A generalized Picard-Lindelöf theorem

Stefan Siegmund ${ }^{\boxtimes 1}$, Christine Nowak ${ }^{2}$ and Josef Diblík ${ }^{3,4}$
${ }^{1}$ Institute for Analysis \& Center for Dynamics, Department of Mathematics, Technische Universität Dresden, 01062 Dresden, Germany
${ }^{2}$ Institute for Mathematics, University of Klagenfurt, 9020 Klagenfurt, Austria
${ }^{3}$ Brno University of Technology, Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering, 60200 Brno, Czech Republic
${ }^{4}$ Brno University of Technology, Department of Mathematics, Faculty of Electrical Engineering and Communication, 61600 Brno, Czech Republic

Received 22 December 2015, appeared 20 May 2016
Communicated by Mihály Pituk

Abstract

We generalize the Picard-Lindelöf theorem on the unique solvability of initial value problems $\dot{x}=f(t, x), x\left(t_{0}\right)=x_{0}$, by replacing the sufficient classical Lipschitz condition of f with respect to x with a more general Lipschitz condition along hyperspaces of the (t, x)-space. A comparison with known results is provided and the generality of the new criterion is shown by an example.

Keywords: Picard-Lindelöf theorem, initial value problem, generalized Lipschitz condition, unique solvability.
2010 Mathematics Subject Classification: 34A12, 34A34.

1 Introduction

We consider the initial value problem

$$
\begin{equation*}
\dot{x}=f(t, x), \quad x\left(t_{0}\right)=x_{0}, \tag{1.1}
\end{equation*}
$$

where $f: D \rightarrow \mathbb{R}^{n}$ is defined on an open set $D \subseteq \mathbb{R} \times \mathbb{R}^{n}$ and $\left(t_{0}, x_{0}\right) \in D$. We assume throughout the paper that f is continuous. Problem (1.1) is called locally uniquely solvable if there exists an open interval I containing t_{0} such that (1.1) has exactly one solution on I.

The unique solvability problem of (1.1) is not fully solved up to now as simple examples show (see [2] and the references therein, see also [1]). The classical Lipschitz condition measures the vector field differences with respect to the x variable and is assumed in the classical Picard-Lindelöf theorem to prove unique solvability for (1.1). By introducing a Lipschitz condition along a hyperspace of the extended state space $\mathbb{R} \times \mathbb{R}^{n}$, we establish a new uniqueness theorem which generalizes the classical Picard-Lindelöf theorem and Theorem 3.2 in the paper by Cid [2]. It is also an n-dimensional generalization of the scalar criterion in [6] and of the uniqueness theorem in [3] if the functions φ and ψ are constants. The advantage of our result is shown by an example.

[^0]Definition 1.1 (Lipschitz continuity along a hyperspace). Let $D \subseteq \mathbb{R} \times \mathbb{R}^{n}$ be open, $f: D \rightarrow \mathbb{R}^{n}$ be continuous and let $\mathcal{V} \subset \mathbb{R} \times \mathbb{R}^{n}$ be a hyperspace, i.e. \mathcal{V} is an n-dimensional linear subspace of \mathbb{R}^{1+n}. We say that f is Lipschitz continuous along \mathcal{V} on an open set $U \subseteq D$ if there exists a constant $L \geq 0$ such that for all $(t, x),(s, y) \in U$

$$
\|f(t, x)-f(s, y)\| \leq L\|(t, x)-(s, y)\| \quad \text { if }(t, x)-(s, y) \in \mathcal{V}
$$

2 Main result

In the following let $F(t, x)=(1, f(t, x))^{T}$ be the vector of the direction field of (1.1) determined by f at the point $(t, x) \in D$.

Theorem 2.1 (Generalized Picard-Lindelöf theorem). Consider the initial value problem (1.1), let $\mathcal{V} \subset \mathbb{R} \times \mathbb{R}^{n}$ be a hyperspace and assume that the following two conditions hold:
(A1) Transversality condition: $F\left(t_{0}, x_{0}\right) \notin \mathcal{V}$,
(A2) Generalized Lipschitz condition: f is Lipschitz continuous along \mathcal{V} on an open neighborhood $U \subseteq D$ of $\left(t_{0}, x_{0}\right)$.

Then (1.1) is locally uniquely solvable.
The proof of Theorem 2.1 uses only Peano's theorem and the implicit function theorem. Since the classical Picard-Lindelöf theorem is a special case of Theorem 2.1, the following proof also offers an alternative proof of Picard-Lindelöf's theorem.

Proof. Let $\|\cdot\|$ denote the Euclidean norm and its induced matrix norm, respectively. Since \mathcal{V} is a hyperspace in \mathbb{R}^{1+n}, there exist linearly independent vectors $v^{(1)}, \ldots, v^{(n)} \in \mathbb{R}^{1+n}$ with $\mathcal{V}=\operatorname{span}\left\{v^{(1)}, \ldots, v^{(n)}\right\} \subseteq \mathbb{R}^{1+n}$. Write

$$
v^{(i)}=\left(v_{t}^{(i)}, v_{1}^{(i)}, \ldots, v_{n}^{(i)}\right)^{T} \quad \text { for } i=1, \ldots, n
$$

and define $v_{t}:=\left(v_{t}^{(1)}, \ldots, v_{t}^{(n)}\right) \in \mathbb{R}^{n}, v_{x}^{(i)}:=\left(v_{1}^{(i)}, \ldots, v_{n}^{(i)}\right)^{T} \in \mathbb{R}^{n}, V_{x}:=\left(v_{x}^{(1)}|\cdots| v_{x}^{(n)}\right) \in$ $\mathbb{R}^{n \times n}$. Then for

$$
V:=\left(v^{(1)}|\cdots| v^{(n)}\right)=\left(\begin{array}{ccc}
v_{t}^{(1)} & \cdots & v_{t}^{(n)} \\
v_{1}^{(1)} & \cdots & v_{1}^{(n)} \\
\vdots & & \vdots \\
v_{n}^{(1)} & \cdots & v_{n}^{(n)}
\end{array}\right)=\left(\begin{array}{ccc}
v_{t}^{(1)} & \cdots & v_{t}^{(n)} \\
\hline v_{x}^{(1)} & \cdots & v_{x}^{(n)}
\end{array}\right)=\binom{v_{t}}{V_{x}}
$$

we have $V \in \mathbb{R}^{(1+n) \times n}$ and rank $V=n$. Peano's theorem guarantees that (1.1) has at least one solution $x:\left[t_{0}-\alpha, t_{0}+\alpha\right] \rightarrow \mathbb{R}^{n}$ for some $\alpha>0$. By shrinking $\alpha>0$ if necessary, we can assume that graph $x \subset U$ and, by assumption (A1) and continuity of $f, F(t, x(t)) \notin \mathcal{V}$ for all $t \in I:=\left(t_{0}-\alpha, t_{0}+\alpha\right)$. To prove that (1.1) is locally uniquely solvable with solution x on I, assume to the contrary that there exists a solution $y: I \rightarrow \mathbb{R}^{n}$ of (1.1) and $x \not \equiv y$ on $\left[t_{0}, t_{0}+\alpha\right)$ (the case $x \not \equiv y$ on $\left(t_{0}-\alpha, t_{0}\right]$ is treated similarly). For $t_{1}:=\sup \left\{t \in\left[t_{0}, t_{0}+\alpha\right):\right.$ $x(s)=y(s)$ for $\left.s \in\left[t_{0}, t\right]\right\}$ we have $t_{1} \in\left[t_{0}, t_{0}+\alpha\right), x\left(t_{1}\right)=y\left(t_{1}\right)=: x_{1}$ by continuity and $F\left(t_{1}, x_{1}\right) \notin \mathcal{V}$.

We show that the equation

$$
\begin{equation*}
y\left(t+v_{t} k(t)\right)=x(t)+V_{x} k(t) \tag{2.1}
\end{equation*}
$$

is uniquely solvable with respect to $k=k(t)=\left(k_{1}(t), \ldots, k_{n}(t)\right)^{T}$ on a subinterval of I which contains t_{1}. The problem suggests to apply the implicit function theorem. Choose $\varepsilon>0$ such that

$$
H(t, k):=y\left(t+v_{t} k\right)-x(t)-V_{x} k
$$

is well-defined on $\left[t_{1}-\varepsilon, t_{1}+\varepsilon\right] \times[-\varepsilon, \varepsilon]^{n}$. Then $H\left(t_{1}, 0\right)=0$,

$$
\frac{\partial H}{\partial k}(t, k)=\left(f_{i}\left(t+v_{t} k, y\left(t+v_{t} k\right)\right) v_{t}^{(j)}-v_{i}^{(j)}\right)_{i, j=1, \ldots, n}
$$

and therefore $\partial H\left(t_{1}, 0\right) / \partial k=W V$ with

$$
W:=\left(\begin{array}{l|lll}
f\left(t_{1}, x_{1}\right) & -1 & & \\
& \ddots & \\
& & -1
\end{array}\right) \in \mathbb{R}^{n \times(1+n)} .
$$

By the rank-nullity theorem (see e.g. [4, p. 199]) $\operatorname{dimim}(V)+\operatorname{dim} \operatorname{ker}(V)=n$ and, using the fact that $\operatorname{dimim}(V)=\operatorname{rank} V=n$, we get $\operatorname{ker} V=\{0\}$. Assume that $W V$ is not invertible. Then there exists $v \in \mathbb{R}^{n} \backslash\{0\}$ such that $W V v=0$. Hence $w:=V v \neq 0$ and $w \in \mathcal{V}$, as well as $w \in \operatorname{ker} W=\operatorname{span}\left\{F\left(t_{1}, x_{1}\right)\right\}$. Therefore $F\left(t_{1}, x_{1}\right) \in \mathcal{V}$ leads to a contradiction, proving that $W V$ is invertible.

The implicit function theorem (cf. e.g. [5, Theorem 9.28]) yields a unique C^{1} function $k: J \rightarrow$ $[-\varepsilon, \varepsilon]^{n}$ on an open interval $J \subseteq I$ containing t_{1} such that $k\left(t_{1}\right)=0$ and $H(t, k(t))=0$ for all $t \in J$. Using the fact that $\partial H\left(t_{1}, 0\right) / \partial k$ is invertible, we get by shrinking J if necessary, that $(\partial H(t, k(t)) / \partial k)^{-1}$ exists and is bounded for t in J, i.e. there exists $\eta \geq 0$ such that

$$
\left\|\frac{\partial H}{\partial k}(t, k(t))^{-1}\right\| \leq \eta \quad \text { for } t \in J .
$$

Since $\partial H(t, k) / \partial t=f\left(t+v_{t} k, y\left(t+v_{t} k\right)\right)-f(t, x(t))$, (A2) implies, together with (2.1) and $V k(t) \in \mathcal{V}$, that

$$
\left\|\frac{\partial H}{\partial t}(t, k(t))\right\| \leq L\|V k(t)\| .
$$

Now we consider $u(t):=\|k(t)\|^{2}=\langle k(t), k(t)\rangle$. We get

$$
\dot{u}(t)=\frac{d}{d t}\langle k(t), k(t)\rangle=2\langle k(t), \dot{k}(t)\rangle .
$$

Using the fact that

$$
\dot{k}(t)=-\frac{\partial H}{\partial k}(t, k(t))^{-1} \frac{\partial H}{\partial t}(t, k(t)),
$$

we conclude that

$$
\dot{u}(t) \leq\left\|2 k(t)^{T} \frac{\partial H}{\partial k}(t, k(t))^{-1} \frac{\partial H}{\partial t}(t, k(t))\right\| \leq 2\|k(t)\| \eta L\|V\|\|k(t)\|
$$

and hence

$$
\dot{u}(t) \leq 2 \eta L\|V\| u(t)
$$

which is equivalent to

$$
\frac{d}{d t}\left[e^{-2 \eta L\|V\|\left(t-t_{1}\right)} u(t)\right] \leq 0
$$

Since $u\left(t_{1}\right)=\left\|k\left(t_{1}\right)\right\|^{2}=0$, we get $u(t)=\|k(t)\|^{2} \equiv 0$, and hence from (2.1) we conclude $x(t) \equiv y(t)$ on J, which contradicts the definition of t_{1}.

Remark 2.2. (a) The classical Picard-Lindelöf theorem which requires a Lipschitz condition with respect to x is a special case of Theorem 2.1 with

$$
\begin{equation*}
V=\binom{v_{t}}{V_{x}}, \quad v_{t}=0 \in \mathbb{R}^{n} \quad \text { and } \quad V_{x}=I_{n} \tag{2.2}
\end{equation*}
$$

where I_{n} denotes the $n \times n$ identity matrix. Cid [2] introduces the notion of Lipschitz continuity when fixing component $i_{0} \in\{0,1, \ldots, n\}$ where the component $i_{0}=0$ corresponds to the variable t, i.e. Lipschitz continuity when fixing $i_{0}=0$ is equivalent to Lipschitz continuity with respect to x. Lipschitz continuity when fixing another component is defined similarly. Under the assumption that f is Lipschitz continuous when fixing a component i_{0}, Cid can show uniqueness provided that either $i_{0}=0$ or $f_{i_{0}} \neq 0$. Thus Theorem 3.2 by Cid can be interpreted as a special case of our Theorem 2.1 with matrices V of the form (2.2) where in the case of $i_{0} \neq 0$ the corresponding column of V is replaced by a vector $v^{\left(i_{0}\right)}$ with $v_{t}^{\left(i_{0}\right)}=1$ and all other components equal 0 . Note that [3, Theorem 1] is a special case of Theorem 2.1 for $n=1$ if the functions φ and ψ are constants.
(b) Let $\mathcal{V}=\operatorname{span}\left\{v^{(1)}, \ldots, v^{(n)}\right\} \subset \mathbb{R}^{1+n}$ and $U \subseteq D$ be a convex open neighborhood of $\left(t_{0}, x_{0}\right) \in D \subseteq \mathbb{R} \times \mathbb{R}^{n}$. If the directional derivatives

$$
\frac{\partial f}{\partial v}(t, x)=\lim _{h \rightarrow 0} \frac{f((t, x)+h v)-f(t, x)}{h\|v\|}, \quad v \in \mathcal{V},
$$

exist and are continuous and bounded on U, then f is Lipschitz continuous along \mathcal{V} on U.
Proof. With $(t, x)=(s, y)+v, v \in \mathcal{V}$, and $g(\tau):=f((s, y)+\tau v)$ we get

$$
\begin{aligned}
f(t, x)-f(s, y) & =g(1)-g(0)=\int_{0}^{1} g^{\prime}(\tau) d \tau \\
& =\int_{0}^{1} \lim _{h \rightarrow 0} \frac{g(\tau+h)-g(\tau)}{h} d \tau \\
& =\int_{0}^{1} \lim _{h \rightarrow 0} \frac{f((s, y)+(\tau+h) v)-f((s, y)+\tau v)}{h} d \tau \\
& =\int_{0}^{1}\left(\lim _{h \rightarrow 0} \frac{f((s, y)+(\tau+h) v)-f((s, y)+\tau v)}{h\|v\|}\right)\|v\| d \tau \\
& =\int_{0}^{1} \frac{\partial f}{\partial v}((s, y)+\tau v)\|v\| d \tau
\end{aligned}
$$

and therefore

$$
\|f(t, x)-f(s, y)\| \leq L\|v\|, \quad L:=\sup _{\tau \in[0,1]} \frac{\partial f}{\partial v}((s, y)+\tau v) .
$$

Example 2.3. Consider the 2-dimensional initial value problem

$$
\dot{x}=f(t, x), \quad x(0)=0,
$$

where $f(t, x)=\left(f_{1}\left(t, x_{1}, x_{2}\right), f_{2}\left(t, x_{1}, x_{2}\right)\right)^{T}$ with

$$
\begin{aligned}
& f_{1}\left(t, x_{1}, x_{2}\right)= \begin{cases}x_{1}+g\left(x_{2}\right), & x_{1}<t, \\
x_{1}+g\left(x_{2}\right)+\sqrt[3]{x_{1}-t}, & x_{1} \geq t\end{cases} \\
& f_{2}\left(t, x_{1}, x_{2}\right)=1+h\left(x_{1}\right),
\end{aligned}
$$

$g\left(x_{2}\right)$ and $h\left(x_{1}\right)$ are Lipschitz continuous functions and $g(0) \neq 1$. The classical Lipschitz condition is not fulfilled, and we cannot show uniqueness with the hyperspace \mathcal{V} being the $\left(t, x_{1}\right)$-plane or $\left(t, x_{2}\right)$-plane. Therefore the result by Cid cannot be applied.

With the basis vectors $v^{(1)}=(1,1,0)^{T}, v^{(2)}=(0,0,1)^{T}$ and $\mathcal{V}=\operatorname{span}\left\{v^{(1)}, v^{(2)}\right\}$ we can show uniqueness of the given problem.
(A1) is satisfied, as $(1, g(0), 1+h(0))^{T} \notin \mathcal{V}$ if $g(0) \neq 1$. The only numbers α, β, γ, satisfying $\alpha(1, f(0,0))^{T}+\beta v^{(1)}+\gamma v^{(2)}=0$ are $\alpha=\beta=\gamma=0$ if $g(0) \neq 1$.

Now (A2) is shown. With $v_{t}=(1,0)$ and $V_{x}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ we have to show that

$$
\begin{aligned}
\left\|f\left(t+v_{t} k, x+V_{x} k\right)-f(t, x)\right\| & =\left\|f\left(t+k_{1}, x_{1}+k_{1}, x_{2}+k_{2}\right)-f\left(t, x_{1}, x_{2}\right)\right\| \\
& \leq L\left\|\left(v_{t} k, V_{x} k\right)^{T}\right\|
\end{aligned}
$$

with $k=\left(k_{1}, k_{2}\right)^{T}$. For $x_{1}<t$ we get

$$
\left\|\binom{x_{1}+k_{1}+g\left(x_{2}+k_{2}\right)-x_{1}-g\left(x_{2}\right)}{1+h\left(x_{1}+k_{1}\right)-1-h\left(x_{1}\right)}\right\|
$$

which can be estimated by $L\left\|\left(k_{1}, k_{1}, k_{2}\right)^{T}\right\|$ with $L \geq 0$. For $x_{1} \geq t$ we get

$$
\left\|\binom{x_{1}+k_{1}+g\left(x_{2}+k_{2}\right)+\sqrt[3]{x_{1}+k_{1}-t-k_{1}}-x_{1}-g\left(x_{2}\right)-\sqrt[3]{x_{1}-t}}{1+h\left(x_{1}+k_{1}\right)-1-h\left(x_{1}\right)}\right\|
$$

which can also be estimated by $L\left\|\left(k_{1}, k_{1}, k_{2}\right)^{T}\right\|$ with $L \geq 0$.

3 Alternative proof

We provide an alternative proof for Theorem 2.1 by transforming (1.1) into a system to which the classical Picard-Lindelöf theorem can be applied.

Alternative proof of Theorem 2.1. Choose a unit vector $a_{0} \in \mathbb{R}^{1+n}$ such that $\mathcal{V}=a_{0}^{\perp}$ and also $\left\langle a_{0}, F\left(t_{0}, x_{0}\right)\right\rangle>0$, which is possible due to assumption (A1). Since $\mathbb{R}^{1+n}=\left\langle a_{0}\right\rangle \oplus \mathcal{V}$ is the direct sum of $\left\langle a_{0}\right\rangle=\left\{s a_{0} \in \mathbb{R}^{1+n}: s \in \mathbb{R}\right\}$ and \mathcal{V}, there exist unique $s_{0} \in \mathbb{R}$ and $v_{0} \in \mathcal{V}$ with $\left(t_{0}, x_{0}\right)=s_{0} a_{0}+v_{0}$. We divide the proof into three steps.

Step 1: We show that the nonautonomous initial value problem on \mathcal{V}

$$
\begin{equation*}
\frac{d v}{d s}=g(s, v):=\frac{F\left(s a_{0}+v\right)-\sigma(s, v) a_{0}}{\sigma(s, v)}, \quad v\left(s_{0}\right)=v_{0} \tag{3.1}
\end{equation*}
$$

with $\sigma(s, v):=\left\langle a_{0}, F\left(s a_{0}+v\right)\right\rangle$ is well-posed and locally uniquely solvable.
The function

$$
\sigma: \mathbb{R} \times \mathcal{V} \rightarrow \mathbb{R}, \quad(s, v) \mapsto \sigma(s, v)=\left\langle a_{0}, F\left(s a_{0}+v\right)\right\rangle
$$

is continuous and satisfies $\sigma\left(s_{0}, v_{0}\right)=\left\langle a_{0}, F\left(s_{0} a_{0}+v_{0}\right)\right\rangle=\left\langle a_{0}, F\left(t_{0}, x_{0}\right)\right\rangle>0$. As a consequence there exists an $\eta>0$ and a bounded open neighborhood $U \subseteq \mathbb{R} \times \mathcal{V}$ of $\left(s_{0}, v_{0}\right)$ such that $\sigma(s, v) \geq \eta$ for all $(s, v) \in U$.

Using assumption (A2) and by shrinking U if necessary, we can w.l.o.g. assume that f is Lipschitz continuous along \mathcal{V} on the open neighborhood $\left\{s a_{0}+v \in \mathbb{R}^{1+n}:(s, v) \in U\right\}$ of $\left(t_{0}, x_{0}\right)$. Using this fact, we get for $(s, v),(s, \bar{v}) \in U$

$$
\begin{aligned}
|\sigma(s, v)-\sigma(s, \bar{v})| & =\left|\left\langle a_{0}, F\left(s a_{0}+v\right)\right\rangle-\left\langle a_{0}, F\left(s a_{0}+\bar{v}\right)\right\rangle\right| \\
& =\left|\left\langle a_{0}, F\left(s a_{0}+v\right)-F\left(s a_{0}+\bar{v}\right)\right\rangle\right| \leq\left\|a_{0}\right\| \cdot\left\|F\left(s a_{0}+v\right)-F\left(s a_{0}+\bar{v}\right)\right\| \\
& =\left\|F\left(s a_{0}+v\right)-F\left(s a_{0}+\bar{v}\right)\right\|=\left\|f\left(s a_{0}+v\right)-f\left(s a_{0}+\bar{v}\right)\right\| \\
& \leq L\|v-\bar{v}\|,
\end{aligned}
$$

proving that σ is Lipschitz continuous on U. With σ also the quotient $1 / \sigma$ is Lipschitz continuous with respect to v. Thus we get

$$
\begin{aligned}
\|g(s, v)-g(s, \bar{v})\|= & \left\|\frac{F\left(s a_{0}+v\right)}{\sigma(s, v)}-\frac{F\left(s a_{0}+\bar{v}\right)}{\sigma(s, \bar{v})}\right\| \\
\leq & \left|\frac{1}{\sigma(s, v)}\right| \cdot\left\|F\left(s a_{0}+v\right)-F\left(s a_{0}+\bar{v}\right)\right\| \\
& +\left|\frac{1}{\sigma(s, v)}-\frac{1}{\sigma(s, \bar{v})}\right| \cdot\left\|F\left(s a_{0}+\bar{v}\right)\right\| .
\end{aligned}
$$

By shrinking U again if necessary, we can assume w.l.o.g. that $\bar{U} \subseteq D$. Then boundedness of F and of $1 / \sigma$ on \bar{U} imply Lipschitz continuity of g with respect to v on the neighborhood U of $\left(s_{0}, v_{0}\right)$. Since \mathcal{V} is isomorphic to \mathbb{R}^{n}, the classical Picard-Lindelöf theorem can be applied to (3.1) to prove local unique solvability.

Step 2: We show that the autonomous initial value problem on $\mathbb{R} \times \mathcal{V}$

$$
\begin{array}{ll}
\dot{s}=\sigma(s, v), & s\left(t_{0}\right)=s_{0} \\
\dot{v}=F\left(s a_{0}+v\right)-\sigma(s, v) a_{0}, & v\left(t_{0}\right)=v_{0} \tag{3.2}
\end{array}
$$

is locally uniquely solvable.
By Peano's theorem (3.2) admits a solution. Assume that $\left(\hat{s}_{1}, \hat{v}_{1}\right),\left(\hat{s}_{2}, \hat{v}_{2}\right): J \rightarrow \mathbb{R} \times \mathcal{V}$, are two solutions of (3.2) on an open interval J containing t_{0}. Then the solution identities

$$
\begin{align*}
& \hat{\hat{s}}_{i}(t)=\sigma\left(\hat{s}_{i}(t), \hat{v}_{i}(t)\right) \\
& {\hat{\hat{v}_{i}}}_{i}(t)=F\left(\hat{s}_{i}(t) a_{0}+\hat{v}_{i}(t)\right)-\sigma\left(\hat{s}_{i}(t), \hat{v}_{i}(t)\right) a_{0} \tag{3.3}
\end{align*}
$$

for $t \in J$ and the initial conditions

$$
\begin{equation*}
\hat{s}_{i}\left(t_{0}\right)=s_{0}, \quad \hat{v}_{i}\left(t_{0}\right)=v_{0} \tag{3.4}
\end{equation*}
$$

are fulfilled for $i=1,2$. By shrinking J if necessary, we can w.l.o.g. assume that $\left(\hat{s}_{i}(t), \hat{v}_{i}(t)\right) \in U$ and therefore $\dot{\hat{s}}_{i}(t)=\sigma\left(\hat{s}_{i}(t), \hat{v}_{i}(t)\right) \geq \eta$ for $t \in J$. As a consequence the functions $\hat{s}_{i}: J \rightarrow \mathbb{R}$ are strictly monotonically increasing, and hence the inverse functions $\hat{s}_{i}^{-1}: \hat{s}_{i}(J) \rightarrow J$ exist and satisfy

$$
\begin{equation*}
\hat{s}_{i}^{-1}\left(s_{0}\right)=t_{0} \tag{3.5}
\end{equation*}
$$

for $i=1,2$. With the bijection $t=\hat{s}_{i}^{-1}(s)$ both solution curves through $\left(s_{0}, v_{0}\right)$ can be reparametrized in the form

$$
\begin{aligned}
\left\{\left(\hat{s}_{i}(t), \hat{v}_{i}(t)\right): t \in J\right\} & =\left\{\left(\hat{s}_{i}\left(\hat{s}_{i}^{-1}(s)\right), \hat{v}_{i}\left(\hat{s}_{i}^{-1}(s)\right): s \in \hat{s}_{i}(J)\right\}\right. \\
& =\left\{\left(s, \hat{v}_{i}\left(\hat{s}_{i}^{-1}(s)\right): s \in \hat{s}_{i}(J)\right\}\right.
\end{aligned}
$$

for $i=1,2$. Then

$$
v_{i}: \hat{s}_{i}(J) \rightarrow \mathcal{V}, \quad v_{i}(s):=\hat{v}_{i}\left(\hat{s}_{i}^{-1}(s)\right),
$$

solve (3.1) for $i=1,2$, since

$$
\frac{d v_{i}}{d s}(s)=\frac{\dot{\hat{\hat{v}}}_{i}\left(\hat{s}_{i}^{-1}(s)\right)}{\hat{\hat{s}}_{i}\left(\hat{s}_{i}^{-1}(s)\right)} \stackrel{(3.3)}{=} \frac{F\left(s a_{0}+v_{i}\right)-\sigma\left(s, v_{i}\right) a_{0}}{\sigma\left(s, v_{i}\right)}
$$

and

$$
v_{i}\left(s_{0}\right)=\hat{v}_{i}\left(\hat{s}_{i}^{-1}\left(s_{0}\right)\right) \stackrel{(3.5)}{=} \hat{v}_{i}\left(t_{0}\right) \stackrel{(3.4)}{=} v_{0} .
$$

By shrinking J if necessary, we can apply Step 1 to conclude that $v_{1}=v_{2}$ on J and hence $\hat{v}_{1}\left(\hat{s}_{1}^{-1}(s)\right)=\hat{v}_{2}\left(\hat{s}_{2}^{-1}(s)\right)$ for all $s \in \hat{s}_{1}(J) \cap \hat{s}_{2}(J)$, proving that $\hat{s}_{1}=\hat{s}_{2}$ and $\hat{v}_{1}=\hat{v}_{1}$ on J.

Step 3: We show that (1.1) is locally uniquely solvable.
By Peano's theorem (1.1) admits a solution. Assume that $x_{1}, x_{2}: I \rightarrow \mathbb{R}^{n}$ are two solutions of (1.1). For $t \in I$ we have $X_{i}(t):=\left(1, x_{i}(t)\right) \in \mathbb{R}^{1+n}=\left\langle a_{0}\right\rangle \oplus \mathcal{V}$ and therefore there exist unique functions $s_{i}: I \rightarrow \mathbb{R}$ and $v_{i}: I \rightarrow \mathcal{V}$ such that

$$
X_{i}(t)=s_{i}(t) a_{0}+v_{i}(t) .
$$

Moreover, $\left(s_{i}\left(t_{0}\right), v_{i}\left(t_{0}\right)\right)=\left(s_{0}, v_{0}\right)$, and using the fact that $\left\|a_{0}\right\|=1$ and $a_{0}^{\perp}=\mathcal{V}, s_{i}(t)=$ $\left\langle a_{0}, X_{i}(t)\right\rangle$ and $v_{i}(t)=X_{i}(t)-s_{i}(t) a_{0}$ for $t \in I$ and $i=1,2$. Now $\left(s_{i}, v_{i}\right): I \rightarrow \mathbb{R} \times \mathcal{V}$ solve (3.2), since

$$
\begin{aligned}
\dot{s}_{i}(t) & =\left\langle a_{0}, \dot{X}_{i}(t)\right\rangle=\left\langle a_{0}, F\left(t, x_{i}(t)\right)\right\rangle=\left\langle a_{0}, F\left(s_{i}(t) a_{0}+v_{i}(t)\right)\right\rangle \\
& =\sigma\left(s_{i}(t), v_{i}(t)\right), \\
\dot{v}_{i}(t) & =\dot{X}_{i}(t)-\left\langle a_{0}, \dot{X}_{i}(t)\right\rangle a_{0}=F\left(t, x_{i}(t)\right)-\left\langle a_{0}, F\left(t, x_{i}(t)\right)\right\rangle a_{0} \\
& =F\left(s_{i}(t) a_{0}+v_{i}(t)\right)-\left\langle a_{0}, F\left(s_{i}(t) a_{0}+v_{i}(t)\right)\right\rangle a_{0} \\
& =F\left(s_{i}(t) a_{0}+v_{i}(t)\right)-\sigma\left(s_{i}(t), v_{i}(t)\right) a_{0}
\end{aligned}
$$

for $t \in I$ and $i=1,2$. By shrinking I if necessary, we can apply Step 2 to conclude that $s_{1}=s_{2}$ and $v_{1}=v_{2}$ on I, proving that $x_{1}=x_{2}$.

Acknowledgments

The third author is supported by the Grant P201/11/0768 of the Czech Grant Agency (Prague).

References

[1] R. P. Agarwal, V. Lakshmikantham, Uniqueness and nonuniqueness criteria for ordinary differential equations, World Scientific Publishing, 1993. MR1336820
[2] J. Á. Cid, On uniqueness criteria for systems of ordinary differential equations, J. Math. Anal. Appl. 281(2003), 264-275. MR1980090; url
[3] J. Diblík, C. Nowak, S. Siegmund, A general Lipschitz uniqueness criterion for scalar ordinary differential equations, Electron. J. Qual. Theory Differ. Equ. 2014, No. 32, 1-6. MR3250025
[4] C. D. Meyer, Matrix analysis and applied linear algebra, SIAM, Philadelphia, 2000. MR1777382
[5] W. Rudin, Principles of mathematical analysis, third edition, McGraw-Hill Book Co., 1976. MR385023
[6] H. Stettner, C. Nowak, Eine verallgemeinerte Lipschitzbedingung als Eindeutigkeitskriterium bei gewöhnlichen Differentialgleichungen (in German) [A generalized Lipschitz condition as criterion of uniqueness in ordinary differential equations], Math. Nachr. 141(1989), 33-35. MR1014412

[^0]: ${ }^{\boxtimes}$ Corresponding author. Email: stefan.siegmund@tu-dresden.de

