x|2p = λ f (x, u) in Ω,

u = ∆u = 0 on ∂Ω,
(P)

where ∆2
pu := ∆(|∆u|p−2∆u) denotes the p-biharmonic operator, Ω is a bounded domain

in RN(N ≥ 5) containing the origin and with smooth boundary ∂Ω, 1 < p < N/2, and
f : Ω×R→ R is a Carathéodory function such that

(f1) | f (x, t)| ≤ a1 + a2|t|q−1, ∀(x, t) ∈ Ω×R,

for some non-negative constants a1, a2 and q ∈ ]p, p∗[, where

p∗ :=
pN

N − 2p
.

In this work, our goal is to obtain the existence of two distinct weak solutions for problem (P).
Recall that a function f : Ω×R→ R is said to be a Carathéodory function, if

(C1) the function x → f (x, t) is measurable for every t ∈ R;

(C2) the function t→ f (x, t) is continuous for a.e. x ∈ Ω.

Now, we establish the main abstract result of this paper. We recall that cq is the constant
of the embedding W1,p

0 (Ω) ∩W2,p(Ω) ↪→ Lq(Ω) for each q ∈ [1, p∗[, and c1 stands for cq with
q = 1; see (2.2).

Theorem 1.1. Let f : Ω×R → R be a Carathéodory function such that condition (f1) holds. More-
over, assume that

(f2) there exist θ > p and M > 0 such that

0 < θF(x, t) ≤ t f (x, t),

for each x ∈ Ω and |t| ≥ M. Then, for each λ ∈ ]0, λ∗[ , problem (P) admits at least two distinct
weak solutions, where

λ∗ :=
q

qa1c1 p1/p + a2cq
q pq/p

.

In conclusion we present a concrete example of application of Theorem 1.1 whose con-
struction is motivated by [4, Example 4.1].
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Example 1.2. We consider the function f defined by

f (x, t) :=

{
c + dqtq−1, if x ∈ Ω, t ≥ 0,

c− dq(−t)q−1, if x ∈ Ω, t < 0,

for each (x, t) ∈ Ω ×R, where 1 < p < q < p∗ and c, d are two positive constants. Fixed
p < θ < q and

r > max

{[
(θ − 1)c
d(q− θ)

]h

,
( c

d

)h
}

,

with h = 1
q−1 , we prove that f verifies the assumptions requested in Theorem 1.1. Condition

(f1) of Theorem 1.1 is easily verified. We observe that

F(x, t) = ct + d|t|q,

for each (x, t) ∈ Ω×R. Taking into account that, condition (f2) is verified (see Example 4.1 of
[4]) and clearly f (x, 0) 6= 0 in Ω, problem (P) has at least two nontrivial weak solutions for
every λ ∈ ]0, λ∗[ , where λ∗ is the constant introduced in the statement of Theorem 1.1.

Remark 1.3. Thanks to Talenti’s inequality, it is possible to obtain an estimate of the embed-
ding’s constants c1, cq. By the Sobolev embedding theorem there exists a positive constant c
such that

‖u‖Lp∗ (Ω) ≤ c‖u‖, ∀u ∈W1,p
0 (Ω) ∩W2,p(Ω) (1.2)

see [24]. The best constant that appears in (1.2) is

c :=
1

N2π

 Γ2 (N
2

)
Γ
(

N
2p∗

)
Γ
((N

2

)
−
(

N
2p∗

))
2/N

η1−1/p, (1.3)

where
η :=

p− 1
p

,

see, for instance [24].
Due to (1.3), as a simple consequence of Hölder’s inequality, it follows that

cq ≤
meas(Ω)

p∗−q
p∗q

N2π

 Γ2 (N
2

)
Γ
(

N
2p∗

)
Γ
((N

2

)
−
(

N
2p∗

))
2/N

η1−1/p,

where “meas(Ω)” denotes the Lebesgue measure of the set Ω.

A special case of our main result reads as follows.

Theorem 1.4. Let N = 5 and f (u) = (1 + u3). Then, there exists λ∗ > 0, such that, for any
λ ∈ ]0, λ∗[ the following problem{

∆2
pu + |u|p−2u

|x|2p = λ(1 + u3) in Ω,

u = ∆u = 0 on ∂Ω,

admits two weak solutions.
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Remark 1.5. Inspired by [4], we prove that, for small values of λ, problem (P) admits at least
two weak solutions requiring that the continuous and subcritical nonlinear term f satisfies
the celebrated Ambrosetti–Rabinowitz condition without the usual additional assumption at
zero, that is,

lim
t→0

f (x, t)
t

= 0

uniformly for x ∈ Ω.

For completeness, we recall that a careful and interesting analysis of singular elliptic prob-
lems was developed in the monograph [22] as well as the papers [5, 6, 9, 10, 15–18] and ref-
erences therein and see also the recent monograph by Kristály, Rǎdulescu and Varga [13] as
general reference for this topic.

2 Preliminaries and basic definitions

Let Ω be a bounded domain in RN (N ≥ 5) containing the origin and with smooth boundary
∂Ω. Further, denote by X the space W1,p

0 (Ω) ∩W2,p(Ω) endowed with the norm

‖u‖ :=
(∫

Ω
|∆u|pdx

)1/p

.

Let 1 < p < N/2, we recall classical Hardy’s inequality, which says that∫
Ω

|u(x)|p
|x|2p dx ≤ 1

H

∫
Ω
|∆u(x)|pdx, ∀u ∈ X (2.1)

where H :=
(

N(p−1)(N−2p)
p2

)p
; see, for instance, the paper [19].

By the compact embedding X ↪→ Lq(Ω) for each q ∈ [1, p∗[, there exists a positive constant
cq such that

‖u‖Lq(Ω) ≤ cq‖u‖, ∀u ∈ X (2.2)

where cq is the best constant of the embedding.
Let us define F(x, ξ) :=

∫ ξ
0 f (x, t)dt, for every (x, ξ) in Ω×R. Moreover, we introduce the

functional Iλ : X → R associated with (P),

Iλ := Φ(u)− λΨ(u), ∀u ∈ X

where

Φ(u) :=
1
p

(∫
Ω
|∆u(x)|pdx +

∫
Ω

|u(x)|p
|x|2p dx

)
, Ψ(u) :=

∫
Ω

F(x, u)dx.

From Hardy’s inequality (2.1), it follows that

‖u‖p

p
≤ Φ(u) ≤

(
H + 1

pH

)
‖u‖p, (2.3)

for every u ∈ X.
Fixing the real parameter λ, a function u : Ω → R is said to be a weak solution of (P) if

u ∈ X and ∫
Ω
|∆u|p−2∆u∆vdx +

∫
Ω

|u|p−2

|x|2p uvdx− λ
∫

Ω
f (x, u)vdx = 0,

for every v ∈ X. Hence, the critical points of Iλ are exactly the weak solutions of (P).
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Definition 2.1 ([13]). A Gâteaux differentiable function I satisfies the Palais–Smale condition
(in short (PS)-condition) if any sequence {un} such that

(a) {I(un)} is bounded,

(b) limn→+∞ ‖I′(un)‖X∗ = 0, where X∗ denote the dual space of X,

has a convergent subsequence.

Definition 2.2 ([13]). Let X be a reflexive real Banach space. The operator T : X → X∗ is said
to satisfy the (S+) condition if the assumptions lim supn→+∞〈T(un)− T(u0), un − u0〉 ≤ 0 and
un ⇀ u0 in X imply un → u0 in X.

Proposition 2.3. The operator T : X → X∗ defined by

〈T(u), v〉 :=
∫

Ω
|∆u|p−2∆u∆vdx +

∫
Ω

|u|p−2

|x|2p uvdx,

for every u, v ∈ X, is strictly monotone.

Proof. Clearly T is coercive. Taking into account (2.2) of [23] for p > 1 there exists a positive
constant Cp such that if p ≥ 2, then

〈|x|p−2x− |y|p−2y, x− y〉 ≥ Cp|x− y|p,

if 1 < p < 2, then

〈|x|p−2x− |y|p−2y, x− y〉 ≥ Cp
|x− y|p

(|x|+ |y|)2−p ,

where 〈·, ·〉 denotes the usual inner product in RN . Thus, it is easy to see that, if p ≥ 2, then,
for any u, v ∈ X, with u 6= v, we have

〈T(u)− T(v), u− v〉 ≥ Cp

∫
Ω
|∆u− ∆v|pdx = Cp‖u− v‖p > 0,

and if 1 < p < 2, then

〈T(u)− T(v), u− v〉 ≥ Cp

∫
Ω

|∆u− ∆v|2

(|∆u|+ |∆v|)2−p dx > 0,

for every u, v ∈ X, which means that T is strictly monotone.

Our main tool is the following critical point theorem.

Theorem 2.4 ([3, Theorem 3.2]). Let X be a real Banach space and let Φ, Ψ : X → R be two contin-
uously Gâteaux differentiable functionals such that Φ is bounded from below and Φ(0) = Ψ(0) = 0.
Fix r > 0 such that supΦ(u)<r Ψ(u) < +∞ and assume that, for each λ ∈

]
0, r

supΦ(u)<r Ψ(u)

[
, the

functional Iλ := Φ − λΨ satisfies (PS)-condition and it is unbounded from below. Then, for each
λ ∈

]
0, r

supΦ(u)<r Ψ(u)

[
, the functional Iλ admits two distinct critical points.
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3 Proof of Theorem 1.1

Proof. Our aim is to apply Theorem 2.4 to problem (P) in the case r = 1 to the space X :=
W1,p

0 (Ω) ∩W2,p(Ω) with the norm

‖u‖ :=
(∫

Ω
|∆u|pdx

)1/p

,

and to the functionals Φ, Ψ : X → R be defined by

Φ(u) :=
1
p

(∫
Ω
|∆u(x)|pdx +

∫
Ω

|u(x)|p
|x|2p dx

)
and

Ψ(u) :=
∫

Ω
F(x, u)dx,

for all u ∈ X. The functional Φ is in C1(X, R) and Φ′ : X → X∗ is strictly monotone (see
Proposition 2.3. Now we prove that Φ′ is a mapping of type (S+). Let un ⇀ u in X and
lim supn→+∞〈Φ′(un)−Φ′(u), un − u〉 ≤ 0. Since Φ′ is strictly monotone, then

lim sup
n→+∞

〈K′(un)− K′(u), un − u〉 ≤ 0,

where K′ : X → X∗ defined as

K(u) :=
1
p

∫
Ω
|∆u|pdx, ∀u ∈ X,

and
〈K′(u), v〉 =

∫
Ω
|∆u|p−2∆u∆vdx,

for every v ∈ X. Then un → u in X (see Theorem 3.1 of [8]). So, Φ′ is a mapping of type (S+).
By Theorem 3.1 from [8], we get that Φ′ : X → X∗ is a homeomorphism. Moreover, thanks
to condition (f1) and to the compact embedding W1,p

0 (Ω) ∩W2,p(Ω) ↪→ Lq(Ω), Ψ is C1(X, R)

and has compact derivative and

〈Ψ′(u), v〉 =
∫

Ω
f (x, u)vdx,

for every v ∈ X. Now we prove that Iλ = Φ− λΨ satisfies (PS)-condition for every λ > 0.
Namely, we will prove that any sequence {un} ⊂ X satisfying

d := sup
n

Iλ(un) < +∞, ‖I′λ(un)‖X∗ → 0, (3.1)

contains a convergent subsequence. For n large enough, we have by (3.1)

d ≥ Iλ(un) =
1
p

(∫
Ω
|∆un|pdx +

∫
Ω

|un|p
|x|2p dx

)
− λ

∫
Ω

F(x, un)dx,

then

Iλ(un) ≥
1
p

(∫
Ω
|∆un|pdx +

∫
Ω

|un|p
|x|2p dx

)
− λ

θ

∫
Ω

f (x, un)undx

>

(
1
p
− 1

θ

)(∫
Ω
|∆un|pdx

)
+

1
θ

(∫
Ω
|∆un|pdx +

∫
Ω

|un|p
|x|2p dx− λ

∫
Ω

f (x, un)undx
)

≥
(

1
p
− 1

θ

)
‖un‖p +

1
θ
〈I′(un), un〉.
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Due to (3.1), we can actually assume that
∣∣ 1

θ 〈I′λ(un), un〉
∣∣ ≤ ‖un‖. Thus,

d + ‖un‖ ≥ Iλ(un)−
1
θ
〈I′λ(un), un〉 ≥

(
1
p
− 1

θ

)
‖un‖p.

It follows from this quadratic inequality that {‖un‖} is bounded. By the Eberlian–Smulyan
theorem, passing to a subsequence if necessary, we can assume that un ⇀ u. Then Ψ′(un) →
Ψ′(u) because of compactness. Since I′λ(un) = Φ′(un)− λΨ′(un)→ 0, then Φ′(un)→ λΨ′(u).
Since Φ′ is a homeomorphism, then un → u and so Iλ satisfies (PS)-condition.

From (f2), by standard computations, there is a positive constant C such that

F(x, t) ≥ C|t|θ (3.2)

for all x ∈ Ω and |t| > M. In fact, setting a(x) := min|ξ|=M F(x, ξ) and

ϕt(s) := F(x, st), ∀s > 0, (3.3)

by (f2), for every x ∈ Ω and |t| > M one has

0 < θϕt(s) = θF(x, st) ≤ st f (x, st) = sϕ′t(s), ∀s >
M
|t| .

Therefore, ∫ 1

M/|t|

ϕ′t(s)
ϕt(s)

ds ≥
∫ 1

M/|t|

θ

s
ds.

Then

ϕt(1) ≥ ϕt

(
M
|t|

)
|t|θ
Mθ

.

Taking into account of (3.3), we obtain

F(x, t) ≥ F
(

x,
M
|t|t

)
|t|θ
Mθ
≥ a(x)

|t|θ
Mθ
≥ C|t|θ ,

where C > 0 is a constant. Thus (3.2) is proved.
Fixed u0 ∈ X \ {0}, for each t > 1 one has

Iλ(tu0) ≤
1
p

tp‖u0‖p − λCtθ
∫

Ω
|u0|θdx.

Since θ > p, this condition guarantees that Iλ is unbounded from below. Fixed λ ∈ ]0, λ∗[,
from (2.3) it follows that

‖u‖ < p1/p, (3.4)

for each u ∈ X such that u ∈ Φ−1(]−∞, 1[). Moreover, the compact embedding X ↪→ L1(Ω),
(f1), (3.4) and the compact embedding X ↪→ Lq(Ω) imply that, for each u ∈ Φ−1(]−∞, 1[), we
have

Ψ(u) ≤ a1‖u‖L1(Ω) +
a2

q
‖u‖q

Lq(Ω)

≤ a1c1‖u‖+
a2

q
cq

q‖u‖q

< a1cq p1/p +
a2

q
cq

q pq/p,
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and so,

sup
Φ(u)<1

Ψ(u) ≤ a1cq p1/p +
a2

q
cq

q pq/p =
1

λ∗
<

1
λ

. (3.5)

From (3.5) one has

λ ∈]0, λ∗[ ⊆
]

0,
1

supΦ(u)<1 Ψ(u)

[
.

So all hypotheses of Theorem 2.4 are verified. Therefore, for each λ ∈ ]0, λ∗[, the functional Iλ

admits two distinct critical points that are weak solutions of problem (P).
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