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1 Introduction

We consider the system of nonlinear fractional differential equations

Dy, u(t) +Af(t,u(t),o(t)) =0, te(0,1), )
Df, o(t) + pg(t,u(t), o(t) =0, € (0,1),

with the coupled integral boundary conditions

w(0) = w/(0) = - - = u2(0) =0, W (1)= /01 o(s) dH(s),
' (BC)

0(0) = 0/(0) = --- = 0D (0) =0, V(1) = /01 u(s) dK(s),

where « € (n —1,n], p € (m—1,m],n,m € N, n, m > 3, D§, and D€+ denote the Riemann—
Liouville derivatives of orders a and 3, respectively, the integrals from (BC) are Riemann-
Stieltjes integrals, and f and g are sign-changing continuous functions (that is, we have a so-
called system of semipositone boundary value problems). These functions may be nonsingular
or singular at t = 0 and/or t = 1. The boundary conditions above include multi-point and
integral boundary conditions, as well as the sum of these in a single framework.

We present intervals for parameters A and u such that the above problem (S)-(BC) has
at least one positive solution. By a positive solution of problem (S)-(BC) we mean a pair of
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functions (u,v) € C([0,1]) x C([0,1]) satisfying (S) and (BC) with u(t) > 0, v(t) > 0 for all
€ [0,1] and u(t) > 0, v(t) > 0 for all t € (0,1). The system (S) with the uncoupled integral
boundary conditions

u(0) =u'(0)=---=u"20)=0, u(l)= /01 u(s)dH(s),

1 (BC1)

0(0) =0'(0) =--- =0 2(0) =0, v(1)= /0 v(s) dK(s),
where the functions f and g are nonnegative, has been investigated in [6] and [11] by using the
Guo—Krasnosel’skii fixed point theorem, and in [7] where in system (S) we have A = u = 1 and
f(t,u,v) and g(t, u,v) are replaced by f f(t,v) and g(t, u), respectively, with f and § nonsingular
or singular functions (denoted by (S)). In [7] we used some theorems from the fixed point
index theory and the Guo—Krasnosel’skii fixed point theorem. The semipositone case for
problem (S)-(BC;) was studied in [14] by using the nonlinear alternative of Leray—Schauder
type. The systems (S) and (S) with coupled integral boundary conditions

w(0) = #/(0) = --- = w20y =0, u(l)= /01 o(s) dH(s),

1 (BC)

0(0) = /(0) = --- = 0D (0) =0, (1) :/O u(s) dK(s),
have been investigated in [8] and [9] (problem (S)-(BC;) with f and g nonnegative functions),
in [12] (problem (S)-(BC») with f and g nonnegative functions, singular or not), and in [10]
(problem (S)-(BC») with f, ¢ sign-changing functions). We also mention the paper [20], where
the authors studied the existence and multiplicity of positive solutions for system (S) with
& = B, A = p and the boundary conditions ) (0) = v (0) =0,i=0,...,n—2, u(1) = av(¢),
v(1) = bu(n), ¢, n € (0,1), with ¢, n € (0,1), 0 < abdy < 1, and f and g are sign-changing
nonsingular or singular functions.

Fractional differential equations describe many phenomena in various fields of engineering
and scientific disciplines such as physics, biophysics, chemistry, biology, economics, control
theory, signal and image processing, aerodynamics, viscoelasticity, electromagnetics, and so
on (see [2—4,13,15-19]). Integral boundary conditions arise in thermal conduction problems,
semiconductor problems and hydrodynamic problems.

The paper is organized as follows. Section 2 contains some auxiliary results which inves-
tigate a nonlocal boundary value problem for fractional differential equations. In Section 3,
we prove several existence theorems for the positive solutions with respect to a cone for our
problem (S)—(BC). Finally in Section 4 some examples are given to illustrate our main results.

2 Auxiliary results

We present here the definitions of the Riemann-Liouville fractional integral and the Riemann-
Liouville fractional derivative and then some auxiliary results that will be used to prove our
main results.

Definition 2.1. The (left-sided) fractional integral of order &« > 0 of a function f : (0,00) — R
is given by

(Iorf)(t) = )/t( —5)¥ 1 f(s)ds, t>0,
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provided the right- hand side is pointwise defined on (0, o), where I'(x) is the Euler gamma
function defined by T'(x) = [~ t*le~"dt, a > 0.

Definition 2.2. The Riemann-Liouville fractional derivative of order « > 0 for a function
f:(0,00) = R is given by
d\" na 1 d\" rt  f(s)
o800 = (4) 0= (5) [ i >0

where n = |a] + 1, provided that the right-hand side is pointwise defined on (0, c0).

The notation |« stands for the largest integer not greater than a. If ¥ = m € N then
Dy f(t) = Fm(¢) for t > 0, and if & = 0 then DY, f(t) = f(t) for t > 0.
We consider now the fractional differential system

D§ u(t) +x(t) =0, te(0,1),
5 e (2.1)
Dy, o(t)+y(t) =0, te(0,1),
with the coupled integral boundary conditions
1
w(0) = w/(0) = - - = w2 (0) =0, (1) :/ o(s) dH(s),
0 (2.2)
0(0) = 0/(0) = -+ = "2 (0) =0, /(1) :/0 u(s) dK(s),

wherea € (n—1,n], € (m—1,m|,n,m € N,n, m > 3,and H, K: [0,1] — R are functions
of bounded variation.

Lemma 2.3. If H, K : [0,1] — R are functions of bounded variation, A = (« —1)(f—1) —
<f ™ 1dK(t ) (fo ™ 1dH(t )) # 0and X,y € C(0,1) N LY(0,1), then the pair of functions
(u,0) € C([0,1]) x C([0,1]) given by

= 1"(1oc/ (t—s)*"Xx(s)ds + taA_l [F(ﬁ:x_—ll) /01(1—5)”‘_255(5)ds

1 sﬁ LdH(s) ) (/01 </51(T —5)* 1 dK(T)> f(s)ds)

F(oc

+m </ s5=1 dH(s )> </01(1_S)ﬁzg(s)ds>
1 | /1 </51(T—s)/5—1 dH(T)> ”yv(s)ds} . te(01], u(0)=o,

S T(E-1)Jo
p-1 —
i [ a1 ] /01(1 —5)P2(s) ds

o(t) = —r(lﬁ)/ot(t—s)ﬁly( ds+ 5 | 15—

- r(lﬁ) </01 g1 dK(s)) (/01 (/Sl(r - s)ﬁ—ldﬂ(r)> 7(s) ds)
ey ) (-0

_ r(al_l)/ol (/Sl(T_sy“ dK(T)) f@)d%, £ (0,1], v(0) =0,

is solution of problem (2.1)—(2.2).
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Proof. We denote by
o () ([ 0
e () ] o).

h= 5 |t =982 as = s ([ etk ) 30
+ r(“l_l) (/01 raldK(r)> (/01(1 —s)“az(s)ds>
_ r(lﬁ) </01 o1 dK(T)> (/01 (/Sl(r—s)ﬁldH(T)> g(s)dsﬂ .

Then the continuous functions # and v from (2.3) can be written as

u(t) = ct* 1t — F(loc) /Ot(t —8)" 1%(s)ds = e t* ' — I8 X(t), te(0,1], u(0) =0,

o(t) =ditP~! — 1/t(t—s)f8 Y(s)ds = ditP~1 — 1P (1), te (0,1], v(0) = 0.
L(B) Jo o4

Because D§, u(t) = ¢;D§, (#*~1) — D&, I8, %(t) = —x(t) and D}, o(t) = diD§, (1) —

Dg+10+y( t) = —y(t) for all t+ € (0,1), we deduce that u and v satisfy the system (2.1). In

addition, we have u(0) = u/(0) = --- = u(” 2) (0) = 0 and v( )=70 (0) == v( )(0) =0.

A simple computation shows us that u'(1) = [ o( ) and v/( fo ), that is

cl(oc—l)—l,<a1_1)/l(1—s)”‘ 2%(s )ds—/o (dlsﬁ_l —r(lm/os(s—r)ﬁ—lg(r) dT)dH(s),

di(B—1) — F(ﬁl—l)/ol(l —5)P25(s) ds = /01 <c15"‘1 - F(loc) /Os(s — 1) 1%(7) dT) dK(s).

Therefore we deduce that (u,v) is solution of problem (2.1)—(2.2). O

_|_

Lemma 2.4. Under the assumptions of Lemma 2.3, the solution (u,v) of problem (2.1)—(2.2) given by
(2.3) can be written as

u(t) = /01 G1(t,s)x(s) ds + /01 Ga(t,s)y(s)ds, te€][0,1],

1 1 2.4)
o(t) = /0 Gs(t, 8)i(s) ds + /0 Ga(t,s)%(s)ds, te[0,1],
where 1 . .
Gi(t,s) = qu(t, s)+’fA (/O rﬁ—ldH(T)) (/O gl(T,s)dK(T)),
(B—1t !
Galtys) = L= "o (¢,)dH(7),
i A / s 2.5)

Gatts) = saltre)+ o ([ ako)) ([ sateoano))

Gy(t,s) = ((X_i)tﬁ_l /01 g1(7,8)dK(T), Vt, s €[0,1],
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and
1 11 =) 2 - (t—s)"!, 0<s<t<1,
gl(t S)_I"(a){t(x—l(l_s)a—ZI <t<s<l1, oe
LSy 1 P11 —s)P2—(t—s)F!, 0<s<t<1 (26)
82 S>_F(ﬁ){tﬁ—1(1—s)ﬁ—2, 0<t<s<1
Proof. By Lemma 2.3 and relation (2.3), we conclude
u(t):r(la)[/t[ (1 —s)t 2 — ds+/
/ 711 —s) ] + (ﬁl"((xl)— 0 /0 (1—15)*2%(s) ds
1
Atr((x) </ 1 dH(t )) (/01 (/sl(r—s)"‘_l dK(T)) f(s)ds)
-1
e | ([ -9 2an ) s as

_ /01 (/51(1— — s)ﬁ—l dH(T)> 7(s) ds]
= r(la) [/Ot[ (1 — )% 2 — (¢ — 5)* 1% (s) ds + /tl 2 ds]

_p-1

T AT(a—1) /1 1(1—S)w237(5)ds+A1}([X) </01 TaldK(r)> </01 B-1 dH(T)>
* (/01 sy 2’7<S>d5> + Arﬁ(a_ - 5 /01 (1 (1 - ) 2% (s) ds

Atr(;) (/ ™ ldH(t )) </01 </sl(r—s)“1d1<(r)> %(s) ds
E,B : 0y [/ 1 </0 o1 — ) 2dH <r>> 7(s) ds

([ e—opan) s o
- r(la) Uot[t“_l(l—s)“_z— (f—S)”“lla?(s)dH/t1 t“_l(l—s)“_za?(s)ds]
(L am) [ ([0t
- ([ @k )z
!

_ /01 (/Sl(T _ s)ﬁldH(T)> 7(s) ds] .

AF
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Therefore, we obtain

) = oy | [ =92 = o e s [ s s
Atr(l) </ P 1dH (T )) [/01 </O T"‘_l(l—s)"‘_sz(T)> %(s) ds
+/ </ 1(1 ) 2dK(T)> 55(5)015—/01 </Sl(r—s)"‘_1d1<(r)> f(s)ds}
e | ([ a-ep e >) 7(s) ds
+/</rﬁ11 sﬂZdH()>y()ds < (t—s)FdH(t )
— | a2 ds+/ 5)ds
e </§TWH )[/o </§ s K )> ) d
R e e UG RO
s | (/0 1= o) RaH() ) 7 ds
s (10982 e ) o)
_ / a1 (t,$)7(s ds+</0 rﬁldH(r)> </01 </01g1(r,s)d1<(r)> f(s)ds)
B ([ [ setesiane)) sy as

1 B 1 .
:/0 Gl(t,s)x(s)ds—i—/o Ga(t,s)y(s) ds.

In a similar manner, we deduce

o) = [ salts)gtsyas + ([ ik ([ ([ satwspaicn)) i)
4 (“_i)tﬁ 1 </0 </0 gl(T,s)dK(T)> E(s)ds)

1 _ 1 "
:/0 G3(t,s)y(s)ds+/0 Gy(t,5)X(s) ds.

Therefore, we obtain the expression (2.4) for the solution (u,v) of problem (2.1)-(2.2) given
by relations (2.3). O

}

Lemma 2.5. The functions g1, §» given by (2.6) have the properties
a) g1, § : [0,1] x [0,1] — Ry are continuous functions, and g1(t,s) > 0, g2(t,s) > 0 for all
(t,5) € (0,1] x (0,1).
b g1(t,s) < I(s), ga(t,s) < hals) for all (t,5) € 0,1] x [0,1], where h(s) = U5 and
hy(s) = S(llf(sﬁ))ﬁJ forall s € [0,1].
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c) g1(t,8) > t*1hy(s), ga2(t,s) > tP~1hy(s) forall (t,s) € [0,1] x [0,1].
d) gi(t,s) < £y, 2(t5) < fﬁ J, forall (t,5) € [0,1] x [0,1].

Proof. Part a) of this lemma is evident.
b) The function g; is nondecreasing in the first variable. Indeed, for s < t, we have

og 1
ot %) = T
_ F(al_l)[(t Chs) 2 (f—5)¥ 2 > 0.

[( = 1721 =) 72 = (a = 1) (t = )" 7]

Then, g1(t,s) < g1(1,s) for all (t,s) € [0,1] x [0,1] with s < t.
For s > t, we obtain

981 -2 -2
ol - - _ > 0.
o (t,9) I’(zx—l)t (1-s)**>0
Hence, g1(t,5) < g1(s,s) for all (¢,s) € [0,1] x [0,1] with s > ¢.

Therefore, we deduce that g1(t,s) < hi(s) for all (¢t,s) € [0,1] x [0,1], where hi(s) =
¢1(1,5) = r(zx) s(1—s)*2fors e [0,1].

¢) For s < t, we have

gi(t,s) = F(lzx) [ (1 =) = (£ —5)" ]
> r(lzx) N1 =) 2= (t—ts)" 1] = iy (s).

For s > t, we obtain

gi(t,s) = Iﬁ<10‘)t"‘1(1 —8)"72 > 11y (s).

Hence, we conclude that g7 (t,s) > t*"1hy(s) for all (t,s) € [0,1] x [0,1].
d) For all (t,s) € [0,1] x [0,1] we have

gi(t,s) < L 1) %< .
)’ ~ Ta)
In a similar manner we obtain the corresponding inequalities for g», with hy(s) = 5(11"(523))&2
for s € [0,1]. O

Lemma 2.6. If H, K : [0, 1] — R are nondecreasing functions, and A > 0, then G;,i =1,...,4, given
by (2.5) are continuous functions on [0,1] x [0, 1] and satisfy G;(t,s) > 0 forall (t,s) € [0,1] x [0,1],
i=1,...,4. Moreover, if X, j € C(0,1) N L1(0,1) satisfy X(t) > 0, y(t) > 0 forall t € (0,1), then
the solution (u,v) of problem (2.1)—(2.2) given by (2.4) satisfies u(t) > 0, v(t) > 0 forall t € [0, 1].

Proof. By using the assumptions of this lemma, we have G;(t,s) > 0 forall (¢,s) € [0,1] x [0,1],
i=1,...,4,and so u(t) >0, v(t) > 0 forall t € [0,1]. O
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Lemma 2.7. Assume that H, K : [0,1] — R are nondecreasing functions, A > 0, and that
fol ™ 1dK(t) > 0, fol ~1dH(t) > 0. Then the functions G;, i = 1,...,4 satisfy the inequal-
ities

a1) Gi(t,s) < oyhy(s), Y (t,s) € [0,1] x [0,1], where

ay) Gi(t,s) < 61t%1, V(t,s) € [0,1] x [0,1], where

5 = r(la) [1 +% </01 -1 dH(T)> </01 71 dK(T)ﬂ > 0.

a3z) Gi(t,s) > o1t* 'hi(s), (t,s) €[0,1] x [0,1], where

01=1 +% (/01 TﬁldH(T)> </01 r“ldK(r)) > 0.

onh (),V(t) [0,1] x [0,1], where o5 = A( () H(0)) > 0.
v (t [0,1] x [0, 1], where 6, = 113 1 f P=1dH(T) > 0.

s
) €
> s), Y(t,s)€[0,1] x [0,1], wheregzz%f TﬁldH()>0.
§ (T3I’lz( ), V(t,s)€10,1] x [0,1], where

1 1
@:1+EGﬂH—Hw»Ar“%Kh)>Q

c2) Ga(t,s) < 65tP~1, Y (t,5) € [0,1] x [0, 1], where

J3 = F(l,B) {14—1 (/01 T"‘_ldK(r)> (/01 Tﬁ_ldH(T)>:| > 0.

c3) Gs(t,s) > Q3tﬁ71h2(5), Y (t,s) € [0,1] x [0,1], where

03 = 1+% </01 T"‘_ldK(T)> (/01 Tﬁ_ldH(T)> =01 >0.

d1) Gu(t,s) < oshi(s), V(ts) € [0,1] x [0,1], where o4 = “ (K(1 ) K(0)) > 0.
dy) Gy(t,s) < 64tP~1, Y (t,5) € [0,1] x [0,1], where 54 = i f “1dK(t) > 0.
d3) Gy(t,s) > 04tP~1hy1(s), V (t,5) €[0,1] x [0,1], where 04 = Tl f - 1dK( ) > 0.

Proof. From the assumptions of this lemma, we obtain

1 1
:/dMﬂz/rkMMﬂ>Q
0 0

1 1
:/ dH(7) z/ 1 dH(t) > 0.
0 0

By using Lemma 2.4 and Lemma 2.5, we deduce for all (¢,s) € [0,1] x [0,1]
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ay)
Gitts) = es) + o ([ o)) ([ sa(es)axio)
<o)+ ([ i) ([ meax)
— Iy (s) [1 + £ (K(1) - K(0)) /01 B-1 dH(T)} — oi(s).
az)
o 52 ([ ) [ e
:talr(l)[l—ki(/olrﬁldH(T)) /0 1 dK(t ))] 5yt
as)

br)
(-1t p1 o1
Galt,s) = - / ga(t,s) dH () < B2 /0 ha(s) dH ()
= P2 (H() — HO)a(s) = oahia(s).
N (-1t 1o
— 1)t ™= _
Ga(t,s) < X A r(ﬁ)dH(T)—(Szt !
bs) o
Galtys) 2 B [T o0 () abi(1) = 0o (s
Cl)
p—1
Ga(t,) = alt,5) + 1 </ T 1dK(T)> (/1g2(r s)dH(’r))
< hz(S) + % /01 1 dK(T)) (/ hz(S) dH(T))
1 1
= hy(s) [1 + X(H(l) — H(O))/0 (. dK<T>:| = 03hy(s)
Cz)
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C3)

Ga(t,s) > tP1hy(s) + tﬁAl (/01 T”‘_ldK(T)> </1 P 1y (s) dH(T))

0

)
Guttys) = C DL M sy ak(ny < 1 [ nfs)akca)
= In(5) K (1) — K(0)) = el ()
&)
Galt,s) < ("‘_i)tﬁ 1 01 If'z“;dK(r) — 5ytP
)

Remark 2.8. From Lemma 2.7, we obtain for all ¢, t/, s € [0, 1] the following inequalities:

Gi(ts) = o1t 'y (s) > %t”‘_lGl(t’,s), Ga(t,s) = 0at" ha(s) > %t”‘_le(t’,s),
Gs(t,s) > 03tP 1hy(s) > g—ztﬁ’ng(t',s), Gy(t,s) > 0atP 1hy(s) > S—itﬁ’lel(t',s),
Gu(ts) > o1t hy(s) > %t”"l@(t’,s), Ga(ts) > 0atP~hy(s) > %tﬁ’lGl(t’,s),
Gs(t,s) > 03tP~1hp(s) > %tﬁ—lcz(tf,s), Ga(t,s) = 0at* ha(s) > (%t“‘ng(t',s).

Lemma 2.9. Assume that H, K : [0,1] — R are nondecreasing functions, A > 0, and that
Jy T YdK(t) > 0, [} P 1dH(t) > 0, and %, § € C(0,1) NL'(0,1), ¥(t) > 0, (t) > 0 for
all t € (0,1). Then the solution (u(t),v(t)), t € [0,1] of problem (2.1)—(2.2) given by (2.4) satisfies
the inequalities u(t) > yt* tu(t'), u(t) > yt*o(t'), v(t) > P 1o(t'), v(t) > P~ tu(t'), for all
t,t' €0,1], where y = min { 2,92 & & & &4 & &1

o7 0’ 037 047 047 017 027 03

Proof. By using Lemma 2.7 and Remark 2.8, we obtain for all ¢, ' € [0,1] the following in-
equalities

u(t) = /01 Gi(t,8)x(s)ds + /01 Ga(t,s)y(s) ds
> /01 %t“‘lGl(t’,s)f(s) ds + /01 %t“‘le(t’,s)g(s) ds

> gl (/01 Gi(t,8)x(s) ds + /01 Ga(t,s)y(s) ds) = v lu(t),



Positive solutions for a fractional boundary value problem 11

u(t) = /01 Gi(t,s)x(s)ds + /01 Ga(t,s)y(s) ds
> /01 %t"‘_lG4(t/,s)97(s) ds + /01 %t“‘ng(t’,s)g(s) ds
> 1 (/01 Gy(t',8)x(s) ds + /(;1 Gs(t,s)y(s) ds) =yt 1o(t),
1 1
o(t) = /0 Ga(t, )7 (s) ds +/O Galt,$)%(s) ds
> /01 g—itﬁ_l@(t/,s)?(s) ds + /01 (Qf—itﬁ_l@(t’,s)f(s) ds
> qth1 (/01 Gs(t,s)y(s) ds + /01 Ga(t',8)x(s) ds) = ytF1o(t),
1 1
o(t) = /0 Ga(t,)ij(s) ds +/O Ga(t, s)%(s) ds
> /01 g—itﬁ’le(t/,s)y(s) ds + /01 s—i‘tﬂ’1G1(t/,s)5cv(s) ds
> b1 (/01 Ga(t,s)y(s) ds + /01 Gi(t,8)x(s) ds) = ptP (),

where vy = min {#,%2 & & & & & &1 O

017 o7 037 047 047 017 027 03

In the proof of our main results we shall use the nonlinear alternative of Leray-Schauder
type and the Guo—Krasnosel’skii fixed point theorem presented, respectively, below (see [1,5]).

Theorem 2.10. Let X be a Banach space with Q) C X closed and convex. Assume U is a relatively
open subset of Q with 0 € U, and let S : U — Q be a completely continuous operator (continuous and
compact, that is it maps bounded sets into relatively compact sets, and it is continuous). Then either

1) S has a fixed point in U, or
2) there exists u € oU and v € (0,1) such that u = vSu.

Theorem 2.11. Let X be a Banach space and let C C X be a cone in X. Assume () and () are
bounded open subsets of X with0 € Oy C O C O and let A: CN (O \ 1) — C be a completely
continuous operator such that, either

) |[Aull < |Jull, u € CNOQy, and || Aul| > ||ul|, u € CN Oy, or
i) [|Aul| = [lull, u € CN Oy, and || Au| < [Jul|, u € CN oDy,
Then A has a fixed point in C N (Qy \ ).

3 Main results

In this section, we investigate the existence and multiplicity of positive solutions for our prob-
lem (S)-(BC). We present now the assumptions that we shall use in the sequel.

(H1) H, K:[0,1] — R are nondecreasing functions, A = (¢ —1)( — 1) — (fol o1 dK(T))
X <f01 h-1 dH(T)) > 0 and fol ™ 1dK(t) >0, fol ~1dH(T) > 0.
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(H2) The functions f, ¢ € C([0,1] x [0,00) x [0,00), (—00, +00)) and there exist functions
p1, p2 € C([0,1],[0,00)) such that f(t,u,v) > —p1(t) and g(t,u,v) > —po(t) for any
t€[0,1] and u, v € [0, ).

(H3) f(t,0,0) >0, g(t,0,0) >0 forall t € [0,1].

(H4) The functions f, ¢ € C((0,1) x [0,00) x [0,00), (—00,+00)), f, g may be singular at
t = 0 and/or t = 1, and there exist functions p1, po € C((0,1),[0,00)), a1, ap €
C((0,1),[0,00)), B1, B2 € C([0,1] x [0,00) % [0,00),]0,00)) such that

—pi(t) < f(buv) <ar()pr(tu,0),  —pa(t) < gt u,0) <ar(t)Ba(t u,0),
forallt € (0,1), u, v € [0,00), with 0 < fol pi(s)ds < 00,0 < fol wi(s)ds < c0,i=1,2.
(H5) There exists ¢ € (0,1/2) such that

t/ u/ U . . t/ 4
foo = lim min u =00 Or go= lim min g( u,0)
utv—ote[cl—c] U+ T utv—ote[cl—c] U+

= OQ.

i(t, s .
(H6) Biow = lim max M =0, i=1,2.
utv—ootc[0,1] U + v

We consider the system of nonlinear fractional differential equations

{D&x(t) A () = O], W0 —(0]) + () =0, 0<t<l
Doy (#) + u(g(t, [x(8) = g1 ()], [y() = q2(D)]) + p2(£) =0, 0 <t <1,
with the integral boundary conditions
1
X(0) = ¥/(0) =+ = x0D(0) =0, ¥(1) = [ y(s)dH(s),
%1 3.2)
y(0) =y/(0) =+ =y () =0, ¥(1) = [ x(s)aK(s),
0
where z(t)* = z(t) if z(t) > 0, and z(t)* = 0if z(¢) < 0. Here (g1,42) with
1 1
0 =2 [ Giltm@ds+p [ Galt)pals)ds, e o1,
1 1
() =p [ Gats)pa(s)ds+24 [ Gabo)pi(s)ds,  teo1],
is solution of the system of fractional differential equations
Dg+0]1(t) + )Lpl(t) =0, 0<t<l, (3.3)
DngqQ(t) +up2(t) =0, 0<t<1,
with the integral boundary conditions
1
10 =40 = =" 20) =0, i) = [ pEdH(),
0 (3.4)
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Under the assumptions (H1) and (H2), or (H1) and (H4), we have q;(t) > 0, g2(t) > 0
for all t € [0,1].

We shall prove that there exists a solution (x,y) for the boundary value problem (3.1)—(3.2)
with x(t) > g1(t) and y(t) > g2(t) on [0,1], x(¢t) > q1(t), y(t) > g2(t) on (0,1). In this case
(u,v) with u(t) = x(t) —g1(t) and v(t) = y(t) — g2(t) for all t € [0, 1] represents a positive
solution of the boundary value problem (S)—(BC). Indeed, by (3.1)-(3.4), we have

Djyu(t) = Doy x(t) = Doyqu () = =Af(E [x(8) — ()], [y(t) — q2(1)])
—Ap1(t) + Api(t) = =Af(tu(t),0(t),  Vie(0,1),

( (t,
Dj, v(t) = Dy, y(t) — D, 42(t) = —pg(t, [x(t) — qu ()], [y(t) — g2(£)]")
—up2(t) + pupa(t) = —pug(t,u(t),o(t)),  Vte(0,1),

)
)
)

and

W) =X0) (1) = [ y(s)aH(E) ~ [ aal)a(s) = [ o(s)aH(s)
1 1 1
V(1) =y (1) =) = [ x(5)aK(s) = [ 31(5)aK(s) = [ u(s)aK(s).

Therefore, in what follows, we shall investigate the boundary value problem (3.1)—(3.2).
By using Lemma 2.4 (relations (2.4)), a solution of the system

7\/ Ga(ts)( s) = ()], [y(s) = q2(s)]") + pa(s)) ds

+Pl/ Ga(t,5)(8(s, [x(s) = q1(s)]", [y(s) — q2(s)]") + pa(s))ds, te€[0,1],
= H/ Ga(t,s) —q1(8)]" [y(s) = g2(s)]") + pa(s)) ds

+/\/0 Ga(t,8)(f(s, [x(s) = q1(s)]" [y(s) = g2(s)]") + pa(s)) ds, € [0,1],

is a solution for problem (3.1)—(3.2).

We consider the Banach space X = C([0,1]) with the supremum norm | - ||, ||#|| =
SUPp,¢[oq) #(t), and the Banach space Y = X x X with the norm ||(u,0)[|y = max{]|ul], [|o]/}.
We define the cone

P={(xy) €Y, x(t) = v (x )y, y(t) = 1" (x,y)lly, Vt € [0,1]},

where 7 is defined in Section 2 (Lemma 2.9).
For A, p > 0, we introduce the operators T;, T, : Y — X and 7 : Y — Y defined by
T(xy) = (Ti(xy), T2(x,y)), (x,y) € Y with

D=2 [ Gilts) (G5 [x() — ()] [(s) — al)]') + pr(s)) ds
+ﬂ/GﬂS@([U—m@ﬁ@@—@@m+m@ﬁ& tefo,1)
0= [ Galt,5) (s, [x(6) — ()] [y(s) — (o)) + pals)) s

+?\/O Ga(t,5)(f(s, [x(s) = q1(s)]" [y(s) = g2(s)]") + pa(s))ds, € [01].
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It is clear that if (x,y) is a fixed point of operator 7, then (x,y) is a solution of problem
(3.1)~(3.2).

Lemma 3.1. If (H1) and (H2), or (H1) and (H4) hold, then operator T : P — P is a completely
continuous operator.

Proof. The operators T; and T, are well-defined. To prove this, let (x,y) € P be fixed with
|| (x,y)|ly = L. Then, we have

() <l < Nxy)lly =L~ Vselo1],

[x(s) - qu(s)]* < x
C<ye) <l <yl =L  Vseo1].

[y(s) — g2(s)]
If (H1) and (H2) hold, we obtain
Ti(ow) (1) < A0y [ () (G [x(6) — ()] () — (o)) + pa(s)) s
s [ 1a(5) (5 [x(6) — (&) [y(s) — a(]") + pa(s)) s
<2M <)\0’1 /01 hi(s)ds + uo» /01 hz(s)ds> < 00, Vte[0,1],
To(x,y)(t) < pos /01 ha(s)(8(s, [x(s) — q1(s)]", [y(s) — q2(s)]") + p2(s)) ds
+ Aoy /01 hi(s)(f(s, [x(s) — q1(s)]", [y(s) — q2(s)]") + pa(s)) ds

1 1
<2M (yag/ hy(s)ds —|—)u74/ hl(s)ds) < o0, Vtelo,1],
0 0
where

M = max max f(t,u,0), max g(t,u,v), max p1(t), max pa(t) » .
te[0,1], u,0€[0,L] te[0,1],u,0€[0,I] tef0,1] te[0,1]

If (H1) and (H4) hold, we deduce for all ¢ € [0, 1]

(o)1) ey [ (&) ) )] yls) — a2(5))%) + pa(s)) s
o [ a(6) (805, [x(5) )] () — 02(5)]%) + pa(s)) s
<0 [ (i), [x(s) ~ O] y(s) —~ )) + pr(s)] ds
b [ a($) aa(s)Bas [x(5) — n(5)1% [y(s) — a2(5))%) + pas)) s
< 81 (A [ (o) (w1(5) 4 pr(5)) s + o [ a(s) wals) + pa(s)) s ) < o,
Ta(x, ) (1) < g [ ha(s) 300 () — ($)]% [y(5) — 02(5))%) + pa(s)) s

+ Aoy /01 h(s)(f (s, [x(s) = q1(s)]", [y(s) = g2 (s)]") + pa(s)) ds
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< s [ a()laa(s)Ba(s, [x(5) ()] () — aa(6)]") + pa(o)] ds
ey [ () (s)B1(5 x() — m6)]% y(s) — a2(5))%) + pa(s)) s
~ 1 1
< 81 (o [ a(s) (o) + pa(s)) s+ A [ n(5) (o (5) + pa(9) s ) <
where

M = max { max _ Bi(t,u,v0), max _ Baft, u,v),l} )
te[0,1], u,0€[0,L] t€[0,1], u,v€[0,L]

Besides, by Lemma 2.9, we conclude that

Ty(x,y)(t) > vt ' Ta(x,y)(F), Tilx,y)(t) > ' Ta(x,y) (),
To(x,y)(t) > P ' T(x,y) (), Ta(xy)(t) =P " Ti(xy) (), Vit €[0,1],

and so
Ti(x,y)(t) > I Ti(x )l Tl y)(8) > v Ta(x, y) |,
T(x,y)(t) > P T(xy)l, Ta(xy)() > Ty,  Vie[o1].
Therefore
Ty(x,y) (1) > vt H[(Tu(x, y), Ta(x, ) v,
Ta(x,y) (1) = v [(To(x, ), T(x )y, Yt [01].

We deduce that (T1(x,y), T2(x,y)) € P, and hence T(P) C P.
By using standard arguments, we deduce that operator 7 : P — P is a completely contin-
uous operator. O

Theorem 3.2. Assume that (H1)—(H3) hold. Then there exist constants Ay > 0 and yg > 0 such
that for any A € (0, Ag] and p € (0, po|, the boundary value problem (S)~(BC) has at least one positive
solution.

Proof. Let d € (0,1) be fixed. From (H2) and (H3), there exists Ry € (0, 1] such that

f(t,u,v) > 6f(t,0,0), g(t,u,v) > 6g(t,0,0), Vte[0,1], u, v e[0,Rp. (3.5)
We define
f(Ry) = tu, £l > 6f(t,0,0 Hl >0,
f(Ro) te[O,l}I,r:ze,iv)é[O,Rg]{f( u,v) +p1(t)} > fé‘[oa,ﬁ{ f( )+ pi(t)}
3(Ry) = tu, $HY > 5¢(t,0,0 t 0,
g(Ro) tem’l}r’rﬁé[olRo]{g( u,v) + pa(t)} g[oa,ﬁ{ 3( ) +p2(t)} >

1 1 1 1
1 = 01/ hi(s)ds, ¢ = (72/ ha(s)ds, c3= 03/ ha(s)ds, ¢4 = 04/ hy(s)ds,
0 0 0 0

A —max{ Ry Ro } —max{ Ro Ro }
0 401 7(Ro) deaf(Ro) S 1° 16,3(Ro) 4c33(Ro) | °

We will show that for any A € (0, A¢] and p € (0, o], problem (3.1)-(3.2) has at least one
positive solution.
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So, let A € (0,A¢] and u € (0, po| be arbitrary, but fixed for the moment. We define the set
U={(xy) €P, ||[(uv)]ly <Ro}. We suppose that there exist (x,y) € oU (||(x,y)|ly = Ro or
max{||x|, |ly]|} = Ro) and v € (0,1) such that (x,y) =vT (x,y) or x = vTi(x,y), y = vTa(x,y).

We deduce that

[x(t) —q1()]" = x(t) —q1(t) < x(t) < Ro, if x(t) —qu(t) >0,
[x(t) —q1(t)]* =0, forx(t)—q:1(t) <0, Vte[0,1],
[y(t) —q2()]" = y(t) —q2(t) <y(t) < Ro, ify(t) —qa2(t) >0,
y(t) —q2(t)]" =0, fory(t) —q2(t) <0, Vt €[0,1].

Then by Lemma 2.7, for all t € [0,1], we obtain
x(H) = vTa(x,)(8) < Ti(x,w) ()
=1 [ G (G5, [5) ~ &) y(s) — 02(5)1%) + pa(s)) s
b [ Gt )80 15) )] y(s) — 25)]°) + pals)) s

<o [ () F(Ro)ds e [ ha(5)3(Ro) ds < Ao F(Ro) + g (Ro) < 0 1 Ko Ko,
y(t) =vTa(x,y)(t) < To(x,y)(t)
= #/0 Ga(t,s)(g(s, [x(s) = q1(s)]", [y(s) — q2(s)]") + p2(s)) ds
+ /\/1 Ga(t,s)(f(s, [x(s) —q1(s)]", [y(s) — 92(s)]") + pa(s)) ds
< m/ (s Ro)ds+)w4/ 1 (s)F(Ro) ds < pocag(Ro) + Aocaf (Ro) <% + % _ %

Hence [|x|| < % and ||ly|| < %0. Then Ry = ||(x,y)|ly = max{[|x[, [ly[|} < 22, which is a
contradiction.

Therefore, by Theorem 2.10 (with () = P), we deduce that 7 has a fixed point (xo, o) €
UNP. Thatis, (xo,y0) = T (x0,y0) or xo = T1(x0,%0), vo = Ta(x0,v0), and max{||xo]|, |[yoll} <
Ry with xo(t) > ¥~ 1| (x0,y0)||y and yo(t) > ytP~1||(x0, yo|y for all t € [0,1].

Moreover, by (3.5), we conclude

w(6) = Tix0,30)(6) 2 A [ Gr69)(35(1,0,0) + p(s))ds + [ Galt,)(35(4,0,0) + pals))ds
22 [[Gom@)ds b [ GlapEd=nn,  vie)
t) >A/01 Gi(t,s)pi(s) dsw/l Ga(t,s)pa(s)ds = qu(t),  Vie (0,1),
(1) = Ta(x0,0)(8) = it [ Galt,)(53(6,0,0) + pals))ds + 2 [ Galt,5)(6F(4,0,0) + pr(5))ds
> p [ ot o)) s+ 2 [ Gl pi()ds = ga(t), Ve [o)

1 1
yo(t) > V/o G3(t,s)p2(s)ds—i—A/ Gu(t,s)p1(s)ds = qa(t), Vte (0,1).

Therefore xo(t) > g1(t), yo(t) > q2(t) for all t € [0,1], and xo(t) > g1(t), yo(t) > g2(t)
for all t € (0,1). Let up(t) = xo(t) —q1(t) and vo(t) = yo(t) — g2(¢t) for all t € [0,1]. Then
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up(t) >0, v9(t) > 0forall t € [0,1], up(t) > 0, vo(t) > 0 for all t € (0,1). Therefore (uo, vo) is
a positive solution of (S)—~(BC). O

Theorem 3.3. Assume that (H1), (H4) and (H5) hold. Then there exists A* > 0 and u* > 0 such
that for any A € (0, A*] and u € (0, u*|, the boundary value problem (S)—(BC) has at least one positive
solution.

Proof. We choose a positive number

R; > max {1, i /01(51;91(5) + 6opa(s)) ds, rly/ol(égpz(s) + dap1(s)) ds, }

and we define the set O = {(x,y) € P, ||(x,y)|ly < Ri}.
We introduce

A* = min {1, 20157}\41 </01 hi(s)(aq(s) + pi(s)) ds> 71, 2015711\/11 (/01 hi(s)(a1(s) + p1(s)) ds> 1} ,
oo min{1,2;342 </01 o (5) (ta(5) +p2(s))ds> o R </01 o (5) (ta(5) +p2(s))ds> 1},

with

te(0,1], u,v>0, te(0,1], u,0>0,
u+v<Rq u+v<Rq

Mlzmax{ max ﬁl(t,u,v),l}, Mzzmax{ max ,Bz(t,u,v),l}.

Let A € (0,A*] and u € (0, u*]. Then for any (x,y) € PN 90y and s € [0, 1], we have
[x(s) = (s)]" <x(s) < [lxl| <Ry, [y(s) —q2(s)]" < y(s) < llyll < R
Then for any (x,y) € P N o)y, we obtain
IT(x, y)l| < Aoy /01 h(s)[wa(s)Ba(s, [x(s) — qu(s)]", [y(s) — q2(s)]") + pa(s)] ds
10z [ Iafs)laa(o)Bals, [x(5) a1 (6)) [y5) — 42(5))) + pa(s)]

1 1
SNOMy [ hi()(en(s) + pr(s)) ds + i oaMa [ ha(s) (was) + pa(s)) ds
Rq
2
1
T,y < o [ als) xa(s)Ba(s, [x(5) = qa ()], () = qa(s)]") + pals)] ds

Rq
< + 5= Ry =[[(x,y)lly,

+ Aoy /O1 h(s)[ar(s)Ba(s, [x(s) — q1(s)]", [y(s) — q2(s)]") + pa(s)] ds

S ]/l*0’3M2 /01 hz(S)(OCz(S) + ]72(5)) ds + /\*0'4M1 /01 hl (s)(le (S) + P1 (S)) ds

Ri R
< [— _— = — .
<5 5 =Ri=1xyly

Therefore

1T (e y)lly = max{ [Ty (x, ) [ T2 I} < [ y)lly,  V(oy) € PN (3.:6)
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On the other hand, for ¢ given in (H5), we choose a constant L > 0 such that

1—c 1—c
)\Lglfycz("‘_l)/ hi(s)ds > 2, yLszycz("‘_l)/ hy(s)ds > 2.
Cc Cc
From (H5), we deduce that there exists a constant My > 0 such that
f(t,u,0) > L(u+v) or g(tuv)>Lu+v), Vtel,l—c|, u,v>0, u+v> M, (3.7)

Now we define

2M, 2

yea 1 7/01((51;71(5) +52P2(S))d5} >0

and let O = {(x,y) € P, ||(x,y)|ly < R2}.

We suppose that fo = oo, thatis f(t,u,v) > L(u+v) forall t € [c,1—¢| and u,v > 0,
u+v > M. Then for any (x,y) € PNy, we have ||(x,y)|ly = Rx or max{||x]||, |ly]|} = Ra.
In addition, for any (x,y) € P N9, we obtain

R, = max {ZRl,

1 1
x(t) —q1(t) = x(t) — /\/0 Gi(t,s)p1(s)ds — y/o Ga(t,s)pa(s)ds

> x(f) — 1 <51 /01 pi(s)ds+ 2 /01 pz(s)ds>

x(t)
> x(t) — M/ (G1p1(s) + b2p2(s)) ds

= x(t) [1 - ’Y;{ /1(51]91(5) + (52;?2(8)) d5:| >
Therefore, we conclude
[x(t) — g1 ()]" = x(t) —q1(t) = 5x(t) = 1715“71\\(xfy)lly
1

1
IRy > S c® 1Ry > My, Vtele,1—cl|.
=27 27

x(t) >0, vVt elo,1].

NI~

hﬂ*ﬂ

Hence
[x(t) = (O] + [w(t) —q2(D)]" = [x(t) — g1 (H)]" = x(t) —q1(t) = Mo,  Vte€[c,1—c|. (3.8)
Then, for any (x,y) € PN, and € [c,1— c], by (3.7) and (3.8), we deduce
ft [x(t) =g ()], [y(t) — q2(8)]") = L([x(t) — q1()]" + [y(t) — q2(£)]")
> Lix(t) — g1 (£)]* > éx(t) Vielel—d.
It follows that for any (x,y) € PNay, t € [c,1 — ¢], we obtain
Ti(x,y)(t) > 7\/ Gi(t,s)(f(s, [x(s) —q1(s)]", [y(s) — q2(s)]") + pa(s)) ds
-

A [ Guts)(f(s [x(s) —m()] [y(s) — q205)]") + pa(s)) ds

1—c 1—c
>4 [ G LX) ~ )]V ds = A [ Gilt ) sLyet Rads
c c

1—c 1—c
> A/ Qlt"‘_lhl(s)%L'yc”‘_le ds > Acz("‘_l)églL'sz/ hi(s)ds > Ry.
c c
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Then || Ta(x, y)|| = [[(x, y)|ly and
1Ty = 1eay)lly,  Vi(xy) € PO, (3.9)

We suppose now that g = oo, that is ¢(t,u,v) > L(u+v), forall t € [c,1 —c| and u,v > 0,
u+v > M. Then for any (x,y) € PNy, we have ||(x,y)|y = Rz or max{||x||, [|y||} = Ra2. In
addition, for any (x,y) € P N9y, we deduce in a similar manner as above that x(f) — g1 () >
Ix(t) forall t € [0,1], [x(t) — g1 ()]* > 2yc* IRy forall t € [c,1 —¢], and

Ti(x,y)(t) = p /01 Ga(t,s)(g(s, [x(s) = q1(s)]", [y(s) — q2(s)]") + pa(s)) ds
> i [ Galt ) (805, 1) — ] () — 2(5)]%) + pa(s)) s
1—c 1—c 1
> y/c Ga(t,s)L([x(s) — q1(s)]*) ds > ],t/c Gz(t,s)EL'yc“_le ds
>u /1C ta“’lhz(s)%L'yc“’le ds

1—c
- ycz(al);QZL«sz/ ha(s)ds > Ry, Vtele,1l—d.

Hence we obtain relation (3.9).

Therefore, by Theorem 2.11, relations (3.6) and (3.9), we conclude that 7 has a fixed point
(xl,]/1> €PN (Qz \ Ql), thatis R; < H (xl,y1>Hy < R».

Then we deduce

1 1
x1(t) —q1(t) = x1(¢) — /\/O Gi(t,s)p1(s)ds — y/o Ga(t,s)pa(s) ds
> xp () — ¢ (51 /01 pi(s)ds + b2 /01 pa(s) ds)

x1(t) !
> xq(t) — ’YH(xl,yl)Hy/O (61p1(s) + d2pa(s)) ds

b
YR1 Jo

1

[ (1pa(s) + Gpa(s)) ds} 6 (1)
> [ - Olwlpl(s)wzpz(s))ds} ) e )
R

1
1 [l T OR, /0 (01p1(s) +52P2(S))d8] = At Vieo1],

and so x1(t) > g1(t) + Aqt* L forall t € [0,1], where A; = YRy — fol((ilpl (s) + dap2(s))ds > 0.
We also obtain

1 1
1) = (t) = 32(0) 1 [ Ga(t,)pa(s)ds = A [ Galt s)pa(s) ds
> yl(t) —tp-1 ((53 /01 Pz(S) ds + 04 /(;1 pl(S) dS)
n
> (1) ~ s [ Gspa(s) +0upa(5)) s
1 1
> 1= [ @) + e is mi
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1 1
> [1 — L [ apals) + aap(5)) ds] B (1, ) v
YRy Jo

1
2 Rl |:1 — 7}{/ ((53}92(5) —|—54}71(S)) dS] ’)’tﬁ_l = Aztﬁ_l, Vte [0, 1],
1J0

and so y1(t) > ga(t) + AxtP~! for all t € [0,1], where Ay = YRy — fol (63p2(s) + dapi1(s))ds > 0.

Let uq(t) = x1(t) — q1(t) and v1(t) = y1(t) — qa2(t) for all + € [0,1]. Then (uq,v1) is a
positive solution of (S)~(BC) with uq(t) > A1t*~! and v1(t) > AxtP~! for all t € [0,1]. This
completes the proof of Theorem 3.3. O

Theorem 3.4. Assume that (H1), (H3), (H5) and

H4") The functions f, ¢ € C(]0,1] x [0,00) x [0, 00), (—00, +00)) and there exist functions py, V2, &1, &y €
8 P1, P
C([0,1],[0,00)), B1, B2 € C([0,1] x [0,00) x [0,00), [0, 00)) such that

P8 < F(t,0) < a1 (L1,0), —palt) < gl u,0) < aa(t)Palt, ,0),
forallt € [0,1], u, v € [0, 00), with fol pi(s)ds >0,i=1,2,

hold. Then the boundary value problem (S)—(BC) has at least two positive solutions for A > 0 and
u > 0 sufficiently small.

Proof. Because assumption (H4') imply assumptions (H2) and (H4), we can apply Theorems
3.2 and 3.3. Therefore, we deduce that for 0 < A < min{Ag,A*} and 0 < p < min{po, u*},
problem (S)—(BC) has at least two positive solutions (uo, vg) and (u1,v1) with ||(uo + g1, v0 +
g2)lly <1land |[(u1 4+ 91,01+ 92)|ly > 1. ]

Theorem 3.5. Assume that A = y, and (H1), (H4) and (H6) hold. In addition if

(H7) There exists c € (0,1/2) such that

I — liminf min t,u,v) >Ly or ¢\ =liminf min t,u,v) > Lo,
00 8oo 8

utvzeo tefe1—c] wto e tele,1—c|

u,v>0 u,v>0

where

Lo = max{i /0 ap(s) +52p2(s))ds,i /0 " (6spa(s) +54p1(s))ds}

1—c 1—c -1
X (min{c“‘lg1/ hl(s)ds,c“_lgz/ hz(s)ds}> ,
c c

then there exists A, > 0 such that, for any A > A, problem (S)~(BC) (with A = ) has at least one
positive solution.

Proof. By (H7) we conclude that there exists M3 > 0 such that
f(t,u,v) > Lo or g(t,u,v) > Ly, YVt [c,1—c|, u,v>0, u+v> Ms.

We define

-1

A, = max {CMj (/01((51;91(5) +5zpz(s))d5> , ;;431 (/01((53;92(5) +54p1(s))ds> 1}.
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We assume now A > A,. Let

R3 = max {2,? /01((51;71(5) + dapa(s))ds, 2’? /()1((53p2(s) + (54p1(s))ds}
and O = {(,9) € P, (x,9)lly < Rs}.

We suppose first that fi, > Lo, thatis f(t,u,v) > Lo for all t € [c,1 —¢] and u,v > 0,
u+v > Ms. Let (x,y) € PN9Qs, thatis ||(x,y)||y = Rs. Then for all t € [0,1], we deduce

1 1
X() = () = 7 ()l = AP0 [ i) ds—Ar 10 [ pa(s) ds
> tnz—l |:f)/R3 — )\/01 ((Slpl (S) + 52]92(8)) dS:|
1 1
> gl [zA/O (51p1(s)+52p2(s))ds—)\/0 (61p1(s) +52p2(s))ds}
— 1) /01(51]91(5) + 0pa(s)) ds
> tail/\* /01((51P1 (S) +(5zp2(8)) ds > %it“il > 0.

c*

Therefore for any (x,y) € PNdQ3 and t € [¢,1 — c|, we have

[x(t) = g1 (D] + [y(t) — q2(D)]" = [x() = q1(8)]" = x(t) — @1 (t) = C{\X/I%f“l > M;.  (3.10)
Hence, for any (x,y) € PNoQz and t € [c,1 — |, we conclude
Ti(x,y)(t) = 7\/01 Gi(t,s)[f (s, [x(s) —q1(s)]", [w(s) — 92(5)]") + pa(s)] ds
200t [ (5 1) ] y(s) — g2(5)] ) s
1—c 1—c
> ALlef“_l/C hi(s)ds > ALoglc”‘_l/C hi(s)ds > Rs = [|(x,y)]ly-
Therefore we obtain ||T;(x,y)|| > Rs for all (x,y) € PN 0Q3, and so

1T y)lly = Rs = [[(x, y)llv, ¥ (x,y) € PNaQs. (3.11)

We suppose now that géo > Loy, that is g(t,u,v) > Lo for all t € [c,1 —¢] and u,v > 0,
u+v > Ms. Let (x,y) € PNaQg, thatis ||(x,y)|ly = Rs. Then we obtain in a similar manner
as in the first case above (fi, > Lo) that x(t) — g1 (t) > C]:/I—jt“_l >0forallte[0,1].

Therefore for any (x,y) € PNaQs and t € [¢,1 — ¢], we deduce inequalities (3.10).

Hence, for any (x,y) € PNdQz and t € [c,1 — ¢], we conclude

Ti(w)(0) 2 4 [ Galts)slo x(s) ~ &) ) — a2(5)]) + palo)] ds
> 202t [ o)l [x(5) )] y(s) — g2(5)] ) s

1—c 1—c
> ALyoat*~! / ha(s) ds > ALogac®™! / ha(s)ds > Ry = [|(x,9) .
C C

Therefore we obtain || T;(x,y)|| > Rs for all (x,y) € PN 0Q3, and so we have again relation
(3.11).
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On the other hand, we consider the positive number

€ = min {4)301 (/01 hl(s)txl(s)d5> , 4/\102 </01 hz(s)az(s)ds> _1,

o ([ (ot ) 0 o ([ mEme) d)} -

Then by (H6) we deduce that there exists My > 0 such that

-1

Bi(t,u,v) <eu+v) vte€[0,1], u,v>0, u+v>M,y i=1,2.
Therefore we obtain
Bi(t,u,v) < Ms+e(u+v), Vi€ [0,1], u,v>0, i=1,2,

where

Ms = max max Bi(t,u,v) ¢ .
i=1,2 | t€[0,1], u,0>0, u+v<My

We define now
1
R4y = max {2R3,4/\01 max{Ms, l}/o hi(s)(a1(s) + pi(s)) ds,
4\ max{Ms, 1} /0l ha(s)(a2(s) + pa(s)) ds,
)03 max{Ms, 1} /O a5 (wa(s) + pa(s)) ds,
1
4oy max{Mg,,l}/0 hi(s)(a1(s) + pa(s)) ds} ,

and let Q4 = {(x,y) € P, ||(x,y)]ly < Ra}.
For any (x,y) € PN dQy, we have

Ti(x,y)(t) < ?\/01 o (s)[a1(s)B(s, [x(s) — q1(s)]", [y(s) — q2(s)]") + p1(s)]ds
+A /01 7aha(s)[az2(s)Ba(s, [x(s) — q1(5)]", [y(s) — g2(s)]") + pa(s)]ds
< Aoy /01 h(s)la1 () (Ms + ([x(s) — g1 (s)]" + [y(s) — g2(s)]")) + pa(s)] ds
+ Aoy /01 ha(s)laz(s)(Ms + €([x(s) — q1(s)]" + [y(s) — g2(s)]")) + pa(s)] ds
< Aoy max{Ms, 1} /0 U (s) (@1 (s) + p1(s)) ds + AoyeRa /0 () (5) ds
+ Aoy max{Ms, 1} /0 ia(s) (@a(s) + pa(s)) ds + AcaeRa /0 ' ha(s)aa(s) ds

Ry Ry Ry

Ry
<M ™M M M b
STtz T t7 cR=l@yly,  veelod]

and so | Th(x,y)|| < |[(x,y)||y for all (x,y) € PN oQ.
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In a similar manner we obtain

To(x,y)(t) <A /01 osha(s)[a2(s)Ba(s, [x(s) — q1(s)]", [y(s) — q2(s)]") + p2(s)]ds
+A /01 ouhy (s)[a1(s)Ba(s, [x(s) — q1(s)]", [y(s) — q2(s)]") + pa(s)]ds
<205 [ hal)aa(s) (Ms + €([x(5) @ ()] + [y(6) ~ 02(6)]°)) + pa(s)] ds
Ay [ ()l (5) (M5 + e([x() — aa(5)]* + [y(s) — 0205)])) + pa(5)) s
< Aoy max{Ms, 1} /0 ' a(5) (wa(5) + pa(s)) ds + AoseRs /0 ' Ia(s)aa(s) ds
+ Aoy max{Ms, 1} /0 "1 (s)(01(5) + pa(s)) ds + AoyeRs /0 () (5) ds

<« Re R Re oo
sgtatr T R=1yly, VEeD1]

and so || Ta(x,y)|| < ||(x,y)||y for all (x,y) € PN aQ.
Therefore, we deduce

ITEyly <l y)lly,  V(xy) € PNoQy. (3.12)

By Theorem 2.11, (3.11) and (3.12), we conclude that 7 has a fixed point (x1,11) €
PN (0Q4\Q3),50 Rz < ||(x1,y1)]]y < Ry. Therefore, we deduce that for all t € [0,1]

1 1
¥ (0 — qi(f) = %1 (1) —/\/0 Gl(t,s)pl(s)ds—A/() Ga(t,s)pa(s) ds
1 1
> x1(t) — /\(51/0 1y (s)ds — Aéz/o 1 py(s) ds
>t () Iy A [ Gipa(s) + apa(s))
> yt* IRy — A1 /01(51;71 (s) + bapa(s)) ds
> o] / N(6191(5) + Bapa(s)) ds — AR / L(61p1(5) + Gapa(s)) ds
0 0

1 1 M
= M [ 01pr(s) 4+ 6apa(s) ds = At [ (0apa(s) + dapa(s)) ds = S5,

and
(0 = 0206) = 12 = A [ Golt,)pals)ds A [ Galt o)) s
> yi(t) — Ads /0 1 py(s) ds — Ady /0 L py(s) ds
> 1,y — A [ (Gpa(s) + 8apa(s) ds
> tb-1Ry — AP /0 (83pa(s) + dapa (s)) ds
> oAt /0 N(8pa(s) + 8apr(5)) ds — AL /0 (0spa(5) + bapr (s)) ds

1 1 M
= }Uﬁfl/o (53p2(8) +54]91(S)) ds > /\*tﬁfl‘/o ((53p2($) + dap1 (S)) ds > Cﬁ%tﬁfl_
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Let ug(t) = x1(t) — q1(t) and v1(f) = y1(t) —g2(t) for all t € [0,1]. Then uy(t) > T
and v(t) > AxtP~! for all t € [0,1], where A = C];/I—j, Ay = CI;AE]. Hence we deduce that

(u1,v1) is a positive solution of (5)—(BC), which completes the proof of Theorem 3.5. O

In a similar manner as we proved Theorem 3.5, we obtain the following theorems.
Theorem 3.6. Assume that A = y, and (H1), (H4) and (H6) hold. In addition if
(H7) there exists ¢ € (0,1/2) such that

ff,o = liminf min f(t,u,v) > Ly or gio = liminf min g(t u,v) > Lo,

“IZ;&’" tele,1—c] “Iz;o“’ telc,1—c]

where

Zo = max {i Al(ﬁlpl(s) —|—§2p2(5>)d5, i/ol<53p2(s) +(54p1(5))d5}

1—c 1—c -1
X <min{cl3_1g4/ hi(s)ds, Cﬁ_1Q3/ hz(s)ds}> ,

then there exists A, > O such that for any A > A, problem (S)~(BC) (with A = ) has at least one
positive solution.

Theorem 3.7. Assume that A = y, and (H1), (H4) and (H6) hold. In addition if
(H7') there exists ¢ € (0,1/2) such that

fi, =liminf min f(t,u,v) > L) or g, =liminf min g(t u,0) > L,

U+v—y00 te[c,lfc] utv—eo tE[C,lfc]

u,v>0 u,v>0

where

Ly = max {i /01(51;91(5) + dapa(s))ds, ’Zy /01(53p2(s) + (54p1(s))ds}

1-c 1—c -1
X (min{co‘_l@/ hy(s)ds, cﬁ_lgg/ hz(s)ds}> ,

then there exists A, > 0 such that for any A > M, problem (S)—(BC) (with A = ) has at least one
positive solution.

Theorem 3.8. Assume that A = y, and (H1), (H4) and (H6) hold. In addition if
(H7") there exists ¢ € (0,1/2) such that

fi = liminf min }f(t, u,v) > Ly or g\ =liminf min g(t,u,v) > L,

U+v—00 _ U+v—00 o
50 tele1—c o0 tele1—c]

where

0 = max{i/()l(glpl(s) + bapa(s))ds, 'Zy/()l((SSPZ(S) +54p1(s))ds}

1-c 1—-c -1
X <min{cﬁ_1g4/ hi(s)ds, c”‘_lgz/ hz(s)ds}> ,

then there exists A!! > 0 such that for any A > A!/ problem (S)~(BC) (with A = ) has at least one
positive solution.
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Theorem 3.9. Assume that A = y, and (H1), (H4) and (H6) hold. In addition if

(H8) there exists ¢ € (0,1/2) such that

fo=lim min f(t,u,v) =c0 or $oo= lim min g(tu,v) = oo,

+ +
“ Z;;X’ tele,1—c] ‘o Zj&” tele,1—c]

then there exists A, > 0 such that for any A > A, problem (S)~(BC) (with A = u) has at least one
positive solution.

4 Examples

Leta =7/3(n = 3) B=5/2(m=23),H(t) = t3,K(t) = t*. Then fol u(s)dK(s) = 4]01 s2u(s)ds
and fol v(s)dH(s) = 3f0 s20(s) ds.
We consider the system of fract1ona1 differential equations

DPu(t) + Af(tu(t),v(t)) =0, te(0,1), (S0)
Dy 2o(t) + pg(tu(t),v(H) =0, te(0,1), °
with the boundary conditions
u(0)=u'(0)=0, u/(1)=3 1szv(s)ds,
° (BCo)
v(0) =9'(0) =0, /(1) =4 ; s2u(s) ds
Then we obtain that A = (« —1)(8 — (fo 14K (s )(fo sP"1dH(s)) = 3 > 0, and

fol ™ 1dK(t) = 3 > 0, fol P71dH(t) = 3 > 0. The functions H and K are nondecreasing,
and so assumption (H1) is satisfied. Besides, we deduce

(s) = /31 —s)1/3 —(t—s)¥3, 0<s<t<1,

S

s ) t#4/3(1 —5)1/3, 0<t<s<1,

321 —s)1/2 — (t—5)%2, 0<s<t<1,

2 £3/2(1 1/2 0<t<s<l1,
1

Gi(t,s) = g1(t,s) + t4/3/ 2¢1(7,8) ds, Ga(t,s) :3t4/3/ °¢,(7,8) dT,
0

1
Gs(t,s) = ga(t,s) + 2t3/2/0 29, (7,8) dT, Gu(t,s) = 3921&3/2/0 2¢1(7, ) dT.

We also obtain hy(s) = ﬁs(l —5)1/3 and hy(s)

In addition, we have o7 = %3, 0 = 3r(§/3)' 01 =

%s(l —35)/2 forall s € [0,1].

3
102:1/52:9\/7192:3103251

4

3
4 8 _ 1 _ 2 _ 4

5 9f/Q3 37 04 = §I(54—2r(4/3)/ 94_§/7_§'

Example 4.1. We consider the functions

(u+v)? Fint  g(tuo) — 2 +sin(u + v)

t1—t) VT =

f(tu,v) = +In(1—t), t€(0,1), u,v>0.
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We have pi(t) = —Int, po(t) = —In(1 —t), a1(t) = ax(t) = for all t € (0,1),

1

t(1-t)
ﬁl(t u,v) = (u—i—v) Ba(t,u,v) = 2+sin(u+ o) for all t € [0,1], u, v > 0, fo pr(t)dt =1,
fo p2(t)dt =1, fo t)dt = 7, i = 1,2. Therefore, assumption (H4) is satisfied. In addltlon
forc € (0 1/2) f1xed assumptlon (H5) is also satisfied (foo = 0).

After some computations, we deduce fol (61p1(s) + dapa(s) ds ~ 1.62134837, fol (d3p2(s) +
Sapi(s)) ds ~ 1.56292696, [} hi(s)(a1(s) + pi(s)) ds ~ 0.87405192, [ ha(s)(aa(s) + pa(s)) ds ~
0.71547597. We choose Ry = 4 which satisfies the condition from the beginning of the proof of
Theorem 3.3. Then M; = 16, My = 3, A* ~ 0.0990084 and p* ~ 0.6211871. By Theorem 3.3, we
conclude that (Sp)~(BCp) has at least one positive solution for any A € (0,A*] and p € (0, p*].

Example 4.2. We consider the functions
f(t,u,0) = (u+0v)®+cosu, g(t,u,v) = (u+0v)/3 + cos v, te0,1], u,v>0.

We have p1(t) = p2(t) = 1 for all € [0,1], and then assumption (H2) is satisfied. Besides,
assumption (H3) is also satisfied, because f(t,0,0) =1 and g(¢,0,0) =1 for all ¢ € [0, 1].
Let 6 = % < 1land Ry = 1. Then

F(tu,0) > 5f(t,0,0) = % g(t,u,0) > 5g(t,0,0) = % Vie (0,1, u 0 [0,1].

In addition,

f(Ro) = f(1) = o 1r]n3;<e[o 1]{f(if, u,v) + p1(t)} ~ 9.5403023,
$(Ro)=g(1)= max {g(t,u,v)+ pa(t)} ~ 3.04684095.

te[0,1], u,vel0,1]

We also obtain ¢; ~ 0.38994655, ¢, ~ 0.20060074, c3 ~ 0.30090111, cs ~ 0.23996711,
and then Ay = max{4c1?(01<0)'4c4?€1<0)} ~ 0.10920088 and o = max{%zgﬁ,%} ~
0.40903238.

By Theorem 3.2, for any A € (0,A¢] and p € (0, o], we deduce that problem (S¢)—(BCy)
has at least one positive solution.

Because assumption (H4') is satisfied (a1(t) = a2(t) = 1, B1(t,u,0) = (u+0)>+1,
Ba(t,u,0) = (u+0)/34+1 for all t € [0,1], u,v > 0) and assumption (H5) is also satis-
fied (foo = o0), by Theorem 3.4 we conclude that problem (Sp)—(BCy) has at least two positive
solutions for A and p sufficiently small.

Example 4.3. We consider A = y and the functions

S ) R SO T ) B
f(t,u,v)— g(t/ ’ ) \3/t(1_t)2 \/1—t,

, te (0,1), u,v >0,
JeE(1—t) Vit 1)
where a € (0,1).

Here we have p;(t) = %, pa(t) = \/117 ap(t) = W, ay(t) = \/7 forallt € (0,1),
Bi(t,u,v) = (u+0)* Ba(t,u,v) = In(1+u-+0o) forall t € [0,1], u,v > 0. For c € (0,1/2)

fixed, the assumptions (H4), (H6) and (H8) are satisfied (Bjeo = 0 for i = 1,2 and foo, = 0).
Then by Theorem 3.9, we deduce that there exists A, > 0 such that for any A > A, our
problem (So9)—(BCp) (with A = ) has at least one positive solution.
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