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Abstract. In this paper, by Karamata regular variation theory and the method of
lower and upper solutions, we give an exact boundary behavior for the unique solu-
tion near the boundary to the singular Dirichlet problem −∆∞u = b(x)g(u), u > 0,
x ∈ Ω, u|∂Ω = 0, where Ω is a bounded domain with smooth boundary in RN ,
g ∈ C1((0, ∞), (0, ∞)), g is decreasing on (0, ∞) and the function b ∈ C(Ω̄) which
is positive in Ω. We find a new structure condition on g which plays a crucial role in
the boundary behavior of the solutions.
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1 Introduction and the main results

Let Ω be a bounded domain with smooth boundary in RN (N ≥ 2). In this paper, we consider
the exact asymptotic behavior near the boundary to the following singular Dirichlet problem

− ∆∞u = b(x)g(u), u > 0, x ∈ Ω, u|∂Ω = 0, (1.1)

where the operator ∆∞ is the ∞-Laplacian, and it is defined as

∆∞u := 〈D2uDu, Du〉 =
N

∑
i,j=1

DiuDijuDju, (1.2)

b satisfies

(b1) b ∈ C(Ω̄) is positive in Ω,

and g satisfies

(g1) g ∈ C1((0, ∞), (0, ∞)), lims→0+ g(s) = ∞ and g is decreasing on (0, ∞).
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This operator (1.2) is called the infinity Laplacian, which was first introduced in the work
of Aronsson [2] in connection with the geometric problem of finding the so-called absolutely
minimizing functions in Ω. As a result of the high degeneracy of the ∞-Laplacian, the associ-
ated Dirichlet problems may not have classical solutions. Therefore solutions are understood
in the viscosity sense, a concept introduced by Crandall, Lions [13] and Crandall, Evans, Lions
[12], and to be defined in Section 2. By using the viscosity solutions, Jensen [21] proved the
existence and uniqueness of the viscosity solutions to the Dirichlet problem to the infinity
harmonic equation. Later, Lu and Wang [23] obtained a uniqueness theorem for the Dirichlet
problem to the infinity harmonic equation in the perspective of PDE. The infinity Laplace
equation in turn is a very topical differential operator that appears in many contexts and has
been extensively studied, see, for instance, [3, 5, 6, 11, 24–26, 29, 32, 33, 40] and the references
therein.

Next, let us review the following singular elliptic boundary value problem involving the
classical Laplace operator ∆, i.e.

− ∆u = b(x)g(u), u > 0, x ∈ Ω, u|∂Ω = 0. (1.3)

Problem (1.3) arises in the study of non-Newtonian fluids, boundary layer phenomena for
viscous fluids, chemical heterogeneous catalysts, as well as in the theory of heat conduction in
electrical materials and has been discussed and extended by many authors in many contexts,
for instance, the existence, uniqueness, regularity and boundary behavior of solutions, see,
[1, 4, 14–20, 22, 28, 30, 34, 35, 41–43, 45, 46] and the references therein.

The pioneering work of problem (1.3) is Crandall, Rabinowitz, Tartar [14] and Fulks, May-
bee [15]. For b ≡ 1 in Ω and g satisfying (g1), [14] and [15] derived that problem (1.3) has a
unique solution u ∈ C2+α(Ω) ∩ C(Ω̄). Moreover, in [14], the following result was established:
if ψ1 ∈ C[0, δ0] ∩ C2(0, δ0] is the local solution to the problem

− ψ′′1 (t) = g(ψ1(t)), ψ1(t) > 0, 0 < t < δ0, ψ1(0) = 0, (1.4)

then there exist positive constants c1 and c2 such that

c1ψ1(d(x)) ≤ u(x) ≤ c2ψ1(d(x)) near ∂Ω.

In particular, when g(u) = u−γ, γ > 1, u has the property

c1(d(x))2/(1+γ) ≤ u(x) ≤ c2(d(x))2/(1+γ) near ∂Ω. (1.5)

By constructing global subsolutions and supersolutions, Lazer and McKenna [22] showed
that (1.5) continued to hold on Ω̄. Then, u ∈ H1

0(Ω) if and only if γ < 3. This is a basic
characteristic of problem (1.3).

It is very worthwhile to point out that Cîrstea and Rǎdulescu [8–10] introduced the Kara-
mata regular variation theory which is a basic tool in stochastic process to study the boundary
behavior and uniqueness of solutions to boundary blow-up elliptic problems and obtained a
series of rich and significant information about the boundary behavior of solutions. For fur-
ther insight on the boundary blow-up elliptic problems, please refer to [36, 37, 44] and the
references therein.

Later, by means of Karamata regular variation theory, Zhang et al. [42, 43, 45, 46] proved
the first or second boundary expansion of solutions to problem (1.3). The author et al. [28,30]
further proved the second boundary expansion of solutions to problem (1.3).



Exact boundary behavior for the solutions to a class of infinity Laplace equations 3

Ben Othman, Maagli, Masmoudi, Zribi [4] and Gontara, Maagli, Masmoudi, Turki [19]
introduced a large class of functions b(x) which belong to the Kato class K(Ω) and proved
the boundary behavior of solutions for problem (1.1) when g is normalized regularly varying
at zero with index −γ (γ > 0). Later, Zhang et al. [45] extend the previous results on the
boundary behavior of the solution u of problem (1.1) to the case where the weight functions
b(x) belong to the Kato class K(Ω) or b(x) lie into a class of functions Λ that was introduced
by Cîrstea and Rǎdulescu in [8–10] for non-decreasing functions and by Mohammed in [31] for
nonincreasing functions as the set of positive monotonic functions C1(0, δ0)∩ L1(0, δ0) (δ0 > 0)
which satisfy

lim
t→0+

d
dt

(
K(t)
k(t)

)
=: Ck ∈ [0, ∞), K(t) =

∫ t

0
k(s)ds. (1.6)

Recently, N. Zeddini et al. [41] gave a common proof for theorems in [45] and extended these
results.

Now let us return to problem (1.1).
When Ω is a bounded domain that satisfies both the uniform interior and uniform exterior

sphere conditions and b ≡ 1 in Ω, Bhattacharya and Mohammed [5] established that: let g
satisfy (g1) and u be a solution of (1.1), then there are positive constants a and c, with 0 < a < c
such that

ψ−1
a (
√

2d(x)) ≤ u(x) ≤ ψ−1
c (
√

2d(x))

where d(x) is the distance of x from ∂Ω, and

ψa(t) =
∫ t

0

1

Ga(s)
1
4

ds, Ga(t) =
∫ a

t
g(s)ds, 0 < t < a.

Recently, the author [29] extended the result in [5] to the weight function b which belong to
the set Λ. Theorem 1.1 in [29] established the following result: let g satisfy (g1) and

(g′2) there exists γ > 1 such that

lim
s→0+

g′(s)s
g(s)

=: −γ;

b satisfy (b1) and

(b′2) there exist some k ∈ Λ and a positive constant b0 ∈ R such that

lim
d(x)→0

b(x)
k4(d(x))

= b0.

If Ck(γ + 3) > 4, then for the unique solution u of problem (1.1), it holds that

lim
d(x)→0

u(x)

φ
(
K

4
3 (d(x))

) = ξ0, (1.7)

where φ is uniquely determined by∫ φ(t)

0

ds(
g(s)

) 1
3
= t, t > 0 (1.8)

and

ξ0 =

(
27b0(3 + γ)

64
(
(3 + γ)Ck − 4

)) 1
3+γ

. (1.9)
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For convenience, we introduce the following class of functions.
Let Λ1 denote the set of all Karamata functions L̂, which are normalized slowly varying

at zero defined on (0, a) for some a > 0 by

L̂(t) = c0 exp
(∫ a1

s

y(ν)
ν

dν

)
, s ∈ (0, a1),

for some a1 ∈ (0, a), where c0 > 0 and the function y ∈ C((0, a1]) with lims→0+ y(s) = 0.
Inspired by the above works, in this paper, by Karamata regular variation theory and the

method of lower and upper solutions, we investigate the new boundary asymptotic behavior
of solutions to problem (1.1) when the weight function b lies into Λ1 and the nonlinear term
g satisfies the following structure condition

(g2) there exists Cg > 0 such that

lim
s→0

1

3g
2
3 (s)

g′(s)
∫ s

0
g−1/3(ν)dν = −Cg,

i.e.
lim
s→0

(g
1
3 (s))′

∫ s

0
g−1/3(ν)dν = −Cg.

A complete characterization of g in (g2) is provided in Lemma 3.2.
Note that in this paper we extend the previous results in all two directions. We extend

g(u) to a more general class of functions which include the condition (g′2) and b(x) belongs to
another class of functions Λ1.

Our main results are summarized as follows.

Theorem 1.1. Let g satisfy (g1)–(g2), b satisfy (b1) and

(b2) There exists a positive constant b0 ∈ R such that

lim
d(x)→0

b(x)
a(d(x))

= b0,

where

a(t) = t−λL(t), L ∈ Λ1, λ ≤ 4 and
∫ η

0
s

1−λ
3 L(s)ds < ∞ for some η > 0. (1.10)

If Cg < 1 and 4Cg + λ(1− Cg) > 1, for the unique solution u of problem (1.1), it holds that

lim
d(x)→0

u(x)
φ
(
h(d(x))

) = ξ0, (1.11)

where φ is uniquely determined by (1.8),

h(t) =
∫ t

0
s

1−λ
3 L

1
3 (s)ds, (1.12)

and

ξ0 =

(
3b0

(4− λ)Cg + (λ− 1)

) 1−Cg
3

. (1.13)
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Remark 1.2 (Existence and uniqueness [5, Corollary 6.3.]). Let g : (0, ∞) → (0, ∞) be non-
increasing and b ∈ C(Ω) be a positive function such that supx∈Ω b(x) < ∞. The singular
boundary value problem (1.1) admits a unique solution.

Remark 1.3. By the following Proposition 2.7, one can see that when λ < 4, h in (1.12) satisfies

h(t) ∼=
3

4− λ
t

4−λ
3 L

1
3 (t).

Remark 1.4. Some basic examples of the functions which satisfy (g2) are

(i1) When g(s) = s−γ, γ > 0, Cg = γ
γ+3 ,

φ(t) =
(
((γ + 3)t)/3

) 3
3+γ , ∀ t > 0.

(i2) When g(s) = s−γe(− ln s)β
, γ > 0, β < 1, β 6= 0, s ∈ (0, s0], s0 ∈ (0, 1), Cg = γ

γ+3 .

(i3) When g(s) = β−3s3(1+β)e3s−β
, β > 0, s ∈ (0,

(
β

1+β

) 1
β
], Cg = 1.

(i4) When g(s) = β−3s3(1+β)e−3s−β
ee3s−β

, β > 0, s ∈ (0, s0], s0 ∈ (0, 1), Cg = 1.

The outline of this paper is as follows. In Sections 2–3, we give some preparation that will
be used in the next section. The proof of Theorem 1.1 will be given in Section 4.

2 Preparation

Our approach relies on Karamata regular variation theory established by Karamata in 1930
which is a basic tool in the theory of stochastic process (see [7, 27, 39] and the references
therein). In this section, we first give a brief account of the definition and properties of
regularly varying functions involved in our paper (see [7, 27, 39]).

Definition 2.1. A positive measurable function f defined on [a, ∞), for some a > 0, is called
regularly varying at infinity with index ρ, written as f ∈ RVρ, if for each ξ > 0 and some
ρ ∈ R,

lim
s→∞

f (ξs)
f (s)

= ξρ. (2.1)

In particular, when ρ = 0, f is called slowly varying at infinity.

Clearly, if f ∈ RVρ, then L(s) := f (s)/sρ is slowly varying at infinity.

Definition 2.2. A positive measurable function f defined on [a, ∞), for some a > 0, is called
rapidly varying at infinity if for each ρ > 1

lim
s→∞

f (s)
sρ

= ∞. (2.2)

We also see that a positive measurable function g defined on (0, a) for some a > 0, is
regularly varying at zero with index σ (written as g ∈ RVZσ) if t → g(1/t) belongs to RV−σ.
Similarly, g is called rapidly varying at zero if t→ g(1/t) is rapidly varying at infinity.



6 L. Mi

Proposition 2.3 (Uniform convergence theorem). If f ∈ RVρ, then (2.1) holds uniformly for ξ ∈
[c1, c2] with 0 < c1 < c2. Moreover, if ρ < 0, then uniform convergence holds on intervals of the
form (a1, ∞) with a1 > 0; if ρ > 0, then uniform convergence holds on intervals (0, a1] provided f is
bounded on (0, a1] for all a1 > 0.

Proposition 2.4 (Representation theorem). A function L is slowly varying at infinity if and only if
it may be written in the form

L(s) = ϕ(s) exp
(∫ s

a1

y(τ)
τ

dτ

)
, s ≥ a1, (2.3)

for some a1 ≥ a, where the functions ϕ and y are measurable and for s→ ∞, y(s)→ 0 and ϕ(s)→ c0,
with c0 > 0.

We say that

L̂(s) = c0 exp
(∫ s

a1

y(τ)
τ

dτ

)
, s ≥ a1, (2.4)

is normalized slowly varying at infinity and

f (s) = c0sρ L̂(s), s ≥ a1, (2.5)

is normalized regularly varying at infinity with index ρ (and written as f ∈ NRVρ).
Similarly, g is called normalized regularly varying at zero with index ρ, written as g ∈

NRVZρ if t→ g(1/t) belongs to NRV−ρ.
A function f ∈ RVρ belongs to NRVρ if and only if

f ∈ C1[a1, ∞) for some a1 > 0 and lim
s→∞

s f ′(s)
f (s)

= ρ. (2.6)

Proposition 2.5. If functions L, L1 are slowly varying at zero, then

(i) Lρ (for every ρ ∈ R), c1L + c2L1 (c1 ≥ 0, c2 ≥ 0 with c1 + c2 > 0), L ◦ L1 (if L1(t) → 0 as
t→ 0+), are also slowly varying at zero;

(ii) for every ρ > 0 and t→ 0+,
tρL(t)→ 0, t−ρL(t)→ ∞;

(iii) for ρ ∈ R and t→ 0+, ln(L(t))/ln t→ 0 and ln(tρL(t))/ln t→ ρ.

Proposition 2.6.

(i) If g1 ∈ RVZρ1 , g2 ∈ RVZρ2 with limt→0+ g2(t) = 0, then g1 ◦ g2 ∈ RVZρ1ρ2 .

(ii) If g ∈ RVZρ, then gα ∈ RVZρα for every α ∈ R.

Proposition 2.7 (Asymptotic behavior). If a function L is slowly varying at zero, then for a > 0
and t→ 0+,

(i)
∫ t

0 sρL(s)ds ∼= (ρ + 1)−1 t1+ρ L(t), for ρ > −1;

(ii)
∫ a

t sρL(s)ds ∼= (−ρ− 1)−1 t1+ρ L(t), for ρ < −1.
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Proposition 2.8. If a function L be defined on (0, η], is slowly varying at zero. Then we have

lim
t→0+

L(t)∫ η
t

L(s)
s ds

= 0. (2.7)

If further
∫ η

0
L(s)

s ds converges, then we have

lim
t→0+

L(t)∫ t
0

L(s)
s ds

= 0. (2.8)

Proposition 2.9 ([46, Proposition 2.6]). Let Z ∈ C1(0, η] be positive and limt→0+
sZ′(s)
Z(s) = +∞.

Then Z is rapidly varying to zero at zero.

Proposition 2.10 ([46, Proposition 2.7]). Let Z ∈ C1(0, η) be positive and limt→0+
sZ′(s)
Z(s) = −∞.

Then Z is rapidly varying to infinity at zero.

Next, we recall here the precise definition of viscosity solutions for problem (1.1).

Definition 2.11. A function u ∈ C(Ω) is a viscosity subsolution of the PDE ∆∞u = −b(x)g(u)
in Ω if for every ϕ ∈ C2(Ω), with the property that u − ϕ has a local maximum at some
x0 ∈ Ω, then

∆∞ ϕ(x0) ≥ −b(x0)g(u(x0)).

Definition 2.12. A function ū ∈ C(Ω) is a viscosity supersolution of the PDE ∆∞u = −b(x)g(u)
in Ω if for every ϕ ∈ C2(Ω), with the property that ū− ϕ has a local minimum at some x0 ∈ Ω,
then

∆∞ ϕ(x0) ≤ −b(x0)g(ū(x0)).

Definition 2.13. A function u ∈ C(Ω) is a viscosity solution of the PDE ∆∞u = −b(x)g(u) in
Ω if it is both a subsolution and a supersolution.

3 Some auxiliary results

In this section, we collect some useful results that will be used in the proof of the theorem.

Lemma 3.1. Let

a(t) = t−λL(t)

and

h(t) =
∫ t

0
s

1−λ
3 (L(s))

1
3 ds,

where t ∈ (0, δ0), λ ≤ 4,
∫ η

0 s
1−λ

3 (L(s))
1
3 ds < ∞ for some η > 0 and L ∈ Λ1. Then

(i) lim
t→0+

(h′(t))4

h(t)a(t) =
4−λ

3 and lim
t→0+

th′(t)
h(t) = 4−λ

3 ;

(ii) lim
t→0+

th′′(t)
h′(t) = 1−λ

3 ;

(iii) lim
t→0+

(h′(t))2h′′(t)
a(t) = 1−λ

3 .
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Proof. (i) Since h′(t) = t
1−λ

3 (L(t))
1
3 , then

(h′(t))4

h(t)a(t)
=

t
4−4λ

3 L
4
3 (t)

t−λL(t)
∫ t

0 s
1−λ

3 (L(s))
1
3 ds

=
t

4−λ
3 L

1
3 (t)∫ t

0 s
1−λ

3 (L(s))
1
3 ds

and
th′(t)
h(t)

=
t

4−λ
3 L

1
3 (t)∫ t

0 s
1−λ

3 (L(s))
1
3 ds

.

Hence, when λ < 4, by Proposition 2.7, we get limt→0+
(h′(t))4

h(t)a(t) = limt→0+
th′(t)
h(t) = 4−λ

3 ;

when λ = 4, by Proposition 2.8, we get limt→0+
(h′(t))4

h(t)a(t) = limt→0+
th′(t)
h(t) = 0.

(ii) By a direct computation, we get

h′′(t) =
1− λ

3
t−

2+λ
3 (L(t))

1
3 +

1
3

t
1−λ

3 (L(t))−
2
3 L′(t)

and
th′′(t)
h′(t)

=
1
3

tL′(t)
L(t)

+
1− λ

3
.

It follows by L ∈ Λ1 that limt→0+
tL′(t)
L(t) = 0. Hence,

lim
t→0+

th′′(t)
h′(t)

=
1− λ

3
.

(iii) Since
(h′(t))2h′′(t)

a(t)
=

th′′(t)
h′(t)

(h′(t))3

ta(t)
=

th′′(t)
h′(t)

,

by (ii), we get

lim
t→0+

(h′(t))p−2h′′(t)
a(t)

=
1− λ

3
.

Lemma 3.2. Let g satisfy (g1)–(g2).

(i) If g satisfies (g2), then Cg ≤ 1;

(ii) (g2) holds for Cg ∈ (0, 1) if and only if g ∈ NRV−γ; with γ > 0. In this case γ = 3Cg/(1−Cg);

(iii) (g2) holds for Cg = 0 if and only if g is normalized slowly varying at zero;

(iv) if (g2) holds with Cg = 1, then g is rapidly varying to infinity at zero;

(v) if

lim
s→0+

g′′(s)g(s)
(g′(s))2 = 1, (3.1)

then g satisfies (g2) with Cg = 1.
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Proof. Since g satisfies (g1) and is strictly decreasing on (0, S0), we see that

0 <
∫ s

0

1
g1/3(ν)

dν <
s

g1/3(s)
, ∀s ∈ (0, S0),

i.e.,

0 < g1/3(s)
∫ s

0

1
g1/3(ν)

dν < s, ∀s ∈ (0, S0), (3.2)

and
lim
s→0

g1/3(s)
∫ s

0

1
g1/3(ν)

dν = 0. (3.3)

(i) Let

I(s) = − 1

3g
2
3 (s)

g′(s)
∫ s

0
g−1/3(ν)dν, ∀s ∈ (0, s0).

Integrate I(t) from 0 to s and integrate by parts, we obtain by (3.3) that∫ s

0
I(t)dt = −g1/3(s)

∫ s

0

1
g1/3(ν)

dν + s, ∀s ∈ (0, s0),

i.e.

0 <
g1/3(s)

s

∫ s

0

1
g1/3(ν)

dν = 1−
∫ s

0 I(t)dt
s

, ∀s ∈ (0, s0).

It follows from L’Hospital’s rule that

0 ≤ lim
s→0+

g1/3(s)
s

∫ s

0

1
g1/3(ν)

dν = 1− lim
s→0+

I(s) = 1− Cg. (3.4)

So (i) holds.
(ii) When (g2) holds with Cg ∈ (0, 1), it follows by (3.4) that

lim
s→0+

g(s)
sg′(s)

= lim
s→0+

g1/3(s)
∫ s

0
1

g1/3(ν)
dν

sg′(s)
∫ s

0
1

g1/3(ν)
dνg

1
3−1(s)

= −
1− Cg

3Cg
, (3.5)

i.e., g ∈ NRV−3Cg/(1−Cg).
Conversely, when g ∈ NRV−γ with γ > 0, i.e., lims→0+

sg′(s)
g(s) = −γ and there exist pos-

itive constant η and L̂ ∈ Λ1 such that g(s) = c0s−γ L̂(s), s ∈ (0, η]. It follows by (2.8) and
Proposition 2.7 (i) that

− lim
s→0+

1

3g
2
3 (s)

g′(s)
∫ s

0
g−1/3(ν)dν = −1

3
lim

s→0+

sg′(s)
g(s)

lim
s→0+

g1/3(s)
s

∫ s

0
g−1/3(ν)dν

=
γ

3
lim

s→0+
s−

γ
3−1(L̂(s))

1
3

∫ s

0
ν

γ
3
(

L̂(ν)
)− 1

3 dν

=
γ

3 + γ
= Cg.

(iii) By Cg = 0 and the proof of (ii), one can see that

lim
s→0+

sg′(s)
g(s)

= lim
s→0+

sg′(s)
∫ s

0
1

g1/3(ν)
dνg

1
3−1(s)

g1/3(s)
∫ s

0
1

g1/3(ν)
dν

= 3
(

lim
s→0+

g1/3(s)
s

∫ s

0

1
g1/3(ν)

dν

)−1

lim
s→0+

1

3g1− 1
3 (s)

g′(s)
∫ s

0
g−1/3(ν)dν

= 0,
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i.e., g is normalized slowly varying at zero.
Conversely, when g is normalized slowly varying at zero, i.e., lims→0+

sg′(s)
g(s) = 0, it follows

by (3.4) that

lim
s→0+

1

3g1− 1
3 (s)

g′(s)
∫ s

0
g−1/3(ν)dν = lim

s→0+

1
3

sg′(s)
g(s)

g1/3(s)
s

∫ s

0

1
g1/3(ν)

dν = 0.

(iv) By Cg = 1 and the proof of (ii), we see that lims→0+
g(s)

sg′(s) = 0, i.e., lims→0+
sg′(s)
g(s) = −∞, we

see by Proposition 2.10 that g is rapidly varying to infinity at zero.
(v) By (3.1) and L’Hospital’s rule, we obtain that

lim
s→0

g(s)
sg′(s)

= lim
s→0

g(s)
g′(s)

s
= lim

s→0

d
ds

(
g(s)
g′(s)

)
= 1− lim

s→0

g(s)g′′(s)
(g′(s))2 = 0. (3.6)

Hence, by (g1) and (3.6), we get that

lim
s→0

g
2
3 (s)

g′(s)
= lim

s→0

g(s)
sg′(s)

s

g
1
3 (s)

= lim
s→0

g(s)
sg′(s)

lim
s→0

s

g
1
3 (s)

= 0. (3.7)

It follows by the L’Hospital’s rule and (3.7) that

lim
s→0

1

3g
2
3 (s)

g′(s)
∫ s

0
g−1/3(ν)dν

= lim
s→0

1
3

∫ s
0 g−1/3(ν)dν

g
2
3 (s)

g′(s)

= lim
s→0

1
3

1
2
3 −

g′′(s)g(s)
(g′(s))2

= −1,

i.e. Cg = 1.

Lemma 3.3. Let g satisfy (g1)–(g2) and φ be the solution to the problem∫ φ(t)

0

ds

(g(s))
1
3
= t, ∀ t > 0.

Then

(i) φ′(t) =
(

g(φ(t))
) 1

3 , φ(t) > 0, t > 0, φ(0) = 0 and φ′′(t) = 1
3

(
g(φ(t))

)− 1
3 g′(φ(t)), t > 0;

(ii) φ ∈ NRVZ1−Cg and φ′ ∈ NRVZ−Cg ;

(iii) limt→0+
t

φ(ξh(t)) = 0 uniformly for ξ ∈ [c1, c2] with 0 < c1 < c2, where h is given as in (1.12).

Proof. By the definition of φ and a direct calculation, we show that (i) holds.
(ii) It follows from (i), (3.5) and (g2) that

lim
t→0+

tφ′(t)
φ(t)

= lim
t→0+

t(g(φ(t)))
1

p−1

φ(t)

= lim
s→0

(g(s))
1
3
∫ s

0
dν

(g(ν))
1
3

s
= 1− Cg,
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i.e., φ ∈ NRVZ1−Cg , and

lim
t→0+

tφ′′(t)
φ′(t)

=
1
3

lim
t→0+

g′(φ(t))(g(φ(t)))
1
3
∫ φ(t)

0 (g(ν))−
1
3 dν

g(φ(t))

=
1
3

lim
s→0+

g′(s)(g(s))
1
3
∫ s

0 (g(ν))−
1
3 dν

g(s)
= −Cg.

(iii) By Lemma 3.1 (i), we see h ∈ NRVZ 4−λ
3

. It follows by Proposition 2.4 that φ ◦ h ∈
NRVZ (4−λ)(1−Cg)

3
. Since 4Cg + λ(1− Cg) > 1, the result follows by Proposition 2.5 (ii).

4 Proof of the Theorem

In this section, we prove Theorem 1.1. First, we need the following result.

Lemma 4.1 (Comparison principle [5, Lemma 4.3]). Suppose that f : Ω×R→ R is continuous,
f (x, t) is non-decreasing in t. Assume further that f has one sign (either positive or negative) in Ω×R.
If u, v ∈ C(Ω̄) are such that

∆∞u ≥ f (x, u), ∆∞v ≤ f (x, v) and u ≤ v on ∂Ω,

then u ≤ v in Ω.

First fix ε > 0. For any δ0 > 0, we define Ωδ0 = {x ∈ Ω : 0 < d(x) < δ0}. Since Ω
is C2-smooth, choose δ1 ∈ (0, δ0) such that d ∈ C2(Ωδ1) and |∇d(x)| = 1, ∀ x ∈ Ωδ1 , and
consequently ∆∞d = 0 in Ωδ1 in the viscosity sense.

Proof of Theorem 1.1. Let v ∈ C(Ω̄) be the unique solution of the problem

− ∆∞v = 1, v > 0, x ∈ Ω, v|∂Ω = 0. (4.1)

By Theorem 7.7 in [5], we see that

c1d(x) ≤ v(x) ≤ c2d(x), ∀x ∈ Ω near ∂Ω. (4.2)

where c1, c2 are positive constants.
Now, we define

ūε = (ξ0 + ε)φ
(
h(d(x))

)
for any x ∈ Ωδ1 ,

where h is given as in (1.12).
Let

η(t) = (ξ0 + ε)φ
(
h(t)

)
, t ∈ (0, δ1).

Note that h and φ are all increasing in their respective definition domains. Therefore, when δ1

is small enough, η is increasing in (0, δ1). Let ζ be the inverse of η. One can easily check that

ζ ′(t) =
1

η′(ζ(t))
=
(
(ξ0 + ε)φ′

(
h(ζ(t))

)
h′(ζ(t))

)−1 (4.3)
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and

ζ ′′(t) = −
(
(ξ0 + ε)φ′

(
h(ζ(t))

)
h′(ζ(t))

)−3

×
(
(ξ0 + ε)φ′′

(
h(ζ(t))

)
(h′(ζ(t)))2

+(ξ0 + ε)φ′
(
h(ζ(t))

)
h′′(ζ(t))

)
. (4.4)

Let (x0, ψ) ∈ Ωδ1 ∩ C2(Ωδ1) be a pair such that ūε ≥ ψ in a neighborhood N of x0 and
ūε(x0) = ψ(x0) Then ϕ = ζ(ψ) ∈ C2(Ωδ1), and

d(x) ≥ ϕ(x) in N, d(x0) = ϕ(x0).

Since ∆∞d = 0 in Ωδ1 , we have ∆∞ ϕ(x0) ≤ 0. A simple computation shows that

∆∞ ϕ = ζ ′′(ψ)(ζ ′(ψ))2|Dψ|4 + (ζ ′(ψ))3∆∞ψ.

It follows by ∆∞ ϕ(x0) ≤ 0 and ζ ′ > 0 that

∆∞ψ(x0) ≤ −ζ ′′(ψ(x0))(ζ
′(ψ(x0)))

−1|Dψ(x0)|4.

Moreover, since |Dd(x)| = 1 for x ∈ Ωδ1 and d− ϕ attains a local maximum at x0, it follows
that

1 = |Dd(x0)| = |ζ ′(ψ(x0))Dψ(x0)|.

Hence
∆∞ψ(x0) ≤ −ζ ′′(ψ(x0))(ζ

′(ψ(x0)))
−5.

Combing with (4.3) and (4.4), we further obtain

∆∞ψ(x0) ≤ ((ξ0 + ε))3 (φ′(h(ϕ(x0))
))3 a(ϕ(x0))

×
[

φ′′
(
h(ϕ(x0))

)
h(ϕ(x0))

φ′
(
h(ϕ(x0))

) (h′(ϕ(x0)))4

h(ϕ(x0))a(ϕ(x0))
+

h′′(ϕ(x0))(h′(ϕ(x0)))2

a(ϕ(x0))

]
.

Hence,

∆∞ψ(x0) + b(x0)g(ūε(x0))

≤ ((ξ0 + ε))3 (φ′(h(ϕ(x0))
))3 a(ϕ(x0))

×
[

φ′′
(
h(ϕ(x0))

)
h(ϕ(x0))

φ′
(
h(ϕ(x0))

) (h′(ϕ(x0)))4

h(ϕ(x0))a(ϕ(x0))
+

h′′(ϕ(x0))(h′(ϕ(x0)))2

a(ϕ(x0))

+ ((ξ0 + ε))−3 b(x0)

a(ϕ(x0))

g(ūε(x0))(
φ′
(
h(ϕ(x0))

))3

]
=: ((ξ0 + ε))3 (φ′(h(d(x0))

))3 a(d(x0))I(x0).

Notice that h(d(x0)) → 0 as δ1 → 0 (and thereby x0 tends to the boundary of Ω). Then, it
follows from Lemmas 3.1 and 3.3 that

I(x0)→
(λ− 4)Cg + (1− λ)

3
+ b0 (ξ0 + ε)−3−γ as δ1 → 0.

By the choice of ξ0, we have I(x0) < 0 provided δ1ε ∈ (0, δ1
2 ) small enough. Thus

∆∞ψ(x0) ≤ −b(x0)g(ūε(x0)),
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i.e., ūε is a supersolution of equation (1.1) in Ωδ1ε
.

In a similar way, we can show that

uε = (ξ0 − ε)φ
(
h(d(x))

)
is a subsolution of equation (1.1) in Ωδ1ε

.
Let u ∈ C(Ω) be the unique solution to problem (1.1). We assert that there exists M large

enough such that

u(x) ≤ Mv(x) + ūε(x), uε(x) ≤ u(x) + Mv(x), x ∈ Ωδ1ε
, (4.5)

where v is the solution of problem (4.1).
In fact, we can choose M large enough such that

u(x) ≤ ūε(x) + Mv(x) and uε(x) ≤ u(x) + Mv(x) on {x ∈ Ω : d(x) = δ1ε}.

We see by (g1) that ūε(x) + Mv(x) and u(x) + Mv(x) are also supersolutions of equation (1.1)
in Ωδ1ε

. Since u = ūε + Mv = u + Mv = uε = 0 on ∂Ω, (4.5) follows by (g1) and Lemma 4.1.
Hence, for x ∈ Ωδ1ε

ξ0 − ε− Mv(x)
φ
(
h(d(x))

) ≤ u(x)
φ
(
h(d(x))

)
and

u(x)
φ
(
h(d(x))

) ≤ ξ0 + ε +
Mv(x)

φ
(
h(d(x))

) .

Consequently, by (4.2) and Lemma 3.3 (iii),

ξ0 − ε ≤ lim inf
d(x)→0

u(x)
φ(h(d(x)))

;

lim sup
d(x)→0

u(x)
φ(h(d(x)))

≤ ξ0 + ε.

Thus, letting ε→ 0, we obtain (1.11).
Thus the proof is finished by letting ε→ 0.
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[35] V. Rǎdulescu, Singular phenomena in nonlinear elliptic problems. From blow-up bound-
ary solutions to equations with singular nonlinearities, in: Handbook of differential equa-
tions: stationary partial differential equations, Vol. 4 (M. Chipot, Editor), North-Holland
Elsevier Science, Amsterdam, 2007, pp. 485–593. MR2569336

[36] D. Repovš, Singular solutions of perturbed logistic-type equations, Appl. Math. Comp.
218(2011), 4414–4422. MR2862111

[37] D. Repovš, Asymptotics for singular solutions of quasilinear elliptic equations with an
absorption term, J. Math. Anal. Appl. 395(2012), 78–85. MR2943604

[38] S. I. Resnick, Extreme values, regular variation and point processes, Springer-Verlag, New
York, Berlin, 1987. MR900810; url

[39] R. Seneta, Regularly varying functions, Lecture Notes in Mathematics, Vol. 508, Springer-
Verlag, 1976. MR0453936

[40] W. Wang, H. Gong, S. Zheng, Asymptotic estimates of boundary blow-up solutions to
the infinity Laplace equations, J. Differential Equations 256(2014), 3721–3742. MR3186845

[41] N. Zeddini, R. Alsaedi, H. Mâagli, Exact boundary behavior of the unique positive
solution to some singular elliptic problems, Nonlinear Anal. 89(2013), 146–156. MR3073320

[42] Z. Zhang, The existence and asymptotical behaviour of the unique solution near the
boundary to a singular Dirichlet problem with a convection term, Proc. Roy. Soc. Edinburgh
Sect. A 136(2006), 209–222. MR2217516

[43] Z. Zhang, The second expansion of the solution for a singular elliptic boundary value
problems, J. Math. Anal. Appl. 381(2011), 922–934. MR2803072

[44] Z. Zhang, The existence and boundary behavior of large solutions to semilinear el-
liptic equations with nonlinear gradient terms, Adv. Nonlinear Anal. 3(2014), 165–185.
MR3259005

[45] Z. Zhang, B. Li, The boundary behavior of the unique solution to a singular Dirichlet
problem, J. Math. Anal. Appl. 391(2012), 278–290. MR2899854

[46] Z. Zhang, B. Li, X. Li, The exact boundary behavior of solutions to singular nonlinear
Lane–Emden–Fowler type boundary value problems, Nonlinear Anal. Real World Appl.
21(2015), 34–52. MR3261577

http://www.ams.org/mathscinet-getitem?mr=2569336
http://www.ams.org/mathscinet-getitem?mr=2862111
http://www.ams.org/mathscinet-getitem?mr=2943604
http://www.ams.org/mathscinet-getitem?mr=900810
http://dx.doi.org/10.1007/978-0-387-75953-1
http://www.ams.org/mathscinet-getitem?mr=0453936
http://www.ams.org/mathscinet-getitem?mr=3186845
http://www.ams.org/mathscinet-getitem?mr=3073320
http://www.ams.org/mathscinet-getitem?mr=2217516
http://www.ams.org/mathscinet-getitem?mr=2803072
http://www.ams.org/mathscinet-getitem?mr=3259005
http://www.ams.org/mathscinet-getitem?mr=2899854
http://www.ams.org/mathscinet-getitem?mr=3261577

