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Abstract. In this paper, we study the existence of extremal solutions for a nonlinear
third-order differential equation with three-point nonlinear boundary value conditions.
By means of the method of upper and lower solutions and different monotone iterative
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are given. An example illustrates the main results.
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1 Introduction

Nonlinear boundary value conditions in differential equations can describe many phenom-
ena in applied mathematics, engineering, physical or biological processes. In this paper, we
consider the following third-order differential equation with three-point nonlinear boundary
value conditions 

−u′′′(t) = f (t, u(t)), t ∈ [0, 1],

u(0) = u′′(0) = 0,

p (u(1), u(ξ)) = 0,

(1.1)

where ξ ∈ (0, 1), f : [0, 1]× R→ R and p : R× R→ R are continuous.
In recent years, third-order differential equations with nonlinear boundary value condi-

tions have been discussed in many papers (see [1–15] and the references therein). For exam-
ple, [4] considered a class of two-point nonlinear boundary value conditions by using a priori
estimate, Nagumo condition, upper and lower solutions and Leray–Schauder degree. Pa-
pers [7–9, 13] considered some nonlinear nonlocal boundary conditions. However, according
to our knowledge, for third-order differential equation, the three-point nonlinear boundary
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value conditions in problem (1.1) are never discussed in literature. Hence the aim of this
paper is to discuss this issue.

The main contributions are as follows: (a) we present problems with linear boundary value
conditions, and on this basis we obtain the existence of the extremal solutions for problem
(1.1) by applying the method of upper and lower solutions and monotone iterative technique;
(b) the iterative technique is not unique and an example illustrates the result.

2 Notations and preliminaries

In this section, we present some definitions and lemmas that will be used throughout the
paper.

Definition 2.1. Assume ξ ∈ (0, 1), f : [0, 1]× R → R is continuous. A function u(t) is called
an upper solution for problem (1.1) if it satisfies

u′′′(t) + f (t, u(t)) ≤ 0, t ∈ [0, 1],

u(0) = u′′(0) = 0,

p (u(1), u(ξ)) ≥ 0.

Similarly, a function u(t) is called a lower solution for problem (1.1) if it satisfies
u′′′(t) + f (t, u(t)) ≥ 0, t ∈ [0, 1],

u(0) = u′′(0) = 0,

p (u(1), u(ξ)) ≤ 0.

Lemma 2.2. Assume that αξ 6= 1, b ∈ R and h : [0, 1] → R is continuous. Then the boundary value
problem 

−u′′′(t) = h(t), t ∈ [0, 1],

u(0) = u′′(0) = 0,

u(1) = αu(ξ) + b,

has a unique solution

u(t) =
b

1− αξ
t +

αt
1− αξ

∫ 1

0
G(ξ, s)h(s)ds +

∫ 1

0
G(t, s)h(s)ds,

where

G(t, s) =
1
2

{
(1− t)(t− s2), 0 ≤ s ≤ t ≤ 1,

t(1− s)2, 0 ≤ t ≤ s ≤ 1.
(2.1)

Proof. Integrating the equation

−u′′′(t) = h(t), t ∈ [0, 1],

over [0, t] for three times, we have

u(t) = −1
2

∫ t

0
(t− s)2h(s)ds +

1
2

u′′(0)t2 + u′(0)t + u(0).
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Due to the boundary conditions u(0) = u′′(0) = 0, u(1) = αu(ξ) + b, it follows that

−1
2

∫ 1

0
(1− s)2h(s)ds + u′(0) = αu(ξ) + b.

And then

u(t) = t(αu(ξ) + b) +
1
2

t
∫ 1

0
(1− s)2h(s)ds− 1

2

∫ t

0
(t− s)2h(s)ds

= t(αu(ξ) + b) +
1
2

∫ t

0
t(1− s)2h(s)ds− 1

2

∫ t

0
(t− s)2h(s)ds +

1
2

∫ 1

t
t(1− s)2h(s)ds

= t(αu(ξ) + b) +
1
2

∫ t

0
(1− t)(t− s2)h(s)ds +

1
2

∫ 1

t
t(1− s)2h(s)ds

= t(αu(ξ) + b) +
∫ 1

0
G(t, s)h(s)ds. (2.2)

Putting t = ξ, we have

u(ξ) =
1

1− αξ

(
ξb +

∫ 1

0
G(ξ, s)h(s)ds

)
.

Substituting it into (2.2), we get

u(t) =
b

1− αξ
t +

αt
1− αξ

∫ 1

0
G(ξ, s)h(s)ds +

∫ 1

0
G(t, s)h(s)ds.

Remark 2.3. It is easy to see that G(t, s) > 0 for all (t, s) ∈ (0, 1)× (0, 1) and

u′(t) =
b

1− αξ
+

α

1− αξ

∫ 1

0
G(ξ, s)h(s)ds +

∫ 1

0
G′(t, s)h(s)ds, (2.3)

where

G′(t, s) =
1
2

{
1− 2t + s2, 0 ≤ s ≤ t ≤ 1,

(1− s)2, 0 ≤ t ≤ s ≤ 1.
(2.4)

Remark 2.4. For (t, s) ∈ [0, 1]× [0, 1],

0 ≤ t(1− t)ϕ(s) ≤ G(t, s) ≤ ϕ(s), (2.5)

where ϕ(s) = 1
8 (1 + s)2(1− s)2.

In fact, for t ∈ [s, 1], G(·, s) = 1
2 (1− t)(t− s2) attains its maximum at t = 1

2 (1 + s2) ∈ [s, 1],
so that

G(·, s) ≤ ϕ(s) =
1
8
(1 + s)2(1− s)2.

For t ∈ [0, s], clearly G(·, s) ≤ 1
2 s(1− s)2 ≤ ϕ(s) = 1

8 (1 + s)2(1− s)2. That is, G(t, s) ≤ ϕ(s) for
(t, s) ∈ [0, 1]× [0, 1].

Also, for s ∈ [0, t],

G(t, s)
ϕ(s)

=
1
2 (1− t)(t− s2)

1
8 (1 + s)2(1− s)2

≥ 4(1− t)(t− st)
(1 + s)2(1− s)2 =

4t(1− t)
(1 + s)2(1− s)

≥ t(1− t).
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If for s ∈ [t, 1],
G(t, s)
ϕ(s)

=
1
2 t(1− s)2

1
8 (1 + s)2(1− s)2

=
4t

(1 + s)2 ≥ t.

Since min{t, t(1− t)} = t(1− t), we have

0 ≤ t(1− t)ϕ(s) ≤ G(t, s) ≤ ϕ(s).

Lemma 2.5. Assume that 0 < αξ < 1. If u(t) ∈ C[0, 1], satisfying u′′′(t) ∈ C[0, 1] and
u′′′(t) ≤ 0, t ∈ [0, 1],

u(0) = u′′(0) = 0,

u(1) ≥ αu(ξ),

then u(t) ≥ 0, t ∈ [0, 1].

Proof. Let −u′′′(t) = h(t) ≥ 0, t ∈ [0, 1] and u(1) = αu(ξ) + b, b ≥ 0. Then by Lemma 2.2, we
get

u(t) =
b

1− αξ
t +

αt
1− αξ

∫ 1

0
G(ξ, s)h(s)ds +

∫ 1

0
G(t, s)h(s)ds

≥ 0.

Lemma 2.6. Assume that κ(t), µ(t) ∈ C[0, 1] and∫ 1

0
(1 + s)2(1− s)2|κ(s)|ds <

8(1− αξ)

α + 1− αξ
. (2.6)

Then the following linear boundary value problem
−u′′′(t) = κ(t)u(t) + µ(t), t ∈ [0, 1],

u(0) = u′′(0) = 0,

u(1) = αu(ξ) + b,

(2.7)

has a unique solution u(t) ∈ C[0, 1], where 0 < αξ < 1, b ≥ 0.

Proof. By Lemma 2.2, problem (2.7) is equivalent to the following integral equation

u(t) =
b

1− αξ
t +

αt
1− αξ

∫ 1

0
G(ξ, s) (κ(s)u(s) + µ(s)) ds

+
∫ 1

0
G(t, s) (κ(s)u(s) + µ(s)) ds =: Tu(t).

Obviously, T : C[0, 1] −→ C[0, 1]. Note that by (2.5), we have for any u, v ∈ C[0, 1],

|Tu(t)− Tv(t)| ≤ αt
1− αξ

∫ 1

0
G(ξ, s)|κ(s)||u(s)− v(s)|ds +

∫ 1

0
G(t, s)|κ(s)||u(s)− v(s)|ds

≤ 1
8

(
1 +

αt
1− αξ

)
‖u− v‖

∫ 1

0
(1 + s)2(1− s)2|κ(s)|ds

≤ 1
8

(
α + 1− αξ

1− αξ

)
‖u− v‖

∫ 1

0
(1 + s)2(1− s)2|κ(s)|ds = L‖u− v‖,
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where L := 1
8

( α+1−αξ
1−αξ

) ∫ 1
0 (1 + s)2(1− s)2|κ(s)|ds < 1, which is easy to see from (2.6). There-

fore, the operator T is a contraction map in the space C[0, 1] and T has a unique fixed point in
C[0, 1].

Lemma 2.7. Assume that 0 < αξ < 1, κ(t)(∈ C[0, 1]) > 0 and satisfies (2.6). If u(t) ∈ C[0, 1],
satisfying u′′′(t) ∈ C[0, 1] and 

u′′′(t) + κ(t)u(t) ≤ 0, t ∈ [0, 1],

u(0) = u′′(0) = 0,

u(1) ≥ αu(ξ)

then u(t) ≥ 0, t ∈ [0, 1].

Proof. Let −u′′′(t) = κ(t)u(t) + µ(t), t ∈ [0, 1], κ(t) > 0, µ(t) ≥ 0, u(1) = αu(ξ) + b, b ≥ 0.
Suppose that the inequality u(t) ≥ 0, t ∈ [0, 1] is not true. It means that there exists at

least a t∗ ∈ [0, 1] such that u(t∗) < 0. Without loss of generality, we assume u(t∗) = min{u(t) :
t ∈ [0, 1]} = ρ, ρ < 0. Then by Lemma 2.2 and (2.5), we have

u(t) =
b

1− αξ
t +

αt
1− αξ

∫ 1

0
G(ξ, s)(κ(s)u(s) + µ(s))ds

+
∫ 1

0
G(t, s)(κ(s)u(s) + µ(s))ds

≥ αt
1− αξ

∫ 1

0
G(ξ, s)κ(s)u(s)ds +

∫ 1

0
G(t, s)κ(s)u(s)ds

≥ u(t∗)
(

αt
1− αξ

∫ 1

0
ϕ(s)κ(s)ds +

∫ 1

0
ϕ(s)κ(s)ds

)
.

Let t = t∗, and note that ρ < 0, 0 < αξ < 1, 0 < ξ < 1, it follows that

ρ ≥ ρ

(
αt∗

1− αξ

∫ 1

0
ϕ(s)κ(s)ds +

∫ 1

0
ϕ(s)κ(s)ds

)
≥ ρ

(
α

1− αξ

∫ 1

0
ϕ(s)κ(s)ds +

∫ 1

0
ϕ(s)κ(s)ds

)
.

And then

1 ≤ α + 1− αξ

8(1− αξ)

∫ 1

0
(1 + s)2(1− s)2κ(s)ds.

That is ∫ 1

0
(1 + s)2(1− s)2κ(s)ds ≥ 8(1− αξ)

α + 1− αξ
,

which is in contradiction to (2.6). Hence u(t) ≥ 0 for all t ∈ [0, 1].

3 Main result

In this section, we shall apply the method of upper and lower solutions and monotone iterative
technique to consider the existence of extremal solutions for problem (1.1).
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Theorem 3.1. Assume that the following conditions hold.

(A1) f (t, u) is increasing with respect to u.

(A2) v0(t), w0(t) ∈ C[0, 1] are lower and upper solutions of problem (1.1), respectively, and v0(t) ≤
w0(t), t ∈ [0, 1].

(A3) There exist constants ς, τ such that 0 < τξ < ς and for v0(1) ≤ x ≤ y ≤ w0(1), v0(ξ) ≤ x̄ ≤
ȳ ≤ w0(ξ),

p(y, ȳ) + τ(ȳ− x̄) ≤ p(x, x̄) + ς(y− x).

Then problem (1.1) has extremal solutions in the sector [v0, w0], where

[v0, w0] =
{

u ∈ C[0, 1] : v0(t) ≤ u(t) ≤ w0(t), t ∈ [0, 1]
}

.

Proof. For n = 0, 1, . . . , define

vn+1(t) =
bn

1− αξ
t +

αt
1− αξ

∫ 1

0
G(ξ, s) f (s, vn(s))ds +

∫ 1

0
G(t, s) f (s, vn(s))ds,

wn+1(t) =
cn

1− αξ
t +

αt
1− αξ

∫ 1

0
G(ξ, s) f (s, wn(s))ds +

∫ 1

0
G(t, s) f (s, wn(s))ds,

where

α =
τ

ς
, bn = vn(1)− αvn(ξ)−

1
ς

g(vn(1), vn(ξ)), cn = wn(1)− αwn(ξ)−
1
ς

g(wn(1), wn(ξ)).

Then due to Lemma 2.2, it is easy to show that vn+1(t), wn+1(t) are solutions of the following
boundary value problems, respectively:

−v′′′n+1(t) = f (t, vn(t)), t ∈ [0, 1],

vn+1(0) = v′′n+1(0) = 0,

0 = p (vn(1), vn(ξ)) + ς(vn+1(1)− vn(1))− τ(vn+1(ξ)− vn(ξ)),

(3.1)

and 
−w′′′n+1(t) = f (t, wn(t)), t ∈ [0, 1],

wn+1(0) = w′′n+1(0) = 0,

0 = p (wn(1), wn(ξ)) + ς(wn+1(1)− wn(1))− τ(wn+1(ξ)− wn(ξ)).

(3.2)

Moreover, from (2.3) we have

v′n+1(t) =
bn

1− αξ
+

α

1− αξ

∫ 1

0
G(ξ, s) f (s, vn(s))ds +

∫ 1

0
G′(t, s) f (s, vn(s))ds, (3.3)

w′n+1(t) =
cn

1− αξ
+

α

1− αξ

∫ 1

0
G(ξ, s) f (s, wn(s))ds +

∫ 1

0
G′(t, s) f (s, wn(s))ds, (3.4)

where G′(t, s) is given as in (2.4).
Claim 1. The sequences vn(t), wn(t)(n ≥ 1) are lower and upper solutions of problem (1.1),
respectively and the following relation holds

v0(t) ≤ v1(t) ≤ · · · ≤ vn(t) ≤ · · · ≤ wn(t) ≤ · · · ≤ w1(t) ≤ w0(t), t ∈ [0, 1]. (3.5)
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First, we prove that

v0(t) ≤ v1(t) ≤ w1(t) ≤ w0(t), t ∈ [0, 1].

Let x(t) = w0(t)− w1(t). From (3.2) and (A1), we have
x′′′(t) ≤ 0, t ∈ [0, 1],

x(0) = x′′(0) = 0,

x(1) ≥ τ
ς x(ξ), 0 < τξ < ς.

In view of Lemma 2.5, we have x(t) ≥ 0, t ∈ [0, 1], that is w0(t) ≥ w1(t). Similarly, it can be
obtained that v0(t) ≤ v1(t), t ∈ [0, 1].

Now, let x(t) = w1(t)− v1(t). From (A1) and (A2), it follows that

x′′′(t) = f (t, v0(t))− f (t, w0(t)) ≤ 0.

Also, x(0) = x′′(0) = 0 and

0 = p (w0(1), w0(ξ))− p (v0(1), v0(ξ)) + ς(w1(1)− w0(1)− v1(1) + v0(1))

− τ(w1(ξ)− w0(ξ)− v1(ξ) + v0(ξ))

≤ ς(w0(1)− v0(1))− τ(w0(ξ)− v0(ξ)) + ς(w1(1)− w0(1)− v1(1) + v0(1))

− τ(w1(ξ)− w0(ξ)− v1(ξ) + v0(ξ))

= ςx(1)− τx(ξ).

That is,
x(0) = x′′(0) = 0, x(1) ≥ τ

ς
x(ξ).

By Lemma 2.5, we have w1(t) ≥ v1(t), t ∈ [0, 1]. And then, by induction, (3.5) holds.
In what follows, we show that v1(t), w1(t) are lower and upper solutions of problem (1.1),

respectively. From (3.1), (3.2) and (A1), (A2), it follows that

−v′′′1 (t) = f (t, v0(t)) ≤ f (t, v1(t)).

Also, v1(0) = v′′1 (0) = 0 and

0 = −p (v0(1), v0(ξ)) + p (v1(1), v1(ξ))− p (v1(1), v1(ξ))− ς[v1(1)− v0(1)] + τ[v1(η)− v0(ξ)]

≤ ς[v1(1)− v0(1)]− τ[v1(ξ)− v0(ξ)]− p (v1(1), v1(ξ))− ς[v1(1)− v0(1)] + τ[v1(ξ)− v0(ξ)]

= −p (v1(1), v1(ξ)) ,

which prove that v1(t) is a lower solution of problem (1.1). Similarly, it can be obtained that
w1(t) is an upper solution of problem (1.1).

Analogously to the above arguments, using the induction method, we can show that the
sequences vn(t), wn(t) (n ≥ 1) are lower and upper solutions of problem (1.1), respectively
and the following relation holds

v0(t) ≤ v1(t) ≤ · · · ≤ vn(t) ≤ · · · ≤ wn(t) ≤ · · · ≤ w1(t) ≤ w0(t), t ∈ [0, 1].

Claim 2. The sequences {vn(t)}, {wn(t)} uniformly converge to their limit functions v(t), w(t),
respectively.
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We need to show that the sequences are bounded and equicontinuous on [0, 1]. Indeed,

C1 ≤ v0(t) ≤ · · · ≤ vn(t) ≤ · · · ≤ · · · ≤ wn(t) · · · ≤ w0(t) ≤ C2 (3.6)

for t ∈ [0, 1] and n = 1, 2, . . . . That is to say that the sequences {vn(t)}, {wn(t)} are uniformly
bounded with respect to t. Note that {v′n(t)}, {w′n(t)} are bounded on [0, 1] by C3 > 0
because (3.3), (3.4), (3.6) and | f (t, vn)|, |p(vm, vn)| is bounded. Hence {vn(t)}, {wn(t)} are
equicontinuous because for ∀ε > 0, t1, t2 ∈ [0, 1] such that |t1 − t2| < ε

M3
, we have

|vn(t1)− vn(t2)| = |v′n(γ)||t1 − t2| < ε, |wn(t1)− wn(t2)| < ε, γ ∈ [0, 1].

Therefore, by the Arzelà–Ascoli theorem, the sequences {vn(t)}, {wn(t)} have subsequences
{vnk(t)}, {wnk(t)} which uniformly converge to their continuous limit functions v(t), w(t),
respectively.
Claim 3. The limit functions v(t), w(t) are the minimal solution and maximal solution of
problem (1.1), respectively.

Let u(t) ∈ [v0(t), w0(t)] be any solution of problem (1.1). We assume that the following
relation holds for some k ∈ N:

vk(t) ≤ u(t) ≤ wk(t), t ∈ [0, 1].

Let y(t) = u(t)− vk+1(t), z(t) = wk+1(t)− u(t). Then
y′′′(t) ≤ 0, t ∈ [0, 1],

y(0) = y′′(0) = 0,

y(1) ≥ τ
ς y(ξ), 0 < τξ < ς,

and 
z′′′(t) ≤ 0, t ∈ [0, 1],

z(0) = z′′(0) = 0,

z(1) ≥ τ
ς z(ξ), 0 < τξ < ς.

This and Lemma 2.5 show vk+1(t) ≤ u(t) ≤ wk+1(t). By induction, vn(t) ≤ u(t) ≤ wn(t),
t ∈ [0, 1] for all n ∈ N. Taking the limit as n→ ∞, we get v(t) ≤ u(t) ≤ w(t), t ∈ [0, 1].

Theorem 3.2. Assume that all assumptions of Theorem 3.1 hold. In addition, we assume that there
exists q(t) > 0 (∈ C[0, 1]) such that

f (t, x)− f (t, y) ≤ q(t)(x− y), v0(t) ≤ x(t) ≤ y(t) ≤ w0(t), t ∈ [0, 1]

and ∫ 1

0
(1 + s)2(1− s)2q(s)ds <

8(ς− τξ)

ς + τ − τξ
.

Then the sequences {vn(t)}, {wn(t)} (n ≥ 1) satisfying
−v′′′n+1(t) = f (t, vn(t)) + q(t)[vn+1(t)− vn(t), ], t ∈ (0, 1),

vn+1(0) = v′′n+1(0) = 0,

0 = p (vn(1), vn(ξ)) + ς(vn+1(1)− vn(1))− τ(vn+1(ξ)− vn(ξ)),
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and 
−w′′′n+1(t) = f (t, wn(t)) + q(t)[wn+1(t)− wn(t), ], t ∈ (0, 1),

wn+1(0) = w′′n+1(0) = 0,

0 = p (wn(1), wn(ξ)) + ς(wn+1(1)− wn(1))− τ(wn+1(ξ)− wn(ξ)),

also uniformly converge to their continuous limit functions v(t), w(t), respectively. That is, v(t), w(t)
are also extremal solutions for problem (1.1).

Proof. Using Lemmas 2.6 and 2.7, we can complete the proof by the same way as in Theo-
rem 3.1.

Example 3.3. Consider the following third-order boundary value problem
−u′′′(t) = u(t) sin t− 113

8 t
1
2 , t ∈ [0, 1],

u(0) = u′′(0) = 0,

u(1)− u( 1
2 )−

1
8 u(1)u( 1

2 ) = 0,

(3.7)

where
f (x, y) = y sin x− 113

8
x

1
2 , p(x, y) = x− y− 1

8
xy, ξ =

1
2

.

It is not difficult to show that v0 = 0, w0(t) = t
7
2 are lower and upper solutions of problem

(3.7), respectively. Moreover, for t ∈ [0, 1], f (t, u) is increasing with respect to u, and for
v0(1) ≤ x ≤ y ≤ w0(1), v0(η) ≤ x̄ ≤ ȳ ≤ w0(η),

p(y, ȳ)− p(x, x̄) = (y− x)− (ȳ− x̄)− 1
8
(yȳ− xx̄) ≤ (y− x)− (ȳ− x̄).

Choose ς = τ = 1 in Theorem 3.1 or ς = τ = 1, q(t) = sin t in Theorem 3.2, problem (3.7) has
extremal solutions in [v0(t), w0(t)].
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