Existence of solutions for a fourth-order boundary value problem on the half-line via critical point theory

\mathbf{M} abrouk [B](#page-0-0)riki 1 , Toufik Moussaoui $^{\boxtimes 1}$ and \mathbf{D} onal $\mathbf{O}'\mathbf{Regan}^2$

¹Laboratory of Fixed Point Theory and Applications, École Normale Supérieure, Kouba, Algiers, Algeria ²School of Mathematics, Statistics and Applied Mathematics, National University of Ireland,

Galway, Ireland

Received 14 December 2015, appeared 2 May 2016

Communicated by Alberto Cabada

Abstract. In this paper, a fourth-order boundary value problem on the half-line is considered and existence of solutions is proved using a minimization principle and the mountain pass theorem.

Keywords: fourth-order BVPs, unbounded interval, critical point, minimization principle, mountain-pass theorem.

2010 Mathematics Subject Classification: 35A15, 35B38.

1 Introduction

We consider the existence of solutions for the following fourth-order boundary value problem set on the half-line

$$
\begin{cases}\nu^{(4)}(t) - u''(t) + u(t) = f(t, u(t)), & t \in [0, +\infty), \\
u(0) = u(+\infty) = 0, \\
u''(0) = u''(+\infty) = 0,\n\end{cases}
$$
\n(1.1)

where $f \in C([0, +\infty) \times \mathbb{R}, \mathbb{R})$.

Many authors used critical point theory to establish the existence of solutions for fourthorder boundary value problems on bounded intervals (see for example [\[8,](#page-10-0)[9,](#page-10-1)[13\]](#page-10-2)), but there are only a few papers that consider the above problem on the half-line using critical point theory. We cite [\[5\]](#page-10-3) where the authors consider the existence of solutions for a particular fourth-order BVP on the half-line using critical point theory.

We endow the following space

$$
H_0^2(0, +\infty) = \left\{ u \in L^2(0, +\infty), \ u' \in L^2(0, +\infty), \ u'' \in L^2(0, +\infty), \ u(0) = 0, \ u'(0) = 0 \right\}
$$

[⊠] Corresponding author. Email: moussaoui@ens-kouba.dz

with its natural norm

$$
||u|| = \left(\int_0^{+\infty} u''^2(t)dt + \int_0^{+\infty} u'^2(t)dt + \int_0^{+\infty} u^2(t)dt\right)^{\frac{1}{2}}.
$$

Note that if $u \in H_0^2(0, +\infty)$, then $u(+\infty) = 0$, $u'(+\infty) = 0$, (see [\[3,](#page-10-4) Corollary 8.9]). Let $p, q : [0, +\infty) \longrightarrow (0, +\infty)$ be two continuously differentiable and bounded functions with

$$
M_1=\max(\|p\|_{L^2},\|p'\|_{L^2})<+\infty, \qquad M_2=\max(\|q\|_{L^2},\|q'\|_{L^2})<+\infty.
$$

We also consider the following spaces

$$
C_{l,p}[0,+\infty) = \left\{ u \in C([0,+\infty),\mathbb{R}) : \lim_{t \to +\infty} p(t)u(t) \text{ exists} \right\}
$$

endowed with the norm

$$
||u||_{\infty,p} = \sup_{t \in [0,+\infty)} p(t) |u(t)|,
$$

and

$$
C_{l,p,q}^1[0,+\infty)=\left\{u\in C^1([0,+\infty),\mathbb{R}): \lim_{t\to+\infty}p(t)u(t), \lim_{t\to+\infty}q(t)u'(t)\text{ exist}\right\}
$$

endowed with the natural norm

$$
||u||_{\infty,p,q} = \sup_{t \in [0,+\infty)} p(t) |u(t)| + \sup_{t \in [0,+\infty)} q(t) |u'(t)|.
$$

Let

$$
C_{l}[0,+\infty)=\left\{u\in C([0,+\infty),\mathbb{R}):\lim_{t\to+\infty}u(t)\text{ exists}\right\}
$$

endowed with the norm $||u||_{\infty} = \sup_{t \in [0,+\infty)} |u(t)|$.

To prove that $H_0^2(0, +\infty)$ embeds compactly in $C^1_{l,p,q}[0, +\infty)$, we need the following Corduneanu compactness criterion.

Lemma 1.1 ([\[4\]](#page-10-5)). Let $D \subset C_l([0, +\infty), \mathbb{R})$ be a bounded set. Then D is relatively compact if the *following conditions hold:*

(a) D is equicontinuous on any compact sub-interval of \mathbb{R}^+ *, i.e.*

$$
\forall J \subset [0, +\infty) \text{ compact, } \forall \varepsilon > 0, \exists \delta > 0, \forall t_1, t_2 \in J :
$$

$$
|t_1 - t_2| < \delta \Longrightarrow |u(t_1) - u(t_2)| \le \varepsilon, \forall u \in D;
$$

(b) D is equiconvergent at +∞ *i.e.,*

$$
\forall \varepsilon > 0, \exists T = T(\varepsilon) > 0 \text{ such that}
$$

$$
\forall t : t \geq T(\varepsilon) \Longrightarrow |u(t) - u(+\infty)| \leq \varepsilon, \forall u \in D.
$$

Similar reasoning as in [\[6\]](#page-10-6) yields the following compactness criterion in the space $C^1_{l,p,q}([0,+\infty),\mathbb{R}).$

Lemma 1.2. Let $D \subset C^1_{l,p,q}([0,+\infty),\mathbb{R})$ be a bounded set. Then D is relatively compact if the *following conditions hold:*

(a) D is equicontinuous on any compact sub-interval of $[0, +\infty)$ *, i.e.*

$$
\forall J \subset [0, +\infty) \text{ compact}, \forall \varepsilon > 0, \exists \delta > 0, \forall t_1, t_2 \in J:
$$

$$
|t_1 - t_2| < \delta \Longrightarrow |p(t_1)u(t_1) - p(t_2)u(t_2)| \le \varepsilon, \forall u \in D,
$$

$$
|t_1 - t_2| < \delta \Longrightarrow |q(t_1)u'(t_1) - q(t_2)u'(t_2)| \le \varepsilon, \forall u \in D;
$$

(b) D is equiconvergent at +∞ *i.e.,*

$$
\forall \varepsilon > 0, \exists T = T(\varepsilon) > 0 \text{ such that}
$$

$$
\forall t : t \geq T(\varepsilon) \Longrightarrow |p(t)u(t) - (pu)(+\infty)| \leq \varepsilon, \forall u \in D,
$$

$$
\forall t : t \geq T(\varepsilon) \Longrightarrow |q(t)u'(t) - (qu')(+\infty)| \leq \varepsilon, \forall u \in D.
$$

Now we recall some essential facts from critical point theory (see [\[1,](#page-10-7)[2,](#page-10-8)[10\]](#page-10-9)).

Definition 1.3. Let *X* be a Banach space, $\Omega \subset X$ an open subset, and $J : \Omega \longrightarrow \mathbb{R}$ a functional. We say that *J* is Gâteaux differentiable at $u \in \Omega$ if there exists $A \in X^*$ such that

$$
\lim_{t\to 0}\frac{J(u+tv)-J(u)}{t}=Av,
$$

for all $v \in X$. Now *A*, which is unique, is denoted by $A = J'_G(u)$.

The mapping which sends to every $u \in \Omega$ the mapping $J'_{\mathcal{G}}(u)$ is called the Gâteaux differential of *J* and is denoted by J'_G .

We say that $J \in C^1$ if *J* is Gâteaux differential on Ω and J'_G is continuous at every $u \in \Omega$.

Definition 1.4. Let *X* be a Banach space. A functional $J : \Omega \longrightarrow \mathbb{R}$ is called coercive if, for every sequence $(u_k)_{k \in \mathbb{N}} \subset X$,

$$
||u_k|| \to +\infty \Longrightarrow |J(u_k)| \to +\infty.
$$

Definition 1.5. Let *X* be a Banach space. A functional $J: X \longrightarrow (-\infty, +\infty]$ is said to be sequentially weakly lower semi-continuous (*swlsc* for short) if

$$
J(u) \leq \liminf_{n \to +\infty} J(u_n)
$$

as $u_n \rightharpoonup u$ in *X*, $n \to \infty$.

Lemma 1.6 (Minimization principle [\[2\]](#page-10-8))**.** *Let X be a reflexive Banach space and J a functional defined on X such that*

- *(1)* $\lim_{\|u\| \to +\infty} J(u) = +\infty$ *(coercivity condition),*
- *(2) J is sequentially weakly lower semi-continuous.*

Then I is lower bounded on X and achieves its lower bound at some point u_0 *.*

Definition 1.7. Let *X* be a real Banach space, $J \in C^1(X,\mathbb{R})$. If any sequence $(u_n) \subset X$ for which $(J(u_n))$ is bounded in **R** and $J'(u_n) \longrightarrow 0$ as $n \rightarrow +\infty$ in X' possesses a convergent subsequence, then we say that *J* satisfies the Palais–Smale condition (PS condition for brevity). **Lemma 1.8** (Mountain Pass Theorem, [\[11,](#page-10-10) Theorem 2.2], [\[12,](#page-10-11) Theorem 3.1])**.** *Let X be a Banach* $space$, and let $J \in C^1(X,\mathbb{R})$ satisfy $J(0) = 0.$ Assume that J satisfies the (PS) condition and there *exist positive numbers ρ and α such that*

- *(1)* $J(u) \geq \alpha$ *if* $||u|| = \rho$,
- *(2) there exists* $u_0 \in X$ *such that* $||u_0|| > \rho$ *and* $J(u_0) < \alpha$.

Then there exists a critical point. It is characterized by

$$
J'(u) = 0, \quad J(u) = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} J(\gamma(t)),
$$

where

$$
\Gamma = \{ \gamma \in C([0,1], X) : \gamma(0) = 0, \gamma(1) = u_0 \}.
$$

1.1 Variational setting

Take $v \in H_0^2(0, +\infty)$, and multiply the equation in Problem [\(1.1\)](#page-0-1) by v and integrate over $(0, +\infty)$, so we get

$$
\int_0^{+\infty} (u^{(4)}(t) - u''(t) + u(t))v(t)dt = \int_0^{+\infty} f(t, u(t))v(t)dt.
$$

Hence

$$
\int_0^{+\infty} (u''(t)v''(t) + u'(t)v'(t) + u(t)v(t))dt = \int_0^{+\infty} f(t,u(t))v(t)dt.
$$

This leads to the natural concept of a weak solution for Problem [\(1.1\)](#page-0-1).

Definition 1.9. We say that a function $u \in H_0^2(0, +\infty)$ is a weak solution of Problem [\(1.1\)](#page-0-1) if

$$
\int_0^{+\infty} (u''(t)v''(t) + u'(t)v'(t) + u(t)v(t))dt = \int_0^{+\infty} f(t, u(t))v(t)dt,
$$

for all $v \in H_0^2(0, +\infty)$.

In order to study Problem [\(1.1\)](#page-0-1), we consider the functional $J: H_0^2(0, +\infty) \longrightarrow \mathbb{R}$ defined by

$$
J(u) = \frac{1}{2} ||u||^2 - \int_0^{+\infty} F(t, u(t)) dt,
$$

where

$$
F(t, u) = \int_0^u f(t, s) ds.
$$

2 Some embedding results

We begin this section by proving some continuous and compact embeddings. Here *p* and *q* (and M_1 , M_2) are as in Section 1.

Lemma 2.1. $H_0^2(0, +\infty)$ *embeds continuously in* $C_{l,p,q}^1[0, +\infty)$ *.*

Proof. For $u \in H_0^2(0, +\infty)$, we have

$$
|p(t)u(t)| = |p(+\infty)u(+\infty) - p(t)u(t)|
$$

\n
$$
= \left| \int_{t}^{+\infty} (pu)'(s)ds \right|
$$

\n
$$
\leq \left| \int_{t}^{+\infty} p'(s)u(s)ds \right| + \left| \int_{t}^{+\infty} p(s)u'(s)ds \right|
$$

\n
$$
\leq \left(\int_{0}^{+\infty} p'^{2}(s)ds \right)^{\frac{1}{2}} \left(\int_{0}^{+\infty} u^{2}(s)ds \right)^{\frac{1}{2}} + \left(\int_{0}^{+\infty} p^{2}(s)ds \right)^{\frac{1}{2}} \left(\int_{0}^{+\infty} u'^{2}(s)ds \right)^{\frac{1}{2}}
$$

\n
$$
\leq \max(\|p'\|_{L^{2}}, \|p\|_{L^{2}})\|u\|
$$

\n
$$
\leq M_{1}\|u\|,
$$

and

$$
|q(t)u'(t)| = |q(+\infty)u'(+\infty) - q(t)u'(t)|
$$

\n
$$
= \left| \int_{t}^{+\infty} (qu')'(s)ds \right|
$$

\n
$$
\leq \left| \int_{t}^{+\infty} q'(s)u'(s)ds \right| + \left| \int_{t}^{+\infty} q(s)u''(s)ds \right|
$$

\n
$$
\leq \left(\int_{0}^{+\infty} q'^{2}(s)ds \right)^{\frac{1}{2}} \left(\int_{0}^{+\infty} u'^{2}(s)ds \right)^{\frac{1}{2}} + \left(\int_{0}^{+\infty} q^{2}(s)ds \right)^{\frac{1}{2}} \left(\int_{0}^{+\infty} u''^{2}(s)ds \right)^{\frac{1}{2}}
$$

\n
$$
\leq \max(\|q'\|_{L^{2}}, \|q\|_{L^{2}})\|u\|
$$

\n
$$
\leq M_{2} \|u\|.
$$

Hence $||u||_{∞, p,q} ≤ M||u||$, with *M* = max(*M*₁, *M*₂).

The following compactness embedding is an important result.

Lemma 2.2. *The embedding* $H_0^2(0, +\infty) \hookrightarrow C^1_{l,p,q}[0, +\infty)$ *is compact.*

Proof. Let $D \subset H_0^2(0, +\infty)$ be a bounded set. Then it is bounded in $C^1_{l,p,q}[0, +\infty)$ by Lemma [2.1.](#page-3-0) Let *R* > 0 be such that for all $u \in D$, $||u|| \le R$. We will apply Lemma [1.2.](#page-2-0) (a) *D* is equicontinuous on every compact interval of $[0, +\infty)$. Let $u \in D$ and $t_1, t_2 \in J \subset$ [0, +∞) where *J* is a compact sub-interval. Using the Cauchy–Schwarz inequality, we have

$$
|p(t_1)u(t_1) - p(t_2)u(t_2)| = \left| \int_{t_2}^{t_1} (pu)'(s)ds \right|
$$

\n
$$
= \left| \int_{t_2}^{t_1} (p'(s)u(s) + u'(s)p(s)) ds \right|
$$

\n
$$
\leq \left(\int_{t_2}^{t_1} p'^2(s)ds \right)^{\frac{1}{2}} \left(\int_{t_2}^{t_1} u^2(s)ds \right)^{\frac{1}{2}} + \left(\int_{t_2}^{t_1} p^2(s)ds \right)^{\frac{1}{2}} \left(\int_{t_2}^{t_1} u'^2(s)ds \right)^{\frac{1}{2}}
$$

\n
$$
\leq \max \left[\left(\int_{t_2}^{t_1} p'^2(s)ds \right)^{\frac{1}{2}}, \left(\int_{t_2}^{t_1} p^2(s)ds \right)^{\frac{1}{2}} \right] ||u||
$$

\n
$$
\leq R \max \left[\left(\int_{t_2}^{t_1} p'^2(s)ds \right)^{\frac{1}{2}}, \left(\int_{t_2}^{t_1} p^2(s)ds \right)^{\frac{1}{2}} \right] \longrightarrow 0,
$$

$$
\Box
$$

as $|t_1 - t_2| \rightarrow 0$, and

$$
|q(t_1)u'(t_1) - q(t_2)u'(t_2)| = \left| \int_{t_2}^{t_1} (qu')'(s)ds \right|
$$

\n
$$
= \left| \int_{t_2}^{t_1} (q'(s)u'(s) + q(s)u''(s)) ds \right|
$$

\n
$$
\leq \left(\int_{t_2}^{t_1} q'^2(s)ds \right)^{\frac{1}{2}} \left(\int_{t_2}^{t_1} u'^2(s)ds \right)^{\frac{1}{2}}
$$

\n
$$
+ \left(\int_{t_2}^{t_1} q^2(s)ds \right)^{\frac{1}{2}} \left(\int_{t_2}^{t_1} u''^2(s)ds \right)^{\frac{1}{2}}
$$

\n
$$
\leq \max \left[\left(\int_{t_2}^{t_1} q'^2(s)ds \right)^{\frac{1}{2}}, \left(\int_{t_2}^{t_1} q^2(s)ds \right)^{\frac{1}{2}} \right] ||u||
$$

\n
$$
\leq R \max \left[\left(\int_{t_2}^{t_1} q'^2(s)ds \right)^{\frac{1}{2}}, \left(\int_{t_2}^{t_1} q^2(s)ds \right)^{\frac{1}{2}} \right] \longrightarrow 0,
$$

as $|t_1 - t_2|$ → 0.

(b) *D* is equiconvergent at $+\infty$. For $t \in [0, +\infty)$ and $u \in D$, using the fact that $(pu)(+\infty) =$ $(0, (qu') (+\infty) = 0$ (note that $u(\infty) = 0$, $u'(\infty) = 0$ and p , q are bounded) and using the Cauchy-Schwarz inequality, we have

$$
\begin{aligned} |(pu)(t) - (pu)(+\infty)| &= \left| \int_t^{+\infty} (pu)'(s)ds \right| \\ &= \left| \int_t^{+\infty} \left(p'(s)u(s) + u'(s)p(s) \right)ds \right| \\ &\le \max \left[\left(\int_t^{+\infty} p'^2(s)ds \right)^{\frac{1}{2}}, \left(\int_t^{+\infty} p^2(s)ds \right)^{\frac{1}{2}} \right] \|u\| \\ &\le R \max \left[\left(\int_t^{+\infty} p'^2(s)ds \right)^{\frac{1}{2}}, \left(\int_t^{+\infty} p^2(s)ds \right)^{\frac{1}{2}} \right] \longrightarrow 0, \end{aligned}
$$

as $t \rightarrow +\infty$, and

$$
\begin{aligned} |(qu')(t) - (qu')(+\infty)| &= \left| \int_t^{+\infty} (qu')'(s)ds \right| \\ &= \left| \int_t^{+\infty} \left(q'(s)u'(s) + q(s)u''(s) \right)ds \right| \\ &\le \max \left[\left(\int_t^{+\infty} q'^2(s)ds \right)^{\frac{1}{2}}, \left(\int_t^{+\infty} q^2(s)ds \right)^{\frac{1}{2}} \right] \|u\| \\ &\le R \max \left[\left(\int_t^{+\infty} q'^2(s)ds \right)^{\frac{1}{2}}, \left(\int_t^{+\infty} q^2(s)ds \right)^{\frac{1}{2}} \right] \longrightarrow 0, \end{aligned}
$$

as $t \rightarrow +\infty$.

Corollary 2.3. $C^{1}_{l,p,q}[0,+\infty)$ embeds continuously in $C_{l,p}[0,+\infty)$.

Corollary 2.4. *The embedding* $H_0^2(0, +\infty) \hookrightarrow C_{l,p}[0, +\infty)$ *is continuous and compact.*

 \Box

3 Existence results

Here p (and M_1) are as in Section 1.

Theorem 3.1. *Assume that F satisfy the following conditions.*

(*F*1) *There exist two constants* $1 < \alpha < \beta < 2$ *and two functions a, b with* $\frac{a}{p^{\alpha}} \in L^1([0, +\infty), [0, +\infty))$ *, b* $\frac{b}{p^{\beta}} \in L^1([0,+\infty),[0,+\infty))$ *such that*

$$
|F(t,x)| \le a(t)|x|^{\alpha}, \qquad \forall (t,x) \in [0,+\infty) \times \mathbb{R}, |x| \le 1
$$

and

$$
|F(t,x)| \leq b(t)|x|^{\beta}, \qquad \forall (t,x) \in [0,+\infty) \times \mathbb{R}, \, |x| > 1.
$$

(*F2*) *There exist an open bounded set* $I \subset [0, +\infty)$ *and two constants* $\eta > 0$ *and* $0 < \gamma < 2$ *such that*

$$
F(t,x) \ge \eta |x|^\gamma, \qquad \forall (t,x) \in I \times \mathbb{R}, \, |x| \le 1.
$$

Then Problem [\(1.1\)](#page-0-1) *has at least one nontrivial weak solution.*

Proof.

Claim 1. We first show that J is well defined.

Let

$$
\Omega_1 = \{t \ge 0, \ |u(t)| \le 1\}, \qquad \Omega_2 = \{t \ge 0, \ |u(t)| > 1\}.
$$

Given $u \in H_0^2(0, +\infty)$, it follows from $(F1)$ and Corollary [2.4](#page-5-0) that

$$
\int_{0}^{+\infty} |F(t, u(t))| dt = \int_{\Omega_{1}} |F(t, u(t))| dt + \int_{\Omega_{2}} |F(t, u(t))| dt
$$

\n
$$
\leq \int_{\Omega_{1}} a(t) |u(t)|^{\alpha} dt + \int_{\Omega_{2}} b(t) |u(t)|^{\beta} dt
$$

\n
$$
\leq \int_{\Omega_{1}} \frac{a(t)}{p^{\alpha}(t)} |p(t)u(t)|^{\alpha} dt + \int_{\Omega_{2}} \frac{b(t)}{p^{\beta}(t)} |p(t)u(t)|^{\beta} dt
$$

\n
$$
\leq \left| \frac{a}{p^{\alpha}} \right|_{L^{1}} \|u\|_{\infty, p}^{\alpha} + \left| \frac{b}{p^{\beta}} \right|_{L^{1}} \|u\|_{\infty, p}^{\beta}
$$

\n
$$
\leq M_{1}^{\alpha} \left| \frac{a}{p^{\alpha}} \right|_{L^{1}} \|u\|^{a} + M_{1}^{\beta} \left| \frac{b}{p^{\beta}} \right|_{L^{1}} \|u\|^{\beta}.
$$

Thus

$$
|J(u)| \leq \frac{1}{2}||u||^2 + M_1^{\alpha} \left| \frac{a}{p^{\alpha}} \right|_{L^1} ||u||^{\alpha} + M_1^{\beta} \left| \frac{b}{p^{\beta}} \right|_{L^1} ||u||^{\beta} < +\infty.
$$

Claim 2. J is coercive.

From (*F*1) and Corollary [2.4,](#page-5-0) we have

$$
J(u) = \frac{1}{2} ||u||^2 - \int_{\Omega_1} F(t, u(t)) dt - \int_{\Omega_2} F(t, u(t)) dt
$$

\n
$$
\geq \frac{1}{2} ||u||^2 - M_1^{\alpha} \left| \frac{a}{p^{\alpha}} \right|_{L^1} ||u||^{\alpha} - M_1^{\beta} \left| \frac{b}{p^{\beta}} \right|_{L^1} ||u||^{\beta}.
$$
\n(3.1)

Now since $0 < \alpha < \beta < 2$, then [\(3.1\)](#page-6-0) implies that

$$
\lim_{\|u\|\to+\infty}J(u)=+\infty.
$$

Consequently, *J* is coercive.

Claim 3. J is sequentially weakly lower semi-continuous.

Let (u_n) be a sequence in $H_0^2(0, +\infty)$ such that $u_n \rightharpoonup u$ as $n \rightharpoonup +\infty$ in $H_0^2(0, +\infty)$. Then there exists a constant $A > 0$ such that $||u_n|| \leq A$, for all $n \geq 0$ and $||u|| \leq A$. Now (see Corollary [2.4\)](#page-5-0) $(p(t)u_n(t))$ converges to $(p(t)u(t))$ as $n \to +\infty$ for $t \in [0, +\infty)$. Since *F* is continuous, we have $F(t, u_n(t)) \longrightarrow F(t, u(t))$ as $n \longrightarrow +\infty$, and using (*F*1) we have

$$
|F(t, u_n(t))| \leq a(t)|u_n(t)|^{\alpha} + b(t)|u_n(t)|^{\beta}
$$

\n
$$
\leq \frac{a(t)}{p^{\alpha}(t)}|p(t)u_n(t)|^{\alpha} + \frac{b(t)}{p^{\beta}(t)}|p(t)u_n(t)|^{\beta}
$$

\n
$$
\leq \frac{a(t)}{p^{\alpha}(t)}||u_n||_{\infty,p}^{\alpha} + \frac{b(t)}{p^{\beta}(t)}||u_n||_{\infty,p}^{\beta}
$$

\n
$$
\leq \frac{a(t)}{p^{\alpha}(t)}M_1^{\alpha}||u_n||^{\alpha} + \frac{b(t)}{p^{\beta}(t)}M_1^{\beta}||u_n||^{\beta}
$$

\n
$$
\leq \frac{a(t)}{p^{\alpha}(t)}M_1^{\alpha}A^{\alpha} + \frac{b(t)}{p^{\beta}(t)}M_1^{\beta}A^{\beta},
$$

so from the Lebesgue Dominated Convergence Theorem we have

$$
\lim_{n \to +\infty} \int_0^{+\infty} F(t, u_n(t)) dt = \int_0^{+\infty} F(t, u(t)) dt.
$$

The norm in the reflexive Banach space is sequentially weakly lower semi-continuous, so

$$
\liminf_{n\to+\infty}||u_n||\geq||u||.
$$

Thus one has

$$
\liminf_{n \to +\infty} J(u_n) = \liminf_{n \to +\infty} \left(\frac{1}{2} ||u_n||^2 - \int_0^{+\infty} F(t, u_n(t)) dt \right)
$$

\n
$$
\geq \frac{1}{2} ||u||^2 - \int_0^{+\infty} F(t, u(t)) dt = J(u).
$$

Then, *J* is sequentially weakly lower semi-continuous.

From Lemma [1.6,](#page-2-1) *J* has a minimum point *u*⁰ which is a critical point of *J*.

Claim 4. We show that $u_0 \neq 0$. Let $u_1 \in H_0^2(0, +\infty) \setminus \{0\}$ and $|u_1(t)| \leq 1$, for all $t \in I$. Then from $(F2)$, we have

$$
J(su_1) = \frac{s^2}{2} ||u_1||^2 - \int_0^{+\infty} F(t, su_1(t)) dt
$$

\n
$$
\leq \frac{s^2}{2} ||u_1||^2 - \int_I \eta |su_1(t)|^{\gamma} dt
$$

\n
$$
\leq \frac{s^2}{2} ||u_1||^2 - s^{\gamma} \eta \int_I |u_1(t)|^{\gamma} dt, \qquad 0 < s < 1.
$$

Since $0 < \gamma < 2$, it follows that $J(su_1) < 0$ for $s > 0$ small enough. Hence $J(u_0) < 0$, and therefore u_0 is a nontrivial critical point of J .

Finally, it is easy to see that under (*F*1), the functional *J* is Gâteaux differentiable and the Gâteaux derivative at a point $u \in X$ is

$$
(J'(u),v) = \int_0^{+\infty} \left(u''(t)v''(t) + u'(t)v'(t) + u(t)v(t) \right) dt - \int_0^{+\infty} f(t,u(t))v(t)dt, \tag{3.2}
$$

for all $v \in H_0^2(0, +\infty)$. Therefore *u* is a weak solution of Problem [\(1.1\)](#page-0-1).

Theorem 3.2. *Assume that f satisfies the following assumptions.*

(*F*3) *There exist nonnegative functions* φ , *g* such that $g \in C(\mathbb{R}, [0, +\infty))$ *with*

$$
|f(t,x)| \le \varphi(t)g(x), \text{ for all } t \in [0,+\infty) \text{ and all } x \in \mathbb{R},
$$

 a nd for any constant $R>0$ there exists a nonnegative function ψ_R with $\varphi\psi_R\in L^1(0,+\infty)$ and

$$
\sup \left\{ g\left(\frac{y}{p(t)}\right) : y \in [-R, R] \right\} \leq \psi_R(t) \quad \text{for a.e. } t \geq 0.
$$

(*F*4)

$$
\frac{1}{a(t)}F(t, \frac{1}{p(t)}x) = o(|x|^2) \quad \text{as } x \longrightarrow 0
$$

 u niformly in $t\in [0,+\infty)$ for some function $a\in L^1(0,+\infty)\cap C[0,+\infty).$

(*F*5) *There exists a positive function* c_1 *and a nonnegative function* c_2 *with* c_1 , $c_2 \in L^1(0, \infty)$, *and* $\mu > 2$ *such that*

\n- (a)
$$
F(t, x) \geq c_1(t)|x|^\mu - c_2(t)
$$
, for $t \geq 0$, $\forall x \in \mathbb{R} \setminus \{0\}$,
\n- (b) $\mu F(t, x) \leq x f(t, x)$, for $t \geq 0$, $\forall x \in \mathbb{R}$.
\n

Then Problem [\(1.1\)](#page-0-1) *has at least one nontrivial weak solution.*

Proof. We have $I(0) = 0$.

Claim 1. J satisfies the (*PS*) *condition.*

Assume that $(u_n)_{n\in\mathbb{N}} \subset H_0^2(0, +\infty)$ is a sequence such that $(J(u_n))_{n\in\mathbb{N}}$ is bounded and $J'(u_n) \longrightarrow 0$ as $n \longrightarrow +\infty$. Then there exists a constant $d > 0$ such that

$$
|J(u_n)| \leq d, \quad ||J'(u_n)||_{E'} \leq d\mu, \quad \forall n \in \mathbb{N}.
$$

From (*F*5)(*b*) we have

$$
2d + 2d ||u_n|| \ge 2J(u_n) - \frac{2}{\mu} (J'(u_n), u_n)
$$

\n
$$
\ge \left(1 - \frac{2}{\mu}\right) ||u_n||^2 + 2 \left[\int_0^{+\infty} \left(\frac{1}{\mu} u_n(t) f(t, u_n(t)) - F(t, u_n(t))\right) dt\right]
$$

\n
$$
\ge \left(1 - \frac{2}{\mu}\right) ||u_n||^2.
$$

Since $\mu > 2$, then $(u_n)_{n \in \mathbb{N}}$ is bounded in $H_0^2(0, +\infty)$.

Now, we show that (u_n) converges strongly to some u in $H_0^2(0, +\infty)$. Since (u_n) is bounded in $H_0^2(0, +\infty)$, there exists a subsequence of (u_n) still denoted by (u_n) such that (u_n) converges weakly to some *u* in $H_0^2(0, +\infty)$. There exists a constant $c > 0$ such that $\|u_n\| \leq c$. Now (see Corollary [2.4\)](#page-5-0) $(p(t)u_n(t))$ converges to $p(t)u(t)$ on $[0, +\infty)$. We have $f(t, u_n(t)) \longrightarrow f(t, u(t))$ and

$$
|f(t, u_n(t))| = \left| f(t, \frac{1}{p(t)} p(t) u_n(t)) \right|
$$

\n
$$
\leq \varphi(t) g\left(\frac{1}{p(t)} p(t) u_n(t)\right)
$$

\n
$$
\leq \varphi(t) \psi_{cM_1}(t),
$$

 \Box

and using the Lebesgue Dominated Convergence Theorem, we have

$$
\lim_{n \to +\infty} \int_0^{+\infty} \left(f(t, u_n(t)) - f(t, u(t)) \right) (u_n(t) - u(t)) \, dt = 0. \tag{3.3}
$$

Since $\lim_{n\to+\infty} J'(u_n) = 0$ and (u_n) converges weakly to some *u*, we have

$$
\lim_{n \to +\infty} \langle J'(u_n) - J'(u), u_n - u \rangle = 0. \tag{3.4}
$$

It follows from [\(3.2\)](#page-7-0) that

$$
(J'(u_n)-J'(u),u_n-u)=\|u_n-u\|^2-\int_0^{+\infty}(f(t,u_n(t))-f(t,u(t)))(u_n(t)-u(t))dt.
$$

Hence $\lim_{n\to+\infty}||u_n - u|| = 0$. Thus (u_n) converges strongly to *u* in $H_0^2(0, +\infty)$, so *J* satisfies the (*PS*) condition.

Claim 2. J satisfies assumption (1) *of Lemma [1.8.](#page-3-1)* Let $0 < \varepsilon < \frac{1}{|a|_{L^1} M_1^2}$. From $(F4)$, there exists $0 < \delta < 1$ such that

$$
\left|\frac{1}{a(t)}F(t,\frac{1}{p(t)}x)\right| \leq \frac{\varepsilon}{2}|x|^2, \text{ for } t \in [0,+\infty) \text{ and } |x| \leq \delta.
$$

Using Corollary [2.4,](#page-5-0) we have

$$
\int_0^{+\infty} |F(t, u(t))dt| = \int_0^{+\infty} \left| F\left(t, \frac{1}{p(t)} p(t) u(t)\right) dt \right|
$$

\n
$$
\leq \int_0^{+\infty} \frac{\varepsilon}{2} |a(t)| p^2(t) |u(t)|^2 dt
$$

\n
$$
\leq \frac{\varepsilon}{2} M_1^2 |a|_{L^1} ||u||^2,
$$

whenever $||u||_{\infty,p} \leq \delta$. Let $0 < \rho \leq \frac{\delta}{M_1}$ and $\alpha = \frac{1}{2}(1 - \varepsilon |a|_{L_1} M_1^2) \rho^2$. Then for $||u|| = \rho$ (note $||u||_{\infty, \rho} \leq \delta$), we have

$$
J(u) = \frac{1}{2} ||u||^2 - \int_0^{+\infty} F(t, u(t)) dt
$$

$$
\geq \frac{1}{2} (1 - \varepsilon |a|_{L^1} M_1^2) ||u||^2 = \alpha,
$$

so assumption (1) in Lemma [1.8](#page-3-1) is satisfied.

Claim 3. J satisfies assumption (2) *of Lemma [1.8.](#page-3-1)* By $(F5)(a)$ we have for some $v_0 \in H_0^2(0, +\infty)$, $v_0 \neq 0$,

$$
J(\xi v_0) = \frac{1}{2} \xi^2 ||v_0||^2 - \int_0^{+\infty} F(t, \xi v_0(t)) dt
$$

$$
\leq \frac{1}{2} \xi^2 ||v_0||^2 - |\xi|^\mu \int_0^{+\infty} c_1(t) |v_0(t)|^\mu dt + \int_0^{+\infty} c_2(t) dt.
$$

Now since $\mu > 2$, then for $u_0 = \xi v_0$, $J(u_0) \leq 0$, as $\xi \to +\infty$, so assumption (2) in Lemma [1.8](#page-3-1) is satisfied. From Lemma [1.8,](#page-3-1) *J* possesses a critical point which is a nontrivial weak solution of Problem [\(1.1\)](#page-0-1). \Box As an example of the above theorem, take $f(t, x) = \frac{5}{2} \exp(-t) |x|^{\frac{1}{2}} x$. To see this take

$$
c_1(t) = \exp(-t), \qquad c_2(t) = 0,
$$

\n
$$
\mu = \frac{5}{2}, \qquad a(t) = \frac{1}{(1+t)^2}, \qquad p(t) = \frac{1}{1+t},
$$

\n
$$
\varphi(t) = \frac{5}{2}e^{-t}, \qquad g(x) = |x|^{\frac{3}{2}} \quad \text{and} \quad \psi_R(t) = (1+t)^{\frac{3}{2}}R^{\frac{3}{2}}.
$$

References

- [1] A. AMBROSETTI, G. PRODI, *A primer of nonlinear analysis*, Cambridge University Press, Cambridge, 1995. [MR1336591](http://www.ams.org/mathscinet-getitem?mr=1336591)
- [2] M. Badiale, E. Serra, *Semilinear elliptic equations for beginners. Existence results via the variational approach*, Universitext, Springer, London, 2011. [MR2722059;](http://www.ams.org/mathscinet-getitem?mr=2722059) [url](http://dx.doi.org/10.1007/978-0-85729-227-8)
- [3] H. Brézis, Functional analysis, Sobolev spaces and partial differential equations, Springer, New York, 2010. [MR2759829](http://www.ams.org/mathscinet-getitem?mr=2759829)
- [4] C. CORDUNEANU, *Integral equations and stability of feedback systems*, Academic Press, New York, 1973. [MR0358245](http://www.ams.org/mathscinet-getitem?mr=0358245)
- [5] R. ENGUIÇA, A. GAVIOLI, L. SANCHEZ, Solutions of second-order and fourth-order ODEs on the half-line, *Nonlinear Anal.* **73**(2010), 2968–2979. [MR2678658;](http://www.ams.org/mathscinet-getitem?mr=2678658) [url](http://dx.doi.org/10.1016/j.na.2010.06.062)
- [6] O. FRITES, T. MOUSSAOUI, D. O'REGAN, Existence of solutions for a variational inequality on the half-line, *B. Iran. Math. Soc.*, accepted.
- [7] O. Kavian, *Introduction à la théorie des points critiques et applications aux problèmes elliptiques* (in French), Springer-Verlag, Paris, 1993. [MR1276944](http://www.ams.org/mathscinet-getitem?mr=1276944)
- [8] F. LI, Q. ZHANG, Z. LIANG, Existence and multiplicity of solutions of a kind of fourthorder boundary value problem, *Nonlinear Anal.* **62**(2005), 803–816. [MR2153213;](http://www.ams.org/mathscinet-getitem?mr=2153213) [url](http://dx.doi.org/10.1016/j.na.2005.03.054)
- [9] X. L. Liu, W. T. Li, Existence and multiplicity of solutions for fourth-order boundary value problems with three parameters, *Math. Comput. Modelling* **46**(2007), 525–534. [MR2329456;](http://www.ams.org/mathscinet-getitem?mr=2329456) [url](http://dx.doi.org/10.1016/j.mcm.2006.11.018)
- [10] J. Mawhin, M. Willem, *Critical point theory and Hamiltonian systems*, Springer-Verlag, New York, 1989. [MR982267;](http://www.ams.org/mathscinet-getitem?mr=982267) [url](http://dx.doi.org/10.1007/978-1-4757-2061-7)
- [11] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, in: *CBMS Regional Conference Series in Mathematics*, Vol. 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986. [MR845785;](http://www.ams.org/mathscinet-getitem?mr=845785) [url](http://dx.doi.org/10.1090/cbms/065)
- [12] M. Struwe, *Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems*, Springer-Verlag, Berlin, 1996. [MR1411681;](http://www.ams.org/mathscinet-getitem?mr=1411681) [url](http://dx.doi.org/10.1007/978-3-662-03212-1)
- [13] Y. YANG, J. ZHANG, Existence of infinitely many mountain pass solutions for some fourthorder boundary value problems with a parameter, *Nonlinear Anal.* **71**(2009), 6135–6143. [MR2566519;](http://www.ams.org/mathscinet-getitem?mr=2566519) [url](http://dx.doi.org/10.1016/j.na.2009.06.005)