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Abstract. We generalize F. E. Browder’s results concerning pseudomonotone elliptic
partial differential operators defined on unbounded domains. Browder treated equa-
tions for quasilinear operators of divergence form

∑
|α|≤k

Dαaα(x, u(x), . . . , Dβu(x)) = f (x),

on an arbitrary unbounded domain Ω, where |β| ≤ k for some k ≥ 1. We show
that under suitable assumptions, Browder’s result holds true if the functions aα are
functionals of u.
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1 Introduction

The theory of pseudomonotone operators proved to be highly useful for establishing existence
and uniqueness theorems for divergence-form elliptic problems with standard growth condi-
tions (see [10] too, for general growth conditions). The concept of pseudomonotonicity was
introduced by H. Brezis [2] in 1968.

Definition 1.1. Let X be a Banach space. A bounded operator A : X → X∗ is said to be
pseudomonotone if for any sequence {uj} ⊂ X, such that

uj ⇀ u (in X) and lim sup
j→∞

〈A(uj), uj − u〉 ≤ 0,

then

(PM1) 〈A(uj), uj − u〉 → 0 as j→ ∞ and

(PM2) A(uj) ⇀ A(u) in X∗ as j→ ∞.
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As usual, the symbol ⇀ denotes weak convergence.
The following abstract surjectivity result [9, Theorem 2.12] is widely used in the literature

for proving the existence of a weak solution to a nonlinear elliptic partial differential equation.

Theorem 1.2. Let X be a reflexive separable Banach space and A : X → X∗ a bounded, coercive and
pseudomonotone operator. Then for arbitrary F ∈ X∗, there exists u ∈ X, such that A(u) = F in X∗.

In this context, coercivity is defined as follows:

Definition 1.3. An operator A : X → X∗ is called coercive if

〈A(u), u〉
‖u‖ → +∞ (as ‖u‖ → ∞).

Guaranteeing boundedness and coercivity is usually a trivial matter. The proof of pseu-
domonotonicity usually involves the Rellich–Kondrachov compactness theorem as a crucial
step. On unbounded domains however, a compact embedding result seems to require more
complicated conditions on the domain, see e.g. [1, Theorem 6.52]. F. E. Browder managed to
avoid the use of such compactness results in [3]. To establish pseudomonotonicity, it turns out
that the main task is to prove the a.e. convergence of the sequences {Dαuj}∞

j=1. Browder’s idea
is a natural one: let the unbounded domain Ω be exhausted by an increasing sequence {Ωi}
of bounded domains with smooth boundary – such that on each Ωi the Rellich–Kondrachov
theorem holds. Combining this with a diagonal argument, we extract a subsequence of the
lower-order derivatives {Dαuj} converging a.e. to Dαu (|α| ≤ k− 1). Proving a.e. convergence
of the highest-order derivatives Dαuj → Dαu (|α| = k) is more involved.

The results of F. E. Browder on nonlinear elliptic equations on unbounded domains have
been extended in [10], [4] and [6] to strongly nonlinear elliptic equations, i.e. equations con-
taining a term which is arbitrarily quickly increasing with respect to the values of unknown
function u. Further, there are some results in [7] and [8] on elliptic problems where the lower
order terms or the boundary condition contains nonlocal (e.g. integral type) dependence on u.

The aim of this paper is to extend Browder’s theorem to elliptic operators with nonlocal
dependence in the main (highest order) terms, too: we shall modify the assumptions and
the proof of the original theorem for 2k-order divergence-type nonlinear functional elliptic
equations. After formulating sufficient conditions for such a nonlocal operator to be bounded,
coercive and pseudomonotone, we prove our main result. Finally, we give concrete examples
that satisfy our assumptions.

2 Problem formulation

Let Ω ⊂ Rn be a possibly unbounded domain with sufficiently smooth boundary, and let
Wk,p

0 (Ω) ⊂ V ⊂ Wk,p(Ω) be a closed linear subspace with 1 < p < ∞ and k ≥ 1. Let
A : V → V∗ be defined by

〈A(u), v〉 = ∑
|α|≤k

∫
Ω

aα(x, u(x), . . . , Dβu(x), . . . ; u)Dαv(x) dx (2.1)

for all u, v ∈ V, where |β| ≤ k is a multiindex. The function aα may depend on the pointwise
values of any of the partial derivatives of u. Furthermore, “; u” notation signifies that aα may
be a functional of u. In other words, aα may depend on the whole solution u.
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The arguments of the functions aα are denoted as aα(x, η; u), and we sometimes split η

as η = (ζ, ξ) where ζ ∈ RN1 and ξ ∈ RN2 , so that η ∈ RN with N = N1 + N2 and write
aα(x, ζ, ξ; u), where the numbers N1 and N2 denote number of multiindexes β such that |β| ≤
k− 1 and |β| = k, respectively. Furthermore, the notation

η(`) = {ηβ : |β| = `}

is used, where ` = 0, 1, . . . , k. Note that

ζ =
{

η(`) : ` = 0, 1, . . . , k− 1
}

and ξ =
{

η(`) : ` = k
}

.

We impose the following assumptions on the structure of A and Ω.
(A0) Suppose that there exist a sequence {Ωi} ⊂ Rn of bounded domains such that Ωi ⊂ Ωi+1

(i = 1, 2, . . .) and Ω =
⋃∞

i=1 Ωi. Furthermore, assume that each ∂Ωi is sufficiently smooth so
that the Rellich–Kondrachov theorem holds: Wk,p(Ωi) ⊂⊂Wk−1,p(Ωi) (i = 1, 2, . . .).
(A1) Let aα be Carathéodory functions for fixed u ∈ V and all multiindex |α| ≤ k, i.e. let
aα( · , η; u) be measurable for every fixed η ∈ RN , and let aα(x, · ; u) be continuous for almost
every fixed x ∈ Ω.
(A2) Suppose that there exist a bounded functional g1 : V → R+ and a compact map

kα
1 : V → Lr′`(Ω)

with kα
1(u) ≥ 0, where p′ = p/(p− 1), r′` = r`/(r` − 1) and

p ≤ r` < p∗` , p∗` =


np

n− (k− `)p
, if n > (k− `)p

> 0, otherwise.

such that
|aα(x, η; u)| ≤ g1(u)

[
|η(`)|p−1 + |η(`)|r`−1

]
+ [kα

1(u)](x)

for each multiindex ` = |α| ≤ k, almost all x ∈ Ω, all η ∈ RN and all u ∈ V. Note that for
|α| = ` = k, we must have rk = p. Here, we introduce the notation

[K(`)
1 (u)](x) = max

|α|=`
[kα

1(u)](x)

for all ` = 1, . . . , k.
(A3) Suppose that

∑
|α|=k

(
aα(x, ζ, ξ; u)− aα(x, ζ, ξ ′; u)

)
(ξα − ξ ′α) > 0

for almost all x ∈ Ω, all ζ ∈ RN1 , ξ 6= ξ ′ ∈ RN2 and all u ∈ V.
(A4) Suppose that there exist a bounded and lower semicontinuous functional g2 : V → R+

and a compact map k2 : V → L1(Ω) such that

∑
|α|≤k

aα(x, η; u)ηα ≥ g2(u)|ξ|p − [k2(u)](x)

for almost all x ∈ Ω, every u ∈ V, and all η = (ζ, ξ) ∈ RN1 ×RN2 .
Note that the preceding coercivity-like assumption requires the inequality to hold for all

u ∈ V and η – contrary to usual asymptotic version, which is prescribed only for large ‖u‖V



4 M. Csirik

and |η|. The reason for this is that the proof of pseudomonotonicity employs a certain in-
equality which is needed for all u and η and is derived from this coercivity estimate. We now
state a significant strengthening of (A4) that ensures coercivity in the sense of Definition 1.3.
(A4’) Suppose that there exist a bounded functional g2 : V → R+ and a compact map k2 : V →
L1(Ω) such that

∑
|α|≤k

aα(x, η; u)ηα ≥

g2(u)|ξ|p − [k2(u)](x), for every u ∈ V

g2(u)
[
|ξ|p + ∑k−1

`=0(|η(`)|p + |η(`)|r`)
]
− [k2(u)](x), for large ‖u‖V

for almost all x ∈ Ω and all η = (ζ, ξ) ∈ RN . Here, the functional g2 satisfies the estimate

g2(u) ≥ c∗‖u‖−σ∗

V

for all u ∈ V with sufficiently large ‖u‖V , with some c∗ > 0 and 0 ≤ σ∗ < p− 1. Also, the
map k2 satisfies

‖k2(u)‖L1(Ω) ≤ c∗‖u‖σ
V

for all u ∈ V with sufficiently large ‖u‖V and some 0 ≤ σ < p− σ∗.
(A5) Whenever uj ⇀ u in V and {ηj} ⊂ RN with ηj → η, then aα(x, ηj; uj) → aα(x, η; u) for
a.e. x ∈ Ω up to a subsequence.

3 Pseudomonotonicity

Theorem 3.1. Assume (A0), (A1), (A2), (A3) and (A4). Then the operator A : V → V∗ defined in
(2.1) is pseudomonotone.

Proof. Let {uj} ⊂ V be a sequence that satisfies uj ⇀ u in V and

lim sup
j→∞

〈A(uj), uj − u〉 ≤ 0. (3.1)

Assumption (A0) implies that there exists a sequence {Ωi} ⊂ Rn of bounded domains
such that Ωi ⊂ Ωi+1, Ω =

⋃∞
i=1 Ωi and the Rellich–Kondrachov theorem holds on each Ωi:

Wk,p(Ωi) ⊂⊂Wk−1,p(Ωi). For every i ∈N there is a subsequence {u(i)
j }∞

j=1 ⊂ {uj}∞
j=1 (indexed

by the same j for simplicity) such that {u(i)
j }∞

j=1 ⊃ {u
(i+1)
j }∞

j=1 and u(i)
j → u in Wk−1,p(Ωi) as

j → ∞. The diagonal sequence {uj}∞
j=1 = {u(j)

j }∞
j=1 satisfies uj → u in Wk−1,p(Ωi) for any

i ∈N. Then

Dγuj → Dγu a.e. in Ω for all |γ| ≤ k− 1 (3.2)

up to a subsequence. Further, by (A2) and (A4) we may assume that the sequences {K(`)
1 (uj)}⊂

Lr′`(Ω) (for every ` = 1, . . . , k) and {k2(uj)} ⊂ L1(Ω) are convergent. Note however, that we
do not have uj → u in Wk−1,p(Ω).
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The following notations are used throughout the proof:

ζ(x) = {Dβu(x) : |β| ≤ k− 1},
ζ j(x) = {Dβuj(x) : |β| ≤ k− 1},
ξ(x) = {Dβu(x) : |β| = k},

ξ j(x) = {Dβuj(x) : |β| = k}
η(`)(x) = {Dβu(x) : |β| = `},

η
(`)
j (x) = {Dβuj(x) : |β| = `},

η(x) = {η(`)(x) : ` = 1, . . . , k},

ηj(x) = {η(`)
j (x) : ` = 1, . . . , k}.



(3.3)

Using these, we may write

〈A(uj)− A(u), uj − u〉 =
∫

Ω
pj,

where
pj(x) = ∑

|α|≤k

[
aα(x, ζ j(x), ξ j(x); uj)− aα(x, ζ(x), ξ(x); u)

]
(Dαuj − Dαu),

Also, (3.2) may be written as ζ j → ζ a.e. or η
(`)
j → η(`) a.e. for all ` = 0, 1, . . . , k− 1.

First we derive conclusion (PM1) of pseudomonotonicity. The following trivial lemma is
well-known.

Lemma 3.2. Relation (3.1) implies

lim sup
j→∞

〈A(uj)− A(u), uj − u〉 ≤ 0.

Proof. We have

lim sup
j→∞

〈A(uj)− A(u), uj − u〉 ≤ lim sup
j→∞

〈A(uj), uj − u〉 − lim inf
j→∞

〈A(u), u− uj〉.

By (3.1), the first term is nonpositive. For the second term, note that the functional v 7→
〈A(u), u− v〉 is weakly lower semicontinuous, so lim inf 〈A(u), u− uj〉 ≥ 0.

The conclusion of Lemma 3.2 can be written briefly as

lim sup
j→∞

∫
Ω

pj ≤ 0. (3.4)

Using the positive-negative decomposition pj(x) = p+j (x)− p−j (x), we have 0 ≤ p+j (x) =
pj(x) + p−j (x) hence (3.4) immediately implies∫

Ω
p+j → 0 (3.5)

as j → ∞. Hence, the convergence
∫

Ω p−j → 0 (j → ∞) needs to be established, so that∫
Ω pj → 0 (j → ∞) holds, which implies (PM1). This will be done via Vitali’s convergence

theorem (see Theorem A.6) applied to the sequence {p−j }.



6 M. Csirik

Lemma 3.3. The sequence {p−j } is equiintegrable and tight over Ω. Furthermore, there exist C1 > 0
and an a.e. bounded function β : Ω→ R+ such that for a.a. x ∈ Ω,

pj(x) ≥ C1|ξ j(x)|p − β(x) (3.6)

Proof. Expand pj(x) as

pj(x) = ∑
|α|=k

aα(x, ζ j, ξ j; uj)Dαuj + ∑
|α|≤k−1

aα(x, ζ j, ξ j; uj)Dαuj − wj(x),

where

wj(x) = ∑
|α|≤k

[
aα(x, ζ, ξ; u)

(
Dαuj − Dαu) + aα(x, ζ j, ξ j; uj)Dαu

]
=:

k

∑
`=0

w(`)
j (x).

We prove that {wj} is equiintegrable and tight. Assumption (A2) implies that

|w(`)
j (x)| ≤ C2

(
g1(u)

[
|η(`)|p−1 + |η(`)|r`−1

]
+ [K(`)

1 (u)](x)
)(
|η(`)

j |+ |η
(`)|
)

+ C2

(
g1(uj)

[
|η(`)

j |
p−1 + |η(`)

j |
r`−1

]
+ [K(`)

1 (uj)](x)
)
|η(`)|

(3.7)

≤ C3

(
|η(`)|p−1|η(`)

j |+ |η
(`)|p + |η(`)|r`−1|η(`)

j |+ |η
(`)|r`

+ |η(`)
j |

p−1|η(`)|+ |η(`)
j |

r`−1|η(`)|

+ [K`
1(u)](x)

(
|η(`)

j |+ |η
(`)|
)
+ [K(`)

1 (uj)](x)|η(`)|
) (3.8)

where C2, C3 > 0 are constants. We shall apply Proposition A.3 to prove that the function
dominating w(`)

j (x) is equiintegrable and tight. The weak convergence uj ⇀ u in V ⊂Wk,p(Ω)

implies that the sequence {η(`)
j } ⊂ Wk−`,p(Ω) is bounded, hence by the Sobolev embedding

Wk−`,p(Ω) ⊂ Lq(Ω) (where p ≤ q ≤ p∗` ) we have that {η(`)
j } ⊂ Lq(Ω) is bounded. In

particular, {|η(`)
j |r`}, {|η

(`)
j |p} ⊂ L1(Ω) are bounded.

The second and fourth terms in (3.8) are equiintegrable and tight by part (1) of Propo-
sition A.3. Further, the first term is equiintegrable and tight by part (3) of Proposition A.3
applied to the constant sequence |η(`)|p−1 ∈ Lp′(Ω) (with |η(`)|p ∈ L1(Ω) being equiintegrable
and tight by part (1) of the said Proposition) and to the bounded sequence {|η(`)

j |} ⊂ Lp(Ω).
The third term is similar. The fifth term is also equiintegrable and tight by part (3) of Propo-
sition A.3 applied to the bounded {|η(`)

j |p−1} ⊂ Lp′(Ω) and the constant |η(`)| ∈ Lp(Ω)

sequences. The sixth term is handled in a similar way. Finally, {K(`)
1 (uj)

r′`} ⊂ L1(Ω) is con-
vergent by construction. Therefore the last two terms are equiintegrable and tight, too.

Moreover, assumption (A4) implies that

pj(x) ≥ g2(uj)|ξ j|p − k2(uj)(x)− |wj(x)| ≥ −k2(uj)(x)− |wj(x)|. (3.9)

It follows that
0 ≤ p−j (x) ≤ [k2(uj)](x) + |wj(x)|,

hence {p−j } is equiintegrable and tight, where we have used the fact that {k2(uj)} is equiinte-
grable and tight, since it is convergent in L1(Ω).
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Finally, we turn to the proof of inequality (3.6). Young’s inequality applied to the products
on the right side of (3.7) implies that

|w(`)
j (x)| ≤ K3(ε)

(
|η(`)|(p−1)r′` + |η(`)|r` + [K(`)

1 (u)](x)r′`
)
+ C3ε

(
|η(`)

j |
r` + |η(`)|r`

)
+ C4ε

(
|η(`)

j |
(p−1)r′` + |η(`)

j |
r` + [K(`)

1 (uj)](x)r′`
)
+ K4(ε)|η(`)|r` .

By summing over j = 0, 1, . . . , k, and noting that rk = p, we get

|wj(x)| ≤ C5ε|ξ j|p + K5(ε)
(

2|ξ|p + [K(k)
1 (u)](x)p′ + [K(k)

1 (uj)](x)p′
)
+

k−1

∑
`=0
|w(`)

j (x)|

≤ C5ε|ξ j|p + K(ε)
(

2|ξ|p + [K(k)
1 (u)](x)p′ + [K(k)

1 (uj)](x)p′

+
k−1

∑
`=0

[
|η(`)|r` + |η(`)|(p−1)r′` + |η(`)

j |
r` + |η(`)

j |
(p−1)r′`

+ [K(`)
1 (u)](x)r′` + [K(`)

1 (uj)](x)r′`
])

=: C5ε|ξ j|p

+K(ε)
(

2|ξ|p +
k−1

∑
`=0

[
|η(`)|r` + |η(`)

j |
r` + |η(`)|(p−1)r′` + |η(`)

j |
(p−1)r′`

]
+ [K3(u, uj)](x)

)
,

where {K3(u, uj)} ⊂ L1(Ω) is convergent, hence it is convergent a.e. up to a subsequence,
thus it is a.e. bounded. Therefore, using the a.e. convergence η(`) → η (` = 0, . . . , k− 1) we
have that the function

β1(x) = 2|ξ|p +
k−1

∑
`=0

[
|η(`)|r` + |η(`)

j |
r` + |η(`)|(p−1)r′` + |η(`)

j |
(p−1)r′`

]
+ [K3(u, uj)](x)

is bounded a.e.
The first inequality of (3.9) combined with the preceding estimate and assumption (A4)

leads to

pj(x) ≥ g2(uj)|ξ j|p − [k2(uj)](x)− |wj(x)|
≥ g2(uj)|ξ j|p − C5ε|ξ j|p − [k2(uj)](x)− K(ε)β1(x)

≥ |ξ j|p(A− C5ε)− β(x)

where g2(uj) ≥ A > 0 (due to the weak lower semicontinuity of g2 : V → R+ and the
weak convergence uj ⇀ u) and β(x) = K(ε)β1(x) + [k2(uj)](x) is still bounded a.e., because
{k2(uj)} ⊂ L1(Ω) is bounded and therefore convergent a.e. up to a subsequence. The desired
inequality follows by choosing ε = A/(2C5).

Claim 3.4. The convergence p−j → 0 a.e. holds.
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Proof. Split pj(x) as

pj(x) = ∑
|α|=k

[
aα(x, ζ j, ξ j; uj)− aα(x, ζ j, ξ; uj)

]
(Dαuj − Dαu)

+ ∑
|α|=k

[
aα(x, ζ j, ξ; uj)− aα(x, ζ, ξ; u)

]
(Dαuj − Dαu)

+ ∑
|α|≤k−1

[
aα(x, ζ j, ξ j; uj)− aα(x, ζ, ξ; u)

]
(Dαuj − Dαu)

=: qj(x) + rj(x) + sj(x)

(3.10)

Let χj be the characteristic function of the level set {x ∈ Ω : p−j (x) > 0} and write

−p−j = χjqj + χjrj + χjsj.

First, note that χjqj ≥ 0 a.e. due to the monotonicity assumption (A3), so it is enough to prove
χjrj → 0 a.e. and χjsj → 0 a.e. Lemma 3.3 ensures that there exists β : Ω → R a.e. bounded
such that

|ξ j(x)|p ≤ β(x),

for all x ∈ Ω such that pj(x) < 0. Therefore {χj(x)ξ j(x)} is bounded for a.e. x ∈ Ω. By (A2),
(A5) and ζ j → ζ a.e. (from (3.2)), we find that χjrj → 0 a.e. and χjsj → 0 a.e. for a subsequence,
from which p−j → 0 a.e. follows.

In summary, we have that {p−j } is equiintegrable and tight, and p−j → 0 a.e. A corollary of
the Vitali convergence theorem (Theorem A.6 below) yields that these conditions are actually
necessary and sufficient to ensure the convergence∫

Ω
p−j → 0,

as j→ ∞. Recalling (3.5), we have in summary∫
Ω

pj → 0 (3.11)

as j→ ∞. Then conclusion (PM1) of pseudomonotonicity is established:

〈A(uj), uj − u〉 = 〈A(uj)− A(u), uj − u〉+ 〈A(u), uj − u〉

=
∫

Ω
pj + 〈A(u), uj − u〉 → 0.

Turning to the proof of (PM2), first note that (3.11) implies that pj → 0 a.e. up to a
subsequence.

Claim 3.5. The convergence ξ j → ξ a.e. holds.

Proof. It follows from estimate (3.6) that {ξ j} is bounded a.e. Fix an x0 ∈ Ω such that {ξ j(x0)}
is bounded and pj(x0)→ 0. Assume for contradiction that ξ j(x0)→ ξ ′ for a subsequence and
some ξ ′ such that ξ ′ 6= ξ(x0). Since we have ζ j → ζ a.e., by using decomposition (3.10) and
(A1), it follows that rj → 0 and sj → 0 a.e. But then the continuity assumption (A5) implies

pj(x0)→ 0 = ∑
|α|=k

[
aα(x0, ζ, ξ ′; u)− aα(x0, ζ, ξ; u)

]
(ξ ′α − Dαu(x0))

Thus (A3) yields ξ ′α = Dαu(x0), which is a contradiction.
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Finally, we prove A(uj) ⇀ A(u) in V∗. By the Vitali convergence theorem

〈A(uj), v〉 = ∑
|α|≤k

∫
Ω

aα(x, ηj; uj)Dαv(x) dx

→ ∑
|α|≤k

∫
Ω

aα(x, η; u)Dαv(x) dx,

because the integrand is equiintegrable and tight by Proposition A.3 (3) and the a.e. conver-
gence aα(x, ηj; uj)→ aα(x, η; u) follows from (A5).

Proposition 3.6. If (A4’) holds then A : V → V∗ is coercive.

Proof. We have for u ∈ V with sufficiently large ‖u‖V ,

〈A(u), u〉 ≥ g2(u)
∫

Ω
|ξ|p +

k−1

∑
`=0

(|η(`)|r` + |η(`)|p) dx−
∫

Ω
[k2(u)](x) dx

≥ C‖u‖−σ∗

V ‖u‖p
V − c∗‖u‖σ

V

≥ C′‖u‖p−σ∗

V

for some C, C′ > 0. Therefore 〈A(u), u〉/‖u‖V → +∞ if ‖u‖V → ∞, because p− σ∗ > 1.

4 Examples

Here we formulate examples satisfying (A1)–(A5) and (A4’). For all |α| = `, with ` = 0, 1, . . . , k
consider

aα(x, η; u) = Ψ`(H`(u))
[

a`(x)χ`(G`(u))
(
|η(`)|r`−2 + |η(`)|p−2)ηα + bα(x)Mα(u)

]
,

where p ≤ r` ≤ p∗` and m ≤ a`(x) ≤ M for some constants m, M > 0. (We remind the reader
that η(k) = ξ and p∗k = p, so that the highest order aα reads

aα(x, η; u) = Ψk(Hk(u))
[
ak(x)χk(Gk(u))|ξ|p−2ξα + bα(x)Mα(u)

]
,

where |α| = k, which is reminiscent of the p-Laplacian.) We propose the following two
possibilities for the choice of Ψ` and H`.

1. Let H` : Wk−1,p(Ω′) → L∞(Ω) be a bounded linear map (with Ω′ ⊂ Ω a bounded do-
main) and let Ψ` : R → R+ be continuous with Ψ`(ν) ≥ CΨ/(1 + |ν|)−σ∗ for some
CΨ > 0 and large |ν|.

2. Let H` : V → R be a bounded linear functional and let Ψ` : R→ R+ be continuous with
Ψ`(ν) ≥ CΨ/(1 + |ν|σ∗) for some CΨ > 0.

Again, we may choose χ` and G` as follows.

1. Let G` : Wk−1,p(Ω′) → Lp′(Ω) be a bounded linear map and let χ` : R → R+ be contin-
uous with m ≤ χ`(ν) ≤ M for some constants m, M > 0.

2. Let G` : V → R be a bounded linear functional and let χ` : R→ R+ be continuous with
m ≤ χ`(ν) ≤ M for some constants m, M > 0.
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Finally, for fixed any |α| = `, let 2 ≤ p1 ≤ p, m = 1, . . . , k and let

Mα : V →Wm,p1(Ω) (or R)

be a bounded map such that

‖Mα(u)‖Wm,p1 (Ω) ≤ const‖u‖γα

V , (4.1)

‖Mα(u)−Mα(v)‖Wm,p1 (Ω) ≤ const‖u− v‖γα

V , (4.2)

where 0 < γα < p
r′`

; also, let λα = qα/r′` and bα ∈ Lr′`λ
′
α(Ω) where

{
p1 < qα < np1

n−mp1
if m < n

p1

qα > 0 otherwise

(or, if Mα : V → R, then

|Mα(u)| ≤ const‖u‖γα

V , (4.3)

|Mα(u)−Mα(v)| ≤ const‖u− v‖γα

V , (4.4)

with γα = σ/r′`, bα ∈ Lr′`(Ω)).
Under these hypotheses, (A1) and (A3) are satisfied. Note that the continuous embeddings

Wm,p1(Ω) ⊂ Lqα(Ω) hold, so

‖Mα(u)‖Lqα (Ω) ≤ const‖Mα(u)‖Wm,p1 (Ω) ≤ const‖u‖γα

V .

Therefore, by Hölder’s inequality and (4.1)∫
Ω
|bα(x)|r′` |Mα(u)|r

′
` dx ≤ ‖bα‖

r′`
Lr′

`
λ′α (Ω)

[ ∫
Ω
|Mα(u)|r

′
`λα

]1/λα

= ‖bα‖
r′`
Lr′

`
λ′α (Ω)
‖Mα(u)‖qα/λα

Lqα (Ω)

≤ const‖bα‖
r′`
Lr′

`
λ′α (Ω)
‖u‖qαγα/λα

V

≤ c∗‖u‖σ
V ,

(4.5)

where σ = qαγα/λα = r′`γα < p for the case Mα : V → Wm,p1(Ω). The case Mα : V → R is
treated similarly.

Claim 4.1. Assumption (A2) holds.

Proof. The growth condition reads

|aα(x, η, ξ; u)| ≤ Ψ`(H`(u))|a`(x)|χ`(G`(u))
(
|η(`)|r`−1 + |η(`)|p−1)

+ Ψ`(H`(u))|bα(x)Mα(u)|.

Then g1(u) = Ψ`(H`(u))M2 is a bounded functional by assumption. Letting

[kα
1(u)](x) = Ψ`(H`(u))|bα(x)Mα(u)|,

we find by (4.5) that kα
1 : V → Lr′`(Ω) is bounded.
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Proving the compactness of kα
1 requires more effort (except when Mα : V → R). To this end,

suppose that {uj} ⊂ V is a bounded sequence. Let {Ωi} be the sequence guaranteed to exist
by assumption (A0). Then ‖bα‖Lr′

`
λ′α (Ω\Ωi)

→ 0. Using the compact embedding Wm,p1(Ωi) ⊂⊂
Lqα(Ωi) we can choose subsequences of {uj} as follows. Let {u1j} ⊂ {uj} be a subsequence
such that

‖Mα(u1j)−Mα(u1m)‖Lqα (Ω1) < 1 for j, m = 1, 2, 3, . . .

Let {u2j} ⊂ {u1j} be a subsequence such that

‖Mα(u2j)−Mα(u2m)‖Lqα (Ω2) <
1
2

for j, m = 2, 3, . . .

Continuing this way, for fixed i let {uij} ⊂ {ui−1,j} be a subsequence such that

‖Mα(uij)−Mα(uim)‖Lqα (Ωi) <
1
i

for j, m = i, i + 1, . . .

It follows that the diagonal sequence {ujj} satisfies

‖Mα(ujj)−Mα(umm)‖Lqα (Ωi) <
1
i

for j, m = i, i + 1, . . .

Using Hölder’s inequality, we find for j, m ≥ i∫
Ω
|bα(x)|r′` |Mα(ujj)−Mα(umm)|r

′
` dx

=

( ∫
Ω\Ωi

+
∫

Ωi

)
|bα(x)|r′` |Mα(ujj)−Mα(umm)|r

′
` dx

≤ const‖bα‖Lr′
`

λ′α (Ω\Ωi)

[ ∫
Ω\Ωi

|Mα(ujj)−Mα(umm)|qα dx
]1/λα

+const‖bα‖Lr′
`

λ′α (Ωi)

[ ∫
Ωi

|Mα(ujj)−Mα(umm)|qα dx
]1/λα

.

Here, ‖bα‖Lr′
`

λ′α (Ω\Ωi)
→ 0 and ‖bα‖Lr′

`
λ′α (Ωi)

is bounded. By assumption (4.2), the first integral

is bounded and for the second integral we have∫
Ωi

|Mα(ujj)−Mα(umm)|qα dx ≤ 1
iqα
→ 0

if j, m ≥ i and i→ ∞.

We now show that (A4’) holds. It is enough to estimate the terms of

∑
|α|=`

aα(x, η; u)ηα

= Ψ`(H`(u))a`(x)χ`(G`(u))(|η(`)|r` + |η(`)|p) + ∑
|α|=`

Ψ`(H`(u))bα(x)Mα(u)ηα

for all ` = 0, 1, . . . , k. The first term may be estimated from below by

CΨ`(H`(u))
(
|η(`)|r` + |η(`)|p

)
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for some constant C > 0. Here, the quantity Ψ`(H`(u)) satisfies

Ψ`(H`(u)) ≥
CΨ

|H`(u)|σ∗ + 1
≥ CΨ

‖H`(u)‖σ∗
L∞(Ω)

+ 1
≥ C′Ψ
‖u‖σ∗

Wk−1,p(Ω′) + 1
≥ C′Ψ
‖u‖σ∗

V + 1
.

The terms of the sum may be bounded from above by Young’s inequality,

Ψ`(H`(u))|bα(x)Mα(u)ηα| ≤ εΨ`(H`(u))|ηα|r` + C∗(ε)|bα(x)|r′` |Mα(u)|r
′
`

≤ εΨ`(H`(u))|η(`)|r` + C∗(ε)|bα(x)|r′` |Mα(u)|r
′
` .

Choosing a sufficiently small ε > 0, it turns out that it is enough to estimate the L1(Ω)-norm
of the expression

[kα
2(u)](x) = |bα(x)|r′` |Mα(u)|r

′
` ,

which, using (4.5), satisfies
‖kα

2‖L1(Ω) ≤ c∗‖u‖σ
V .

The proof of compactness of kα
2 is analogous to that of kα

1. The required k2 in Assumption
(A4’) is given by the pointwise maximum of kα

2 over all |α| ≤ k.
To finish the argument, note that assumption (A5) is satisfied since the functions Φ`, χ`

and Ψα are continuous and the operators H`, G` and Mα are continuous in the respective
Sobolev and Lebesgue spaces. Thus if uj ⇀ u in V, then for a subsequence H`(uj), G`(uj),
Mα(uj) are convergent a.e. in Ω.

Example 4.2. For a more concrete example to Mα, consider the following. In the case Mα : V →
Wm,p1(Ω), let Mα(u) = H̃α(u) where H̃α : V → Wm,p1(Ω) is a continuous linear operator. For
a more concrete example, consider

[H̃α(u)](x) = ∑
|α|≤k

∫
Ω

Gα(x, y)Dαu(y) dy,

where the functions Gα : Ω×Ω→ R satisfy

x 7→
[ ∫

Ω
|DβGα(x, y)|p′ dy

]1/p′

∈ Lp1(Ω) for |β| ≤ m.

In the case Mα : V → R, let Mα(u) = Φα(H̃α(u)), where H̃α : V → R+ is a bounded linear
functional and Φα : R+ → R+ is continuous with |Φα(ν1)− Φα(ν2)| ≤ CΦ|ν1 − ν2|σ/r′` . Note
that Φα(ν) ≤ CΦ|ν|σ/r′` follows automatically.

The operators H` : Wk−1,p(Ω′) → L∞(Ω) and G` : Wk−1,p(Ω′) → Lp′(Ω) can be defined by
the formula

(Bu)(x) = ∑
|α|≤k−1

∫
Ω′

Gα(x, y)Dαu(u) dy,

where the measurable functions Gα : Ω×Ω′ → R satisfy

x 7→
[∫

Ω′
|Gα(x, y)|p′ dy

]1/p′

∈ L∞(Ω) and Lp′(Ω),

respectively.
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Example 4.3. Now suppose that Ω′ ⊂ Ω is a bounded domain with sufficiently smooth bound-
ary. Let V = H1

0(Ω), V1 = H1
0(Ω

′) ⊂ W1,2(Ω′), m = 1, p1 = 2 and let Bα : V1 → V∗1 be an
elliptic operator given by

〈Bα(v), w〉 =
∫

Ω

[
n

∑
j,k=1

aα
jk(x)DjvDkw + cα(x)vw

]
dx,

where v, w ∈ V1 and aα
jk ∈ L∞(Ω) form a uniformly elliptic coefficient matrix and cα(x) ≥

c0 > 0. The strong form of this operator is “−divAαDv + cαv”, where Aα = (aα
jk). Then we

may take Mα(u) = H̃α(u) = v, where v ∈ V1 is a unique solution to Bα(v) = u
∣∣
Ω′ ∈ V∗1 .

Then H̃α = B−1
α : V → V1 ⊂ W1,2(Ω) is a continuous linear operator. (A function v ∈ H1

0(Ω
′)

belongs to W1,2(Ω) if it is extended by 0 in Ω \Ω′.)

Example 4.4. More generally, let V1 ⊂ Wm,p1(Ω) be a closed subspace (which may depend
on α) and let Nα : V1 → V∗1 be a bounded, strictly monotone and coercive operator that satisfies

〈Nα(v1)− Nα(v2), v1 − v2〉 ≥ c2‖v1 − v2‖p1
V1

,

and
〈Nα(v), v〉 ≥ c3‖v‖p1

V1
.

Then for every w ∈ V∗1 there exists a unique element v ∈ V1 such that Nα(v) = w and the
mapping N−1

α : V∗1 → V1 is Hölder continuous:

‖N−1
α (w1)− N−1

α (w2)‖1/(p1−1)
V1

≤ const‖w1 − w2‖V∗1 .

Now let
Mα(u) := N−1

α (hαu),

for all u ∈ V, where hα ∈ Lp′1r(Ω) is some fixed function that makes hαu ∈ Lp′1(Ω) ⊂ V∗1 if
p > 2, and we may take hα ≡ 1 if p = 2. We have that Mα(u) ∈ V1 and Mα : V → Wm,p1(Ω) is
bounded map:

‖Mα(u)‖Wm,p1 (Ω) = ‖N−1
α (hαu)‖Wm,p1 (Ω) ≤ ‖hαu‖1/(p1−1)

V∗1

≤ const‖hαu‖1/(p1−1)

Lp′1 (Ω)
= const

[ ∫
Ω
|hαu|p′1

]1/p1

≤ const

[[ ∫
Ω
|hα|p

′
1r
]1/r[ ∫

Ω
|u|p

]p′1/p
]1/p1

≤ const‖hα‖1/(p1−1)

Lp′1r(Ω)
‖u‖p′1−1

V ,

where r = p/(p− p′1). The exponent γ′α = p′1 − 1 satisfies γα < p/r′` if 2 ≤ p1 < p.

A Equiintegrability and tightness

This appendix collects some results used in the paper; see e.g. [5] for proofs.

Definition A.1. A sequence { f j} of measurable functions f j : Ω→ R is said to be equiintegrable
over Ω if for all ε > 0 there exists δ > 0 such that∫

E
| f j| < ε for all j ∈N and all E ⊂ Ω measurable with |E| < δ.
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Definition A.2. A sequence { f j} is said to be tight over Ω if for all ε > 0 there exists E0 ⊂ Ω
measurable with |E0| < ∞ such that∫

Ω\E0

| f j| < ε for all j ∈N.

Clearly, a dominated sequence inherits equiintegrability (tightness). More precisely, if
|gj| ≤ | f j| and { f j} is equiintegrable (tight), then {gj} is equiintegrable (tight). Similarly,
equiintegrability (tightness) is inherited to a smaller domain Ω′ ⊂ Ω. The following useful
properties are easily established.

Proposition A.3. The following statements hold.

1. If { f j} ⊂ L1(Ω), f ∈ L1(Ω) and f j → f in L1(Ω), then { f j} is equiintegrable and tight.

2. If { f j} and {gj} are equiintegrable and tight, then {α f j + βgj} is equiintegrable and tight for all
α, β ∈ R.

3. If { f j} ⊂ Lq(Ω) is bounded and {gj} ⊂ Lq′(Ω) (where q′ = q/(q− 1) and 1 < q < ∞) with
{|gj|q

′} equiintegrable and tight, then { f jgj} is equiintegrable and tight.

Theorem A.4 (Vitali convergence theorem). Suppose that |Ω| < ∞ and let { f j} be equiintegrable
over Ω. If f j → f a.e. on Ω, then f ∈ L1(Ω) and∫

f j →
∫

f as j→ ∞.

Theorem A.5 (Vitali convergence theorem). Let { f j} be equiintegrable and tight over Ω. If f j → f
a.e. on Ω, then f ∈ L1(Ω) and ∫

f j →
∫

f as j→ ∞.

Theorem A.6 (Sharp Vitali convergence theorem). Suppose that hj ≥ 0 a.e. on Ω. Then∫
hj → 0 as j→ ∞

if and only if hj → 0 a.e. on Ω and {hj} is equiintegrable and tight over Ω.
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