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Abstract. In this paper we study the asymptotic integration problem in the neighbor-
hood of infinity for a certain class of linear functional differential systems. We propose
a method for the construction of the asymptotics of solutions in the critical case. Using
the ideas of the center manifold theory we show the existence of the so called critical
manifold that is positively invariant for trajectories of the initial system. We establish
that the dynamics of solutions lying on this manifold defines the asymptotics for all
solutions. We illustrate the proposed method with an example of the construction of
the asymptotics for solutions of a certain scalar delay differential equation.
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1 Introduction

We study the asymptotic integration problem for the functional differential system

ẋ = B0xt + G(t, xt) (1.1)

as t → ∞. Here x ∈ Cm, xt(θ) = x(t + θ) (−h ≤ θ ≤ 0) denotes the element of Ch, where
Ch ≡ C

(
[−h, 0], Cm) is the set of all continuous functions defined on [−h, 0] and acting to Cm.

Further, B0 is a bounded linear functional acting from Ch to Cm and G(t, xt) has the form

G(t, xt) = B(t, xt) + R(t, xt). (1.2)

We assume that B(t, ·) and R(t, ·) are linear bounded functionals from Ch to Cm such that for
each ϕ ∈ Ch functions B(·, ϕ) and R(·, ϕ) are Lebesgue measurable for t ≥ t0 and, moreover,

|R(t, ϕ)| ≤ γ(t)‖ϕ‖Ch , γ(t) ∈ L1[t0, ∞)
(
‖ϕ‖Ch = sup−h≤θ≤0 |ϕ(θ)|

)
. (1.3)
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The structure of the functional B(t, ·) will be defined later. We note only that for each ϕ ∈ Ch
function B(·, ϕ) has, in general, an oscillatory decreasing form as t→ ∞.

This paper continues our studies of the asymptotic integration problem for Eq. (1.1) that
we began in [25]. In the mentioned paper the case of the zero operator B0 was discussed. In
the case of nonzero operator B0 the asymptotic integration method, developed in [25], cannot
be applied. Since the case of nonzero operator B0 is the situation of general position, it is of
significant importance to provide the method for constructing the asymptotics in this case.
We emphasize that the method, we propose below, is not an adaptation or extension of the
corresponding method from [25]. However, both methods in the final step use the so-called
method of averaging together with the known asymptotic theorems. This will be discussed in
details in Section 5 of this paper.

Functional differential systems of the form (1.1) with linear and nonlinear functionals on
the right-hand side, considered as perturbations of linear autonomous system

ẋ = B0xt, (1.4)

were studied by many authors (see, e.g., [1–4,9,11,13,14,27–29]). We also remark that the first
asymptotic theorems for scalar delay differential equations were proposed by R. Bellman and
K. L. Cooke [8] (see also [19, Chapter 9] for a brief survey).

Throughout the paper we study Eq. (1.1) under the condition that the characteristic equa-
tion

det ∆(λ) = 0, ∆(λ) = λI − B0(eλθ I), (1.5)

has N roots (with account of their multiplicities) λ1, . . . , λN with zero real parts and all other
roots have negative real parts. This makes possible to use the ideas of the center manifold
theory (see, e.g., [2,5,6,10]) for asymptotic integration of Eq. (1.1). The paper is devoted to the
adaptation of this technique for the considered asymptotic integration problem. Particularly,
a significant role will be also played by the averaging method proposed in [23] for the asymp-
totic integration of the ordinary differential systems with oscillatory decreasing coefficients.

This paper is organized as follows. In Section 2 we give some notations and facts from
the theory of functional differential systems needed for the sequel. In Section 3 we propose
an algorithm for an approximate construction of the so called critical manifold in Ch that is
positively invariant for sufficiently large t for trajectories xt(θ) of Eq. (1.1). It turns out that
the dynamics of solutions of Eq. (1.1) lying on this manifold defines the asymptotics for all its
solutions. The main theorems describing the properties of critical manifold are established in
Section 4. Finally, in Section 5 we study the asymptotic integration problem as t → ∞ for the
system on critical manifold. In this section we also use the developed technique to construct
the asymptotics as t→ ∞ for solutions of the scalar delay differential equation

ẋ = −π

2
x(t− 1) +

a sin ωt
tρ

x(t), (1.6)

where a, ω ∈ R\{0} and ρ > 0. The proof of Theorem 3.2 from Section 3, concerning the
solvability of certain algebraic problems, is given in Appendix.

2 Preliminaries

The facts and notations given in this section may be found in [19] (see also [20, 22]).
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We say that function x(t) with values in Cm satisfies (1.1) for t ≥ T if x(t) is continuous
on [T − h, ∞), absolutely continuous on [T, ∞) and (1.1) holds almost everywhere on [T, ∞).
Under the above conditions, for each ϕ ∈ Ch and each T ≥ t0 there is a unique x(t) satisfying
(1.1) for T ≥ t0 with xT = ϕ. We will call the function x(t) the solution of Eq. (1.1) with initial
value xT = ϕ.

It is known that linear autonomous equation (1.4) generates in Ch for t ≥ 0 a strongly
continuous semigroup T(t) : Ch → Ch. The solution operator T(t) of Eq. (1.4) is defined
by T(t)ϕ = xϕ

t (θ), where ϕ ∈ Ch and xϕ
t (θ) is a unique solution of (1.4) with initial value

xϕ
0 (θ) = ϕ. The infinitesimal generator A of this semigroup is defined by Aϕ = ϕ′(θ) for

ϕ ∈ D(A). The domain of A

D(A) =
{

ϕ ∈ Ch
∣∣ ϕ′(θ) ∈ Ch, ϕ′(0) = B0ϕ

}
is dense in Ch. The following equalities hold:

d
dt

T(t)ϕ = T(t)Aϕ = AT(t)ϕ, ϕ ∈ D(A). (2.1)

In the sequel we will use the Riesz representation of B0:

B0ϕ =
∫ 0

−h
dη(θ)ϕ(θ), (2.2)

where η(θ) is (m×m)-matrix function of bounded variation on [−h, 0]. Using (2.2), we obtain
the following expressions for matrix ∆(λ) from (1.5) and its derivatives:

∆(λ) = λI −
∫ 0

−h
dη(θ)eλθ , ∆′(λ) = I −

∫ 0

−h
θdη(θ)eλθ ,

∆(j)(λ) = −
∫ 0

−h
θ jdη(θ)eλθ , j ≥ 2. (2.3)

We can associate with (1.4) the transposed equation

ẏ = −
∫ 0

−h
y(t− θ)dη(θ), (2.4)

where y(t) is an m-dimensional complex row vector. The phase space for (2.4) is C′h ≡
C
(
[0, h], Cm∗), where Cm∗ is the space of m-dimensional row vectors. For ψ ∈ C′h and ϕ ∈ Ch

we define the bilinear form(
ψ(ξ), ϕ(θ)

)
= ψ(0)ϕ(0)−

∫ 0

−h

∫ θ

0
ψ(ξ − θ)dη(θ)ϕ(ξ)dξ. (2.5)

If
Λ =

{
λi ∈ C | det ∆(λi) = 0, i = 1, . . . , N

}
, (2.6)

then we can decompose Ch into a direct sum

Ch = PΛ ⊕QΛ. (2.7)

Here PΛ is the generalized eigenspace associated with Λ and QΛ is the complementary sub-
space of Ch such that T(t)QΛ ⊆ QΛ, t ≥ 0. Let Φ(θ) be the (m× N)-matrix function whose
columns are the generalized eigenfunctions ϕ1(θ), . . . , ϕN(θ) of A corresponding to the eigen-
values from Λ. Thus, the columns of Φ(θ) form the basis of PΛ. Moreover, let Ψ(ξ) be
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(N ×m)-matrix whose rows ψ1(ξ), . . . , ψN(ξ) form the basis of the generalized eigenspace PT
Λ

of the transposed equation (2.4) associated with Λ. We can choose matrices Φ(θ) and Ψ(ξ)

such that (
Ψ(ξ), Φ(θ)

)
=
{(

ψi(ξ), ϕj(θ)
)}

1≤i,j≤N = I. (2.8)

Since Φ(θ) is the basis of PΛ and APΛ ⊆ PΛ, there exists (N × N)-matrix D, whose spectrum
is Λ, such that AΦ(θ) = Φ(θ)D. From (2.1) and the definition of A, we deduce that

Φ(θ) = Φ(0)eDθ , T(t)Φ(θ) = Φ(θ)eDt = Φ(0)eD(t+θ), (2.9)

where −h ≤ θ ≤ 0 and t ≥ 0. Analogously, for matrix Ψ(ξ) we have

Ψ(ξ) = e−DξΨ(0), (2.10)

where 0 ≤ ξ ≤ h. Matrices Φ(0) and Ψ(0) are chosen in the following way. Since the columns
of matrix Φ(θ) are the generalized eigenfunctions of A, they should belong to D(A). This
implies that

Φ′(0) = Φ(0)D = B0Φ =
∫ 0

−h
dη(θ)Φ(0)eDθ . (2.11)

The same reasoning, using (2.4) and (2.10), yields

Ψ′(0) = −DΨ(0) = −
∫ 0

−h
eDθΨ(0)dη(θ). (2.12)

Finally, the spaces PΛ and QΛ from decomposition (2.7) of Ch may be defined as follows:

PΛ =
{

ϕ ∈ Ch | ϕ(θ) = Φ(θ)a, a ∈ CN},

QΛ =
{

ϕ ∈ Ch | (Ψ, ϕ) = 0
}

.
(2.13)

Let xt(θ) be the solution of (1.1) for t ≥ t0 with initial value xt0 = ϕ. The following
variation-of-constants formula holds (see [20]):

xt(θ) = T(t− t0)ϕ +
∫ t

t0

dK(t, s)G(s, xs)ds, t ≥ t0. (2.14)

Here the kernel K(t, ·) : [t0, t]→ Ch is given by

K(t, s)(θ) =
∫ s

t0

X(t + θ − α)dα, (2.15)

where X(t) is the fundamental matrix of (1.4), i.e., the unique matrix solution of (1.4) with
initial condition

X0(θ) =

{
I, θ = 0,

0, −h ≤ θ < 0.
(2.16)

We can write (2.14) formally as (see [19])

xt(θ) = T(t− t0)ϕ +
∫ t

t0

T(t− s)X0(θ)G(s, xs)ds, t ≥ t0, (2.17)

where T(t− s)X0(θ) = X(t + θ − s).
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We decompose now solution xt(θ) of Eq. (1.1) with initial value xt0 = ϕ according to (2.7).
By (2.14), we have

xt(θ) = xPΛ
t + xQΛ

t , ϕ(θ) = ϕPΛ + ϕQΛ , (2.18)

xPΛ
t (θ) = T(t− t0)ϕPΛ +

∫ t

t0

T(t− s)XPΛ
0 (θ)G(s, xs)ds, (2.19)

xQΛ
t (θ) = T(t− t0)ϕQΛ +

∫ t

t0

d
[
K(t, s)QΛ

]
G(s, xs)ds, (2.20)

where t ≥ t0 and

XPΛ
0 (θ) = Φ(θ)Ψ(0), K(t, s)QΛ = K(t, s)−Φ(θ)

(
Ψ, K(t, s)

)
. (2.21)

If we make decomposition (2.18) in (2.17), we obtain formulas analogous to (2.19), (2.20). The
only difference is that (2.20) should be replaced by formula

xQΛ
t (θ) = T(t− t0)ϕQΛ +

∫ t

t0

T(t− s)XQΛ
0 (θ)G(s, xs)ds, (2.22)

where XQΛ
0 = X0(θ)−XPΛ

0 (θ). It is sometimes more appropriate to use (2.22) instead of (2.20).
We should only keep in mind that to attain the necessary mathematical strictness we need to
replace integrands of the form T(t − s)X0(θ)(. . .)ds and T(t − s)XQΛ

0 (. . .)ds in the obtained
formulas by integrands dK(t, s)(θ)(. . .) and d

[
K(t, s)QΛ(θ)

]
(. . .) respectively. Let

xPΛ
t (θ) = Φ(θ)u(t), u(t) ∈ CN , (2.23)

then u(t) = (Ψ, xt) and, moreover, function u(t) is the solution of ordinary differential system

u̇ = Du + Ψ(0)G(t, xt), t ≥ t0 (2.24)

with initial condition u(t0) = (Ψ, ϕ).
Assume that Λ is defined by (2.6) and suppose that it coincides with the set{

λ ∈ C | det ∆(λ) = 0, Re λ > β
}

(2.25)

for some β ∈ R. Then for any ε > 0 there exists constant M = M(ε) such that the following
inequalities hold:

‖T(t)ϕQΛ‖Ch ≤ Me(β+ε)t‖ϕQΛ‖Ch , t ≥ 0, ϕ ∈ Ch, (2.26)

‖T(t)XQΛ
0 ‖Ch ≤ Me(β+ε)t, t ≥ 0, (2.27)∥∥∥∥∫ t

t0

d
[
K(t, s)QΛ

]
G(s, xs)ds

∥∥∥∥
Ch

≤ M
∫ t

t0

e(β+ε)(t−s)∣∣G(s, xs)
∣∣ds, t ≥ t0. (2.28)

Note that the matrix T(t)XQΛ
0 on the left-hand side of inequality (2.27) belongs Ch only for

t ≥ h. Nevertheless, we can use the norm of Ch on the left-hand of (2.27) since T(t)XQΛ
0 is

bounded in θ ∈ [−h, 0] for t ∈ [0, h].
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3 Approximate construction of the critical manifold

We begin this section by clarifying the form of the operator B(t, ϕ) in (1.2). Suppose that

B(t, ϕ) =
n

∑
i=1

vi(t)Bi(t, ϕ) + ∑
1≤i1≤i2≤n

vi1(t)vi2(t)Bi1i2(t, ϕ)

+ · · ·+ ∑
1≤i1≤···≤ik≤n

vi1(t) · · · vik(t)Bi1... ik(t, ϕ). (3.1)

Here Bi1... il (t, ·) are bounded linear functionals acting from Ch to Cm. We assume that

Bi1 ... il (t, ϕ) =
L

∑
j=1

Γ(i1 ...il)
j (t)`(i1 ...il)

j (ϕ), ϕ ∈ Ch. (3.2)

In the formula above, `(i1...il)
j (ϕ) are bounded linear functionals acting from Ch to Cm that do

not depend on t and Γ(i1 ...il)
j (t) are some matrices whose entries are trigonometric polynomials,

i.e.,

Γ(i1 ...il)
j (t) =

M

∑
s=1

β
(i1...il)
sj eiωst, (3.3)

where β
(i1 ...il)
sj are constant complex (m × m)-matrices and ωs are real numbers. Finally,

v1(t), . . . , vn(t) are absolutely continuous functions acting from [t0, ∞) to C such that

10. v1(t)→ 0, v2(t)→ 0, . . . , vn(t)→ 0 as t→ ∞;

20. v̇1(t), v̇2(t), . . . , v̇n(t) ∈ L1[t0, ∞);

30. There exists k ∈N such that vi1(t)vi2(t) · · · vik+1(t) ∈ L1[t0, ∞) for any sequence 1 ≤ i1 ≤
i2 ≤ · · · ≤ ik+1 ≤ n.

We now define the set Λ by formula (2.6). Assume that the following hypotheses hold.

H1. Re λ = 0 for all λ ∈ Λ;

H2. The set Λ coincides with set (2.25) for some β < 0.

Note that if hypotheses H1, H2 do not hold for Eq. (1.1) with operator G(t, xt) having form
(1.2), (1.3), (3.1), then we can make the change of variable x(t) = y(t)edt, where

d = sup
{

Re λ | det ∆(λ) = 0
}

.

The transformed system will have the same structure as the initial one (with another func-
tionals having the same properties) and, moreover, hypotheses H1, H2 will hold for it. We
remark that the verification of hypotheses H1, H2 for a certain Eq. (1.1) is not a trivial prob-
lem. This problem is typical, say, for bifurcation theory. As a rule, various algebraic methods,
methods from complex analysis and the methods to study location of the operator spectrum
are used to establish the validity of hypotheses H1, H2 or, at least, to find the quantity d (see,
e.g., [8, Chapters 12, 13]). Thus, it is a distinct and a serious problem and, therefore, it is not
studied here. Finally, we note that hypothesis H2 ensures that the critical manifold, defining
below, possesses the property of global attraction, i.e., it attracts all the solutions of Eq. (1.1).

We decompose now Ch by Λ into direct sum (2.7).
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Definition 3.1. A set W(t) ⊂ Ch (linear space) is said to be a critical (or center-like) manifold
of Eq. (1.1) for t ≥ t∗ ≥ t0 if the following conditions hold.

1. There exists an (m × N)-matrix function H(t, θ) which is continuous in t ≥ t∗ and θ ∈
[−h, 0] with columns belonging to QΛ for t ≥ t∗ such that ‖H(t, ·)‖Ch → 0 as t→ ∞, where

‖H(t, ·)‖Ch = sup
−h≤θ≤0

|H(t, θ)|

and | · | is some matrix norm;

2. For t ≥ t∗, the setW(t) has the form

W(t) =
{

ϕ(θ) ∈ Ch | ϕ(θ) = Φ(θ)u + H(t, θ)u, u ∈ CN
}

, (3.4)

where Φ(θ) is a basis for a generalized eigenspace PΛ from (2.7);

3. The setW(t) is positively invariant for trajectories of Eq. (1.1) for t ≥ t∗, i.e., if xT ∈ W(T),
T ≥ t∗, then xt ∈ W(t) for t ≥ T.

Assume that a critical manifold W(t) of Eq. (1.1) exists for sufficiently large t (the corre-
sponding theorem will be proved in the next section). We propose the method for construction
of a certain matrix that is an approximation in some sense for the matrix H(t, θ) from (3.4).
An algorithm we describe below has much in common with an approximation scheme of a
center manifold for nonlinear functional differential systems (see, e.g., [2]).

Let x(t) be the solution of Eq. (1.1) with initial value at t = T ≥ t∗ ≥ t0. Then for t + θ ≥ T
we have the following equalities:

d
dt

xt(θ) =


d
dθ

xt(θ), −h ≤ θ < 0,

B0xt + G(t, xt), θ = 0.
(3.5)

Suppose that at the initial moment t = T the vector function xT(θ) belongs to W(T). Due to
the positively invariance ofW(t) we obtain that

xt(θ) = Φ(θ)u(t) + H(t, θ)u(t), t ≥ T, u(t) ∈ CN . (3.6)

We remark that formula (3.6) is, actually, decomposition (2.18). Consequently, by (2.24), func-
tion u(t) satisfies the ordinary differential system

u̇ =
[

D + Ψ(0)G
(
t, Φ(θ) + H(t, θ)

)]
u, t ≥ T. (3.7)

This system will be referred to as a projection of Eq. (1.1) on critical manifoldW(t) or, simply,
as a system on critical manifold. We substitute (3.6) in (3.5). This gives for t + θ ≥ T

(
Φ(θ) + H(t, θ)

)
u̇(t) +

∂H
∂t

u =


[∂Φ

∂θ
+

∂H
∂θ

]
u, −h ≤ θ < 0,[

B0Φ + B0H + G
(
t, Φ(θ) + H(t, θ)

)]
u, θ = 0.

We then use (3.7) for u̇ and also (2.9), (2.11). We conclude that

Φ(θ)Ψ(0)G
(
t, Φ(θ) + H(t, θ)

)
+ H(t, θ)

(
D + Ψ(0)G

(
t, Φ(θ) + H(t, θ)

))
+

∂H
∂t

=


∂H
∂θ

, −h ≤ θ < 0,

B0H + G
(
t, Φ(θ) + H(t, θ)

)
, θ = 0.

(3.8)
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Therefore, if a critical manifold W(t) exists for t ≥ t∗ then for all (t, θ) such that t + θ ≥
t∗ matrix H(t, θ) should satisfy Eq. (3.8). Particularly, since the solution x(t) (xt∗ = ϕ ∈
W(t∗)) is absolutely continuous for t ≥ t∗ it follows from (3.6) that matrix H(t, θ) is absolutely
continuous in t for t ≥ t∗ − θ and in θ for θ ≥ t∗ − t.

We will try now to satisfy Eq. (3.8) up to terms R̂(t, θ) such that ‖R̂(t, ·)‖Ch ∈ L1[t0, ∞).
Namely, let

Ĥ(t, θ) =
n

∑
i=1

vi(t)Hi(t, θ) + ∑
1≤i1≤i2≤n

vi1(t)vi2(t)Hi1i2(t, θ)

+ · · ·+ ∑
1≤i1≤···≤ik≤n

vi1(t) · · · vik(t)Hi1... ik(t, θ). (3.9)

Here the entries of (m × N)-matrices Hi1 ... il (t, θ) to be found are trigonometric polynomi-
als in t and continuously differentiable in θ ∈ [−h, 0]. The natural number k is defined by
property 30 of functions v1(t), . . . , vn(t). Moreover, we assume that the columns of matrices
Hi1... il (t, θ) belong to QΛ for all t ∈ R. We substitute (3.9) for H(t, θ) in (3.8) and collect terms
corresponding to factors vi1(t) · · · vil (t) (l ≤ k). We obtain the following equations for matrices
Hi1... il (t, θ):

FPΛ
i1... il

(t, θ) + Hi1... il (t, θ)D + FQΛ
i1... il

(t, θ) +
∂Hi1... il

∂t
=


∂Hi1... il

∂θ
, −h ≤ θ < 0,

B0Hi1... il + Gi1... il (t), θ = 0.
(3.10)

Here we also used formulas (1.2), (3.1). These formulas yield, in particular, that to solve
Eq. (3.10) we need to compute matrices Hj1... js(t, θ) with s < l. Then FPΛ

i1 ... il
(t, θ) and FQΛ

i1 ... il
(t, θ)

in Eq. (3.10) are some well-defined matrices that include matrices Hj1 ... js(t, θ) (s < l) defined
in the earlier steps. By (1.2), (3.1), (3.2) and constraints imposed on matrices Hj1 ... js(t, θ)

(s < l) we conclude that the entries of matrices FPΛ
i1 ... il

(t, θ) and FQΛ
i1... il

(t, θ) are trigonometric

polynomials in t. Moreover, the columns of matrix FPΛ
i1... il

(t, θ) belong to PΛ and the columns

of matrix FQΛ
i1... il

(t, θ) belong to QΛ for all t ∈ R. Further, Gi1 ... il (t) is a certain matrix, whose
entries are trigonometric polynomials:

Gi1... il (t) = ∑
j

G(i1... il)
j eiωjt, (3.11)

where G(i1 ... il)
j are constant (m× N)-matrices and ωj are real numbers. It follows from (3.8)

that matrices FPΛ
i1... il

(t, θ) and FQΛ
i1... il

(t, θ) have the following form:

FPΛ
i1 ... il

(t, θ) = Φ(θ)Ψ(0)Gi1 ... il (t) = ∑
j

P(i1 ... il)
j (θ)eiωjt, (3.12)

P(i1... il)
j (θ) = Φ(θ)Ψ(0)G(i1 ... il)

j , (3.13)

FQΛ
i1 ... il

(t, θ) = ∑
j

Q(i1... il)
j (θ)eiωjt, (3.14)

where P(i1 ... il)
j (θ) and Q(i1 ... il)

j (θ) are certain matrices continuously differentiable on −h≤ θ≤0.
We seek solution of Eq. (3.10) in the form

Hi1 ... il (t, θ) = ∑
j

β
(i1 ... il)
j (θ)eiωjt, (3.15)
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where β
(i1... il)
j (θ) are some continuously differentiable on −h ≤ θ ≤ 0 matrices to be defined.

We substitute (3.11)–(3.15) in (3.10) and match the coefficients of the corresponding exponen-
tials. Omitting for the sake of brevity the dependence of matrices on the indices set (i1 . . . il)

and also on the index j, we obtain the following functional boundary value problem for matrix
β(θ) = β

(i1... il)
j (θ):


dβ

dθ
= β(θ)(D + iωj I) + P(θ) + Q(θ), −h ≤ θ < 0,

β(0)(D + iωj I) + P(0) + Q(0) = B0β + G,
(3.16)

where P(θ) = P(i1 ... il)
j (θ), Q(θ) = Q(i1 ... il)

j (θ) and G = G(i1... il)
j . Note that since solution β(θ)

of (3.16) should be continuous on −h ≤ θ ≤ 0 we need the solve the first equation of this
problem with initial condition β(0) that is defined from the second equation. We also should
take into account that the columns of β(θ) belong to QΛ. Consequently, due to (2.13), we
should solve problem (3.16) together with additional condition(

Ψ(ξ), β(θ)
)
= 0. (3.17)

We assume that matrix D, whose spectrum is Λ, has Jordan canonical form

D = diag(D(1), . . . , D(l)), D(i) =


λ(i) 1 0 . . . 0
0 λ(i) 1 . . . 0

. . . . . . . . . . . . . . .
0 . . . 0 λ(i) 1
0 . . . . . . 0 λ(i)

 , (3.18)

where λ(i) ∈ Λ, D(i) is (Ni × Ni)-matrix and N1 + · · ·+ Nl = N. We write matrices β(θ), P(θ),
Q(θ) and G in the following form:

β(θ) =
[
β(1)(θ), . . . , β(l)(θ)

]
, P(θ) =

[
P(1)(θ), . . . , P(l)(θ)

]
,

Q(θ) =
[
Q(1)(θ), . . . , Q(l)(θ)

]
, G =

[
G(1), . . . , G(l)]. (3.19)

Here β(i)(θ), P(i)(θ), Q(i)(θ), G(i) are (m× Ni)-matrices and square brackets [·, . . . , ·] stand for
the matrix whose columns are vectors pointed inside the brackets and located in the natural
order from left to right. Then we can rewrite (3.16), (3.17) in the form of l independent
subsystems 

dβ

dθ

(i)
= β(i)(θ)(D(i) + iωj I) + P(i)(θ) + Q(i)(θ), −h ≤ θ < 0,

β(i)(0)(D(i) + iωj I) + P(i)(0) + Q(i)(0) = B0β(i) + G(i),(
Ψ(ξ), β(i)(θ)

)
= 0,

(3.20)

where I is the identity matrix of the order Ni and i = 1, . . . , l. Let

β(i)(θ) =
[
z(i)1 (θ), . . . , z(i)Ni

(θ)
]
, P(i)(θ) =

[
p(i)1 (θ), . . . , p(i)Ni

(θ)
]
,

Q(i)(θ) =
[
q(i)1 (θ), . . . , q(i)Ni

(θ)
]
, G(i) =

[
g(i)1 , . . . , g(i)Ni

]
,

(3.21)
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where z(i)s (θ), p(i)s (θ), q(i)s (θ), g(i)s (s = 1, . . . , Ni) are m-dimensional column vectors. Finally, let

Z̃(i)(θ) = col
(
z(i)1 (θ), . . . , z(i)Ni

(θ)
)
, P̃(i)(θ) = col

(
p(i)1 (θ), . . . , p(i)Ni

(θ)
)
,

Q̃(i)(θ) = col
(
q(i)1 (θ), . . . , q(i)Ni

(θ)
)
, G̃(i) = col

(
g(i)1 , . . . , g(i)Ni

)
,

B0Z̃(i) = col
(

B0z(i)1 , . . . , B0z(i)Ni

) (3.22)

denote mNi-dimensional column vectors composed from the vectors pointed in col(·, . . . , ·)
located from the top downward in the natural order. Using these notations we rewrite (3.20)
as follows: 

dZ̃
dθ

(i)

= A(i)Z̃(i)(θ) + P̃(i)(θ) + Q̃(i)(θ), −h ≤ θ < 0,

A(i)Z̃(i)(0) + P̃(i)(0) + Q̃(i)(0) = B0Z̃(i) + G(i),(
Ψ(ξ), z(i)s (θ)

)
= 0, s = 1, . . . , Ni.

(3.23)

Here the (mNi ×mNi)-matrix A(i) is defined by formula

A(i) =



µ(i) I 0 . . . . . . 0
I µ(i) I 0 . . . 0

0
. . . . . . . . .

...
...

. . . I µ(i) I 0
0 . . . 0 I µ(i) I

 , µ(i) = λ(i) + iωj, (3.24)

where I is the identity matrix of the order m.
Solving the first equation in (3.23), we obtain

Z̃(i)(θ) = eA(i)θ Z̃(i)(0) +
∫ θ

0
eA(i)(θ−s)(P̃(i)(s) + Q̃(i)(s)

)
ds, −h ≤ θ < 0. (3.25)

We substitute this expression into the second equation in (3.23). This results in the following
linear algebraic equation for vector Z̃(i)(0):

(
A(i) − B0eA(i)θ

)
Z̃(i)(0) = B0

(∫ θ

0
eA(i)(θ−s)

(
P̃(i)(s) + Q̃(i)(s)

)
ds
)
+ G(i) − P̃(i)(0)− Q̃(i)(0).

Here we apply the functional B0 to the columns of (mNi ×mNi)-matrix eA(i)θ in the same way
as in (3.22) taking into account that

eA(i)θ =



I 0 . . . . . . 0
θ I I 0 . . . 0
...

. . . . . . . . .
...

θNi−2

(Ni−2)! I . . . θ I I 0
θNi−1

(Ni−1)! I θNi−2

(Ni−2)! I . . . θ I I


eµ(i)θ .
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We recall now formulas (2.2), (2.3), notations (3.22) and the third equation in (3.23). We obtain
the following algebraic problems for vectors z(i)1 (0), . . . , z(i)Ni

(0) (i = 1, . . . , l).

P1 :


∆(µ(i))z(i)1 (0) = B0

(∫ θ

0
eµ(i)(θ−s)(p(i)1 (s) + q(i)1 (s)

)
ds
)
+ g(i)1 − p(i)1 (0)− q(i)1 (0),

(
Ψ(ξ), eµ(i)θ I

)
z(i)1 (0) = −

(
Ψ(ξ),

∫ θ

0
eµ(i)(θ−s)(p(i)1 (s) + q(i)1 (s)

)
ds
)

;
(3.26)

P2 :



∆′(µ(i))z(i)1 (0) + ∆(µ(i))z(i)2 (0)

= B0

(∫ θ

0

(
(θ − s)eµ(i)(θ−s)(p(i)1 (s) + q(i)1 (s)

)
+ eµ(i)(θ−s)(p(i)2 (s) + q(i)2 (s)

))
ds
)

+g(i)2 − p(i)2 (0)− q(i)2 (0),(
Ψ(ξ), θeµ(i)θ I

)
z(i)1 (0) +

(
Ψ(ξ), eµ(i)θ I

)
z(i)2 (0)

= −
(

Ψ(ξ),
∫ θ

0
(θ − s)eµ(i)(θ−s)(p(i)1 (s) + q(i)1 (s)

)
ds
)

−
(

Ψ(ξ),
∫ θ

0
eµa(i)(θ−s)(p(i)2 (s) + q(i)2 (s)

)
ds
)

;

(3.27)

...

PNi :



∆(Ni−1)(µ(i))

(Ni − 1)!
z(i)1 (0) + · · ·+ ∆′(µ(i))z(i)Ni−1(0) + ∆(µ(i))z(i)Ni

(0)

= B0

(∫ θ

0

( (θ − s)Ni−1

(Ni − 1)!
eµ(i)(θ−s)(p(i)1 (s) + q(i)1 (s)

)
+ · · ·+ eµ(i)(θ−s)(p(i)Ni

(s) + q(i)Ni
(s)
))

ds
)
+ g(i)Ni

− p(i)Ni
(0)− q(i)Ni

(0),

(
Ψ(ξ),

θNi−1

(Ni − 1)!
eµ(i)θ I

)
z(i)1 (0) + · · ·+

(
Ψ(ξ), θeµ(i)θ I

)
z(i)Ni−1(0)

+
(
Ψ(ξ), eµ(i)θ I

)
z(i)Ni

(0)

= −
(

Ψ(ξ),
∫ θ

0

(θ − s)Ni−1

(Ni − 1)!
eµ(i)(θ−s)(p(i)1 (s) + q(i)1 (s)

)
ds
)

− · · · −
(

Ψ(ξ),
∫ θ

0
eµ(i)(θ−s)(p(i)Ni

(s) + q(i)Ni
(s)
)
ds
)

.

(3.28)

We can now formulate the main result of this section.

Theorem 3.2. System (3.23) has a unique solution Z̃(i)(θ) (i = 1, . . . , l) that is continuously differen-
tiable on −h ≤ θ ≤ 0. This solution is defined by formula (3.25), where the components of the initial
vector Z̃(i)(0) are unique solutions of problems P1, . . . , PNi .

We note that, since P̃(i)(θ) and Q̃(i)(θ) are smooth on −h ≤ θ ≤ 0, the continuous differ-
entiability of Z̃(i)(θ) follows immediately from (3.25). Moreover, solution Z̃(i)(θ) is infinitely
differentiable on −h ≤ θ ≤ 0 because the entries of matrix Φ(θ) (and, therefore, the compo-
nents of vectors P̃(i)(θ), Q̃(i)(θ) as well) are infinitely differentiable. The proof of Theorem 3.2
is given in the Appendix.
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We conclude that due to properties 20 and 30 of functions v1(t), . . . , vn(t) the constructed
matrix Ĥ(t, θ) of the form (3.9) satisfies the following equation:

Φ(θ)Ψ(0)G
(
t, Φ(θ) + Ĥ(t, θ)

)
+ Ĥ(t, θ)

(
D + Ψ(0)G

(
t, Φ(θ) + Ĥ(t, θ)

))
+

∂Ĥ
∂t

=


∂Ĥ
∂θ

+ R1(t, θ), −h ≤ θ < 0,

B0Ĥ + G
(
t, Φ(θ) + Ĥ(t, θ)

)
+ R1(t, 0)− R2(t), θ = 0.

(3.29)

Here R1(·, θ) and R2(·) are (m×N)-matrix functions which are absolutely integrable on [t0, ∞),
i.e., ‖R1(t, ·)‖Ch , R2(t) ∈ L1[t0, ∞). The matrix R2(t) is composed of the absolutely integrable
on [t0, ∞) part of the matrix G

(
t, Φ(θ) + Ĥ(t, θ)

)
.

At the end of this section we remark that in the case of ordinary differential system (1.1)
to construct the approximation for critical manifold we can use the scheme proposed in [26].

4 Main theorems

Main theorems concerning the properties of critical manifold will be established in this section.
The proof schemes of the corresponding theorems follow the main steps of the similar results
in the center manifolds theory for nonlinear differential systems. In our paper we apply the
classical scheme from [10].

In the sequel, the following proposition will play the central role (see, e.g., [18, pp. 18–19],
[21, Chapter XIII]).

Proposition 4.1. Suppose that the nonnegative function p(t) is locally integrable on [t∗, ∞) and∫ t+1

t
p(s)ds→ 0, t→ ∞. (4.1)

Let
f (t) =

∫ ∞

t∗
e−α|t−s|p(s)ds, α > 0. (4.2)

Then f (t)→ 0 as t→ ∞. Moreover, if p(t) ∈ L1[t∗, ∞) then f (t) ∈ L1[t∗, ∞).

Remark 4.2. If function p(t) satisfies (4.1) then the following inequality holds for function f (t)
defined by (4.2) (see, e.g., estimates in [24, Lemma 2.1]):

f (t) ≤ 2N(t∗)
1− e−α

, N(t) = max
s≥t

∫ s+1

s
p(s)ds, t ≥ t∗. (4.3)

The following theorem is valid.

Theorem 4.3. For sufficiently large t there exists a critical manifoldW(t) of Eq. (1.1).

Proof. Since columns of matrix H(t, θ) belong to QΛ this matrix, due to (2.22) (see also (2.20)),
(3.6), satisfies for t ≥ t∗ an integral equation

H(t, θ)u(t) = T(t− t∗)H(t∗, θ)u(t∗) +
∫ t

t∗
T(t− s)XQΛ

0 (θ)G
(
s, Φ(θ) + H(t, θ)

)
u(s)ds. (4.4)

In (4.4), function u(t) ∈ CN is the solution of Eq. (3.7) with initial value at t = t∗ equal to u(t∗).
We will denote by UH(t, s) (t, s ≥ t∗) the Cauchy matrix (principal matrix solution) of Eq. (3.7)
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(UH(s, s) = I). Since u(t) = UH(t, t∗)u(t∗), by using the properties of the matrix UH(t, s) we
rewrite Eq. (4.4) in the operator form

H(t, θ) = AH(t, θ), (4.5)

AH(t, θ) = T(t− t∗)H(t∗, θ)UH(t∗, t)

+
∫ t

t∗
T(t− s)XQΛ

0 (θ)G
(
s, Φ(θ) + H(t, θ)

)
UH(s, t)ds.

(4.6)

Operator A is defined on the Banach space B of (m× N)-matrix functions H(t, θ) which are
continuous in t ≥ t∗ and θ ∈ [−h, 0] with a fixed initial value H(t∗, θ) such that ‖H(t, ·)‖Ch → 0
as t → ∞. Moreover, we assume that the columns of the initial matrix H(t∗, θ) belong to QΛ.
We introduce the norm in B as follows:

‖H‖B = sup
t≥t∗
‖H(t, ·)‖Ch . (4.7)

We will show that for sufficiently large t∗ and sufficiently small ‖H(t∗, ·)‖Ch operator A is a
contraction of a certain ball ‖H‖B ≤ r0 in B.

Fix r0 > 0. First, we prove that operator Amaps the ball ‖H‖B ≤ r0 into itself. From (4.6) it
follows that matrix (AH)(t, θ) is continuous in t ≥ t∗ and θ ∈ [−h, 0]. Moreover, the columns
of this matrix belong to QΛ for all t ≥ t∗ since QΛ is invariant under the solution operator
T(t) and due to the origin of formula (4.6). Therefore, we need to verify that ‖AH‖B ≤ r0

and ‖(AH)(t, ·)‖Ch → 0 as t → ∞. In the sequel we will require the estimate for the quantity
|UH(s, t)| when s ≤ t. We can obtain the mentioned estimation in the following way. Note
that due to (1.2), (1.3) and (3.1) the inequality

|G(t, ϕ)| ≤ p(t)‖ϕ‖Ch , p(t) = w(t) + γ(t) (4.8)

holds for all ϕ(θ) ∈ Ch. Here w(t) → 0 as t → ∞, γ(t) ∈ L1[t0, ∞), and, therefore, function
p(t) possesses property (4.1). Without loss of generality we may assume that p(t) > 0 for all
t ≥ t0. It is evident that inequality (4.8) also holds if ϕ(θ) is (m× N)-matrix (we only should
use some matrix norm instead of vector norm). Due to the properties of the Cauchy matrices,
we have (

UH(s, t)
)∗

=
(
U∗H(t, s)

)−1
= Uc

H(t, s), s ≤ t, (4.9)

where symbol ∗ stands for the Hermitian conjugate and Uc
H(t, s) is the Cauchy matrix of the

conjugate to (3.7) system

u̇ =
[
−D∗ −

(
G
(
t, Φ(θ) + H(t, θ)

))∗
Ψ∗(0)

]
u, t ≥ t∗. (4.10)

Hence,

Uc
H(t, s) = e−D∗(t−s) −

∫ t

s
e−D∗(t−τ)

(
G
(
τ, Φ(θ) + H(τ, θ)

))∗
Ψ∗(0)Uc

H(τ, s)dτ. (4.11)

From hypothesis H1 it follows that all eigenvalues of the matrix D (and, consequently, the
matrix (−D∗) as well) have zero real parts. Thus, ∀ε > 0 we can choose M = M(ε) such that
inequality

|e−D∗(t−τ)| ≤ Meε(t−τ)

holds for t∗ ≤ τ ≤ t. Using (4.8), we deduce from (4.11) that

|Uc
H(t, s)| ≤ Meε(t−s) + M

∫ t

s
eε(t−τ)p(τ)|Uc

H(τ, s)|dτ. (4.12)
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From now on we will denote all the constants by M if their explicit form does not play any
role. We multiply both sides of (4.12) by e−εt and then use Gronwall’s inequality. We obtain

|Uc
H(t, s)| ≤ M exp

{
ε(t− s) + M

∫ t

s
p(τ)dτ

}
.

Due to (4.1), we can choose t∗ sufficiently large such that for all ε > 0 the following inequality
holds:

|Uc
H(t, s)| ≤ Meε(t−s), t∗ ≤ s ≤ t. (4.13)

Note that we can choose constant M one and the same for all H(t, θ) from the ball ‖H‖B ≤ r0.
We now conclude from (4.9) that inequality (4.13) also holds for the Cauchy matrix UH(s, t)
(probably, with another constant M).

We return now to (4.6). Hypothesis H2 implies that inequalities (2.26)–(2.28) hold with a
certain exponential rate −α = β + ε < 0. It follows form (4.6) that

‖(AH)(t, ·)‖Ch ≤ Me(−α+ε)(t−t∗)‖H(t∗, ·)‖Ch + M
∫ t

t∗
e(−α+ε)(t−s)p(s)ds, t ≥ t∗. (4.14)

Choose ε > 0 such that −α + ε < 0. By Proposition 4.1, the right-hand side of (4.14) tends
to zero as t → ∞. Moreover, choosing t∗ sufficiently large, ‖H(t∗, ·)‖Ch sufficiently small and
taking into account (4.3) we conclude that ‖AH‖B ≤ r0. Consequently, operator A maps the
ball ‖H‖B ≤ r0 into itself.

We will now show that operator A is a contraction of the ball ‖H‖B ≤ r0. Suppose that
H1(t, θ), H2(t, θ) ∈ B and ‖H1‖B ≤ r0, ‖H2‖B ≤ r0. We derive from (4.6) that

‖(AH1)(t, ·)− (AH2)(t, ·)‖Ch

≤ Me−α(t−t∗)‖H1(t∗, ·)‖Ch |UH1(t∗, t)−UH2(t∗, t)|

+M
∫ t

t∗
e−α(t−s)p(s)|UH1(s, t)−UH2(s, t)|ds

+M
∫ t

t∗
e−α(t−s)p(s)‖H1(s, ·)− H2(s, ·)‖Ch |UH1(s, t)|ds

+M
∫ t

t∗
e−α(t−s)p(s)‖H2(s, ·)‖Ch |UH1(s, t)−UH2(s, t)|ds. (4.15)

Here we used the equality H1(t∗, θ) = H2(t∗, θ) and also added and subtracted the quantity∫ t

t∗
T(t− s)XQΛ

0 (θ)G
(
s, H2(s, θ)

)
UH1(s, t)ds

on the right-hand side of the expression for AH1–AH2. Let us estimate the difference
|UH1(s, t)−UH2(s, t)| (s ≤ t). It follows from the above that we need to obtain estimate for
|Uc

H1
(t, s)−Uc

H2
(t, s)|, where Uc

H1
(t, s), Uc

H2
(t, s) are the Cauchy matrices of (4.10) with H(t, θ)

equal to H1(t, θ) and H2(t, θ) respectively. From (4.10) we deduce that

∂

∂t

(
Uc

H1
(t, s)−Uc

H2
(t, s)

)
= − D∗

(
Uc

H1
(t, s)−Uc

H2
(t, s)

)
−
(

G
(
t, Φ(θ)

))∗
Ψ∗(0)

(
Uc

H1
(t, s)−Uc

H2
(t, s)

)
−
(

G
(
t, H1(t, θ)

))∗
Ψ∗(0)Uc

H1
(t, s) +

(
G
(
t, H2(t, θ)

))∗
Ψ∗(0)Uc

H2
(t, s)
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= − D∗
(
Uc

H1
(t, s)−Uc

H2
(t, s)

)
−
(

G
(
t, Φ(θ)

))∗
Ψ∗(0)

(
Uc

H1
(t, s)−Uc

H2
(t, s)

)
−
(

G
(
t, H1(t, θ)− H2(t, θ)

))∗
Ψ∗(0)Uc

H1
(t, s)

−
(

G
(
t, H2(t, θ)

))∗
Ψ∗(0)

(
Uc

H1
(t, s)−Uc

H2
(t, s)

)
.

Thus, the difference Uc
H1
(t, s)−Uc

H2
(t, s) is the solution (with respect to variable t) of a certain

inhomogeneous linear differential equation whose homogeneous part coincides with coeffi-
cients matrix of Eq. (4.10), where H(t, θ) = H2(t, θ). Application of the variation-of-constants
formula with account of equality Uc

H1
(s, s)−Uc

H2
(s, s) = 0 yields that

Uc
H1
(t, s)−Uc

H2
(t, s) = −

∫ t

s
Uc

H2
(t, τ)

(
G
(
τ, H1(τ, θ)− H2(τ, θ)

))∗
Ψ∗(0)Uc

H1
(τ, s)dτ. (4.16)

We deduce from (4.16) with account of (4.1), (4.8) and (4.13) the following estimate if t∗≤ s≤ t:

|Uc
H1
(t, s)−Uc

H2
(t, s)| ≤ Meε(t−s)

∫ t

s
p(τ)‖H1(τ, ·)− H2(τ, ·)‖Ch dτ

≤ Me2ε(t−s)‖H1 − H2‖B. (4.17)

As it was pointed above, inequality (4.17) is also valid for estimation of the difference
|UH1(s, t)−UH2(s, t)| (t∗ ≤ s ≤ t). We now use (4.17) to estimate the latter quantity in (4.15).
Provided that −α + 2ε < 0 we obtain

‖AH1 −AH2‖B (4.18)

≤ M
{
‖H1(t∗, ·)‖Ch +

∫ t

t∗
e(−α+2ε)(t−s)p(s)ds +

∫ t

t∗
e(−α+ε)(t−s)p(s)ds

}
‖H1 − H2‖B.

We now choose t∗ sufficiently large and ‖H1(t∗, ·)‖Ch sufficiently small to state, using (4.3),
that operator A is a contraction of the ball ‖H‖B ≤ r0 in the space B. This concludes the
proof.

The next step is to justify the method proposed in the previous section for the approximate
construction of the critical manifoldW(t).

Theorem 4.4. Suppose that W(t) is a critical manifold which according to Theorem 4.3 exists for
sufficiently large t. Then there exists a sufficiently large t∗ such that for t ≥ t∗ matrix H(t, θ) from
(3.4) admits the following representation:

H(t, θ) = Ĥ(t, θ) + Z(t, θ), t ≥ t∗ ≥ t0, −h ≤ θ ≤ 0. (4.19)

Here matrix Ĥ(t, θ) is defined by (3.9) and satisfies Eq. (3.29). Moreover, Z(t, θ) is a certain (m×N)-
matrix function such that ‖Z(t, ·)‖Ch → 0 as t→ ∞ and ‖Z(t, ·)‖Ch ∈ L1[t∗, ∞).

Proof. We write the solution H(t, θ) of the operator equation (4.5) as sum (4.19), where Ĥ(t, θ)

is the element of B, constructed in the previous section, and Z(t, θ) is a certain matrix from B.
Then we can regard equation (4.5) as the equation for Z(t, θ):

Z(t, θ) = SZ(t, θ), (4.20)

SZ(t, θ) = A
(

Ĥ(t, θ) + Z(t, θ)
)
− Ĥ(t, θ), (4.21)
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where operator A is defined by (4.6). We will assume that the domain of the operator S is the
Banach space BL of all matrix functions Z(t, θ) continuous in t ≥ t∗ and θ ∈ [−h, 0] with a
fixed initial value Z(t∗, θ) such that ‖Z(t, ·)‖Ch → 0 as t → ∞ and p(t)‖Z(t, ·)‖Ch ∈ L1[t∗, ∞).
Here function p(t) is defined by (4.8) and satisfies condition (4.1). Moreover, the columns of
matrix Z(t∗, θ) belong to QΛ. We introduce the norm in BL as follows:

‖Z‖BL = ‖Z‖B + ‖Z‖L, ‖Z‖L =
∫ ∞

t∗
p(t)‖Z(t, ·)‖Ch dt, (4.22)

where the norm ‖ · ‖B is described by formula (4.7). Our aim is to show that the operator S is
a contraction of a certain ball ‖Z‖BL ≤ r0 in BL provided that initial condition ‖Z(t∗, ·)‖Ch is
sufficiently small and t∗ is sufficiently large.

First, we show that S acts to BL. The properties of the operator A and the matrix
Ĥ(t, θ) imply that the matrix (SZ)(t, θ) is continuous in t ≥ t∗ and θ ∈ [−h, 0]. More-
over, ‖(SZ)(t, ·)‖Ch → 0 as t → ∞. The properties of A and Ĥ(t, θ) also yield that the
columns of the matrix (SZ)(t, θ) belong to QΛ for all t ≥ t∗. Therefore, we need to verify
that p(t)‖(SZ)(t, ·)‖Ch ∈ L1[t∗, ∞). To achieve this goal we will obtain a more appropriate
representation for the operator S .

Let u(t) ∈ CN be the solution of Eq. (3.7), where H(t, θ) is sum (4.19), with initial value
at t = t∗ equal to u(t∗). Due to the form of the matrix Ĥ(t, θ) (see (3.9)), absolute continuity
of functions v1(t), . . . vn(t) and the properties of the solution operator T(t), we conclude that
function T(t− s)Ĥ(s, θ)u(s) is absolutely continuous in s for t∗ ≤ s ≤ t. Hence,

Ĥ(t, θ)u(t) = T(t− t∗)Ĥ(t∗, θ)u(t∗) +
∫ t

t∗

d
ds
(
T(t− s)Ĥ(s, θ)u(s)

)
ds. (4.23)

Note that for each continuously differentiable function ϕ ∈ Ch the following equalities hold
(see deduction of formulas (2.1) in [19, p. 167]):

∫ t

t∗

d
ds
(
T(t− s)ϕ(θ)

)
= −

∫ t

t∗
T(t− s)


dϕ

dθ
, −h ≤ θ < 0,

B0ϕ(θ), θ = 0.
ds

= −
∫ t

t∗
T(t− s)

dϕ

dθ
ds +

∫ t

t∗
T(t− s)X0(θ)

dϕ

dθ
ds−

∫ t

t∗
T(t− s)X0(θ)B0ϕ ds. (4.24)

We recall that to provide the mathematical strictness of equality (4.24) we should rewrite it in
the form

∫ t

t∗

d
ds
(
T(t− s)ϕ(θ)

)
ds = −

∫ t

t∗
T(t− s)

dϕ

dθ
ds +

∫ t

t∗
dK(t, s)

dϕ

dθ
−
∫ t

t∗
dK(t, s)B0ϕ,

where K(t, s)(θ) is defined by (2.15). Since matrix Ĥ(t, θ) is absolutely continuous in t for
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t ≥ t0 and continuously differentiable in θ for θ ∈ [−h, 0], it is easy to show that

∫ t

t∗

d
ds
(
T(t− s)Ĥ(s, θ)u(s)

)
ds

=
∫ t

t∗
T(t− s)

{
−∂Ĥ

∂θ
u(s) + X0(θ)

∂Ĥ
∂θ

u(s)− X0(θ)B0Ĥu(s) +
∂Ĥ
∂s

u(s) + Ĥ(s, θ)
du
ds

}
ds

=
∫ t

t∗
T(t− s)

{
−∂Ĥ

∂θ
+ X0(θ)

∂Ĥ
∂θ
− X0(θ)B0Ĥ +

∂Ĥ
∂s

+ Ĥ(s, θ)
(

D + Ψ(0)G
(
s, Φ(θ) + Ĥ(s, θ) + Z(s, θ)

))}
u(s)ds. (4.25)

Here we used the fact that function u(t) is a solution of Eq. (3.7). Again, we emphasize that
analogous to (4.24) the integrands of the form T(t− s)X0(θ)(. . .)ds on the right-hand side of
(4.25) should be replaced by dK(t, s)(θ)(. . .). We remind that matrix Ĥ(t, θ) satisfies Eq. (3.29).
We rewrite the latter as follows:

Φ(θ)Ψ(0)G
(
t, Φ(θ) + Ĥ(t, θ)

)
+ Ĥ(t, θ)

(
D + Ψ(0)G

(
t, Φ(θ) + Ĥ(t, θ)

))
+

∂Ĥ
∂t

(4.26)

=
∂Ĥ
∂θ

+ R1(t, θ)− X0(θ)
∂Ĥ
∂θ

+ X0(θ)B0Ĥ + X0(θ)G
(
t, Φ(θ) + Ĥ(t, θ)

)
− X0(θ)R2(t).

We use (4.26) in (4.25) and represent u(t) in the form u(t) = UĤ+Z(t, t∗)u(t∗). Here, UĤ+Z(t, s)
(t, s ≥ t∗) is the Cauchy matrix of (3.7) (UĤ+Z(s, s) = I), where H(t, θ) is sum (4.19). Recalling
the notation XQΛ

0 = X0(θ)−Φ(θ)Ψ(0), we deduce from (4.23) that

Ĥ(t, θ) = T(t− t∗)Ĥ(t∗, θ)UĤ+Z(t∗, t)

+
∫ t

t∗
T(t− s)

{
R1(s, θ) + XQΛ

0 G
(
s, Φ(θ) + Ĥ(s, θ)

)
− X0(θ)R2(s) + Ĥ(s, θ)Ψ(0)G

(
s, Z(s, θ)

)}
UĤ+Z(s, t)ds.

(4.27)

Due to (4.6), (4.19) and (4.27), we obtain the following representation for the operator S
from (4.21):

SZ(t, θ) = T(t− t∗)Z(t∗, θ)UĤ+Z(t∗, t)

+
∫ t

t∗
T(t− s)

{
XQΛ

0 G
(
s, Z(s, θ)

)
− R1(s, θ)

+ X0(θ)R2(s)− Ĥ(s, θ)Ψ(0)G
(
s, Z(s, θ)

)}
UĤ+Z(s, t)ds.

(4.28)

Since matrix R1(t, θ) is continuous in θ for θ ∈ [−h, 0], by (2.7) we can decompose it into direct
sum

R1(t, θ) = RPΛ
1 (t, θ) + RQΛ

1 (t, θ),

where the columns of (m× N)-matrices RPΛ
1 (t, θ) and RQΛ

1 (t, θ) belong to PΛ and QΛ respec-
tively for t ≥ t0. We also note that functions ‖RPΛ

1 (t, ·)‖Ch and ‖RQΛ
1 (t, ·)‖Ch belong to L1[t0, ∞).

Since the columns of all matrices Hi1 ... il (t, θ) in (3.9) belong to QΛ for all t ∈ R, it follows that
the columns of matrices Ĥ(t, θ) and ∂Ĥ

∂t also belong to QΛ for t ≥ t0. Hence, we derive from
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(3.29) that RPΛ
1 (t, θ) = Φ(θ)Ψ(0)R2(t) since matrix R2(t) is an absolutely integrable on [t0, ∞)

part of the matrix G
(
t, Φ(θ) + Ĥ(t, θ)

)
. Due to the latter, equation (4.28) takes the form

SZ(t, θ) = T(t− t∗)Z(t∗, θ)UĤ+Z(t∗, t)

+
∫ t

t∗
T(t− s)

{
XQΛ

0 G
(
s, Z(s, θ)

)
+ XQΛ

0 R2(s)

− RQΛ
1 (s, θ)− Ĥ(s, θ)Ψ(0)G

(
s, Z(s, θ)

)}
UĤ+Z(s, t)ds.

(4.29)

Here we need to replace integrands of the form T(t − s)XQΛ
0 (. . .)ds by the integrands

dK(t, s)QΛ(θ)(. . .), where K(t, s)QΛ is defined by (2.21).
We now apply inequalities (2.26)-(2.28) and also estimate (4.13) for UĤ+Z(s, t) to obtain

‖(SZ)(t, ·)‖Ch ≤ Me(−α+ε)(t−t∗)‖Z(t∗, ·)‖Ch + M
∫ t

t∗
e(−α+ε)(t−s)p(s)‖Z(s, ·)‖Ch ds

+ M
∫ t

t∗
e(−α+ε)(t−s)(|R2(s)|+ ‖RQΛ

1 (s, ·)‖Ch

)
ds, t ≥ t∗.

(4.30)

Changing the order of integration yields that

∫ ∞

t∗
p(t)‖(SZ)(t, ·)‖Ch dt ≤ M‖Z(t∗, ·)‖Ch

∫ ∞

t∗
e(−α+ε)(t−t∗)p(t)dt

+ M
∫ ∞

t∗
p(s)‖Z(s, ·)‖Ch

∫ ∞

t∗
e(−α+ε)|t−s|p(t)dtds

+ M
∫ ∞

t∗

(
|R2(s)|+ ‖RQΛ

1 (s, ·)‖Ch

) ∫ ∞

t∗
e(−α+ε)|t−s|p(t)dtds.

(4.31)

Finally, we use Proposition 4.1, inequality (4.3) and also the fact that functions ‖RQΛ
1 (t, ·)‖Ch ,

|R2(t)| and p(t)‖Z(t, ·)‖Ch (Z(t, θ) ∈ BL) belong to L1[t∗, ∞). Consequently, all the integrals
on the right-hand side of (4.31) exist, and, therefore, function p(t)‖(SZ)(t, ·)‖Ch belongs to
L1[t∗, ∞). Thus, we have established that operator S maps BL into itself.

Fix r0 > 0. We remark that, due to (4.11), (4.12), constant M in (4.31) may be chosen one
and the same for all matrices Z(t, θ) from the ball ‖Z‖BL ≤ r0. Then, by (4.3), we deduce
from (4.31) that ‖SZ‖L ≤ MN(t∗) for all ‖Z‖BL ≤ r0. Further, due to (4.14), (4.21), for all
‖Z‖BL ≤ r0 we have

‖SZ‖BL = ‖A
(

Ĥ(t, θ) + Z(t, θ)
)
− Ĥ(t, θ)‖B + ‖SZ‖L

≤ M
(
‖Ĥ‖B + ‖Z(t∗, ·)‖Ch + N(t∗)

)
. (4.32)

Since ‖Ĥ(t, ·)‖Ch → 0 and N(t)→ 0 as t→ ∞, by choosing t∗ sufficiently large and ‖Z(t∗, ·)‖Ch

sufficiently small we get the inequality ‖SZ‖BL ≤ r0. Thus, the operator S maps the ball
‖Z‖BL ≤ r0 into itself. What is left is to show that S is a contraction of this ball for sufficiently
large t∗. From (4.18), (4.21) it follows that for any Z1(t, θ), Z2(t, θ) from the ball ‖Z‖BL ≤ r0

the following inequality holds:

‖SZ1 − SZ2‖BL = ‖A(Ĥ + Z1)−A(Ĥ + Z2)‖B + ‖SZ1 − SZ2‖L

≤ q‖Z1 − Z2‖B + ‖SZ1 − SZ2‖L, 0 ≤ q < 1, (4.33)
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if the quantity ‖Z1(t∗, ·)‖Ch = ‖Z2(t∗, ·)‖Ch is sufficiently small and t∗ is sufficiently large. We
derive from (4.29) that

‖SZ1 − SZ2‖L

≤ M‖Z1(t∗, ·)‖Ch

∫ ∞

t∗
e−α(t−t∗)p(t)|UH1(t∗, t)−UH2(t∗, t)|dt

+ M
∫ ∞

t∗
p(t)

∫ t

t∗
e(−α+ε)(t−s)p(s)‖Z1(s, ·)− Z2(s, ·)‖Ch dsdt

+ M
∫ ∞

t∗
p(t)

∫ t

t∗
e−α(t−s)p(s)‖Z2(s, ·)‖Ch |UH1(s, t)−UH2(s, t)|dsdt

+ M
∫ ∞

t∗
p(t)

∫ t

t∗
e−α(t−s)(|R2(s)|+ ‖RQΛ

1 (s, ·)‖Ch

)
|UH1(s, t)−UH2(s, t)|dsdt

+ M
∫ ∞

t∗
p(t)

∫ t

t∗
e(−α+ε)(t−s)p(s)‖Ĥ(s, ·)‖Ch‖Z1(s, ·)− Z2(s, ·)‖Ch dsdt

+ M
∫ ∞

t∗
p(t)

∫ t

t∗
e−α(t−s)p(s)‖Ĥ(s, ·)‖Ch‖Z2(s, ·)‖Ch |UH1(s, t)−UH2(s, t)|dsdt, (4.34)

where H1 = Ĥ + Z1 and H2 = Ĥ + Z2. To obtain (4.34) we used the equality Z1(t∗, θ) =

Z2(t∗, θ), inequality (4.13) and also added and subtracted the difference∫ t

t∗
T(t− s)XQΛ

0 (θ)G
(
s, Z2(t, θ)

)
UH1(s, t)ds−

∫ t

t∗
T(t− s)Ĥ(s, θ)Ψ(0)G

(
s, Z2(s, θ)

)
UH1(s, t)ds

on the right-hand side of the expression for the difference SZ1−SZ2. From the left inequality
in (4.17) for any Z1(t, θ), Z2(t, θ) such that ‖Z‖BL ≤ r0 the following estimate follows for
t∗ ≤ s ≤ t:

|UH1(s, t)−UH2(s, t)| ≤ Meε(t−s)‖Z1 − Z2‖L, (4.35)

where H1 = Ĥ + Z1 and H2 = Ĥ + Z2. Changing the order of integration in (4.34) and taking
into account (4.3), (4.35) and inequalities ‖Zi‖BL ≤ r0 (i = 1, 2), we conclude that

‖SZ1 − SZ2‖L ≤ MN(t∗)‖Z1 − Z2‖L ≤ q‖Z1 − Z2‖L, 0 ≤ q < 1, (4.36)

if t∗ is sufficiently large. Applying (4.36) in (4.33) yields that the operator S is a contraction of
the ball ‖Z‖BL ≤ r0.

Assume now that Z(t, θ) is the solution of Eq. (4.20) that belongs to BL. Since functions
p(t)‖Z(t, ·)‖Ch , ‖RQΛ

1 (t, ·)‖Ch and |R2(t)| belong to L1[t∗, ∞), it follows from Proposition 4.1
that the right-hand side of inequality (4.30) also belongs to L1[t∗, ∞). Thus, ‖Z(t, ·)‖Ch ∈
L1[t∗, ∞) and the proof is complete.

To construct the asymptotics for solutions of Eq. (3.7) sometimes we need a detailed in-
formation concerning the decay rate of function ‖Z(t, ·)‖Ch as t → ∞. In this connection the
following corollary of Theorem 4.4 is useful.

Corollary 4.5. Let the following inequality hold:

‖RQΛ
1 (t, ·)‖Ch + |R2(t)| ≤ ϕ(t), t ≥ t0, (4.37)

where ϕ(t) > 0 for t ≥ t0. Moreover, suppose that there exists β ∈ (0, α) such that

ϕ(t1)eβt1 ≤ ϕ(t2)eβt2 , t0 ≤ t1 ≤ t2. (4.38)
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Then the solution of Eq. (4.20) for t ≥ t∗ ≥ t0 satisfies inequality

‖Z(t, ·)‖Ch ≤ Kϕ(t) (4.39)

with a certain constant K.

The proof of Corollary 4.5 may be handled in much the same way as in [26, Theorem 5].

Remark 4.6. From (1.2), (1.3), (3.9), (3.29) and conditions 10–30 imposed on functions
v1(t), . . . , vn(t), it follows that function ‖RQΛ

1 (t, ·)‖Ch + |R2(t)| has the following asymptotic
estimate as t→ ∞:

O

(
∑

1≤i1≤···≤ik+1≤n
|vi1(t) · · · vik+1(t)|

)
+ O

(
n

∑
i=1
|v̇i(t)|

)
+ O

(
γ(t)

)
.

We establish now the property of global attraction for the manifoldW(t).

Theorem 4.7. Suppose that x(t) is a solution of Eq. (1.1) defined for t ≥ T ≥ t0. Then there exists a
sufficiently large t∗ ≥ T such that the following asymptotic formula holds for t ≥ t∗:

xt(θ) = Φ(θ)uH(t) + H(t, θ)uH(t) + O
(
e(−α+ε)t), t→ ∞. (4.40)

Here α > 0 is chosen in the way that inequalities (2.26)–(2.28) hold with exponential rate equal to
(−α), ε ∈ (0, α) is an arbitrary real number and uH(t) (t ≥ t∗) is a certain solution of system on the
critical manifold (3.7).

Proof. By (2.18), (2.23), we have

xt(θ) = Φ(θ)u(t) + xQΛ
t (θ), t ≥ t∗, (4.41)

where xQΛ
t (θ) is defined by (2.20) (see also (2.22)) with t0 = t∗ and fucntion u(t) is the solution

of Eq. (2.24) with initial value u(t∗) =
(
Ψ(ξ), xt∗(θ)

)
. Let W(t) be a critical manifold for

Eq. (1.1) that exists for sufficiently large t ≥ t∗ according to Theorem 4.3. We recall that this
manifold is described by formula (3.4). Choose uH(t∗) = u(t∗), then

x̃t(θ) = Φ(θ)uH(t) + H(t, θ)uH(t) (4.42)

is a certain solution of Eq. (1.1) lying on a critical manifoldW(t) for t ≥ t∗. Our aim is to show
that xt(θ) = x̃t(θ)+O(e(−α+ε)t). By setting z(t, θ) = xQΛ

t (θ)−H(t, θ)uH(t), r(t) = u(t)− uH(t)
and subtracting (4.42) from (4.41), we obtain

xt(θ)− x̃t(θ) = Φ(θ)r(t) + z(t, θ), t ≥ t∗. (4.43)

Note that function H(t, θ)uH(t) is the solution of integral equation (4.4). Subtracting (4.4) from
(2.22) (where t0 = t∗) and taking into account (4.41), we get the following equation for z(t, θ):

z(t, θ) = T(t− t∗)z(t∗, θ) +
∫ t

t∗
T(t− s)XQΛ

0 G
(
s, Φ(θ)r(s) + z(s, θ)

)
ds, t ≥ t∗. (4.44)

We emphasize that the quantity ‖z(t∗, ·)‖Ch can be assumed to be as small as we wish. Indeed,
due to the linearity of Eq. (1.1) we can replace solution xt(θ) by δxt(θ)/‖xt∗(θ)‖Ch with initial
value at t = t∗ equal to ϕ(θ) such that ‖ϕ(θ)‖Ch = δ for any prescribed δ > 0.
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We subtract (3.7) (where u(t) = uH(t)) from (2.24) an use (4.41). We conclude that function
r(t) is the solution of the Cauchy problem

ṙ = Dr(t) + Ψ(0)G
(
t, Φ(θ)r(t) + z(t, θ)

)
, r(t∗) = 0. (4.45)

We write matrix D having the form (3.18) as follows

D = D1 + D2, (4.46)

where D1 = diag D and D2 is a nilpotent matrix. We can regard that |D2| < δ for any
prescribed δ > 0. Actually, in Eq. (4.45) we can make the change of variable r = Cδr̃, where
matrix Cδ brings matrix δ−1D to Jordan form. Then this change of the variable does not effect
the matrix D1 and the only nonzero entries of matrix D2 are, possibly, di,i+1 = δ. We write
(4.45) as an integral equation

r(t) =
∫ t

t∗
eD1(t−s)[D2r(s) + Ψ(0)G

(
s, Φ(θ)r(s) + z(s, θ)

)]
ds. (4.47)

We introduce the space B1 whose elements are the pairs
(
z(t, θ), r(t)

)
. Here function z(t, θ)

is continuous in θ ∈ [−h, 0] and t ≥ t∗, and function r(t) is continuous for t ≥ t∗. We also
assume that function z(t∗, θ) is fixed and belongs to QΛ. Moreover, suppose that the following
inequalities hold:

‖z(t, ·)‖Ch ≤ Ke(−α+ε)(t−t∗), |r(t)| ≤ Ke(−α+ε)(t−t∗), t ≥ t∗, (4.48)

where K > 0 is a certain constant and ε ∈ (0, α) is an arbitrarily chosen real number. The
space B1 becomes the Banach space with the norm∥∥(z(t, θ), r(t)

)∥∥
B1

= sup
t≥t∗

(
e(α−ε)(t−t∗)(‖z(t, ·)‖Ch + |r(t)|)

)
.

If the system of equations (4.44), (4.47) has solution
(
z(t, θ), r(t)

)
∈ B1, then we can rewrite

(4.47) in the following equivalent form. Letting t → ∞ and taking into account the right
inequality in (4.48), we get∫ ∞

t∗
e−D1s[D2r(s) + Ψ(0)G

(
s, Φ(θ)r(s) + z(s, θ)

)]
ds = 0.

We also use the fact that, due to hypothesis H1, all eigenvalues of matrix D1 have zero real
parts. Finally, we use the above equality in (4.47) to write the latter as follows:

r(t) = −
∫ ∞

t
eD1(t−s)[D2r(s) + Ψ(0)G

(
s, Φ(θ)r(s) + z(s, θ)

)]
ds, t ≥ t∗. (4.49)

We write system (4.44), (4.49) as an operator equation in the space B1:(
z(t, θ), r(t)

)
= L

(
z(t, θ), r(t)

)
=
(
L1
(
z(t, θ), r(t)

)
,L2
(
z(t, θ), r(t)

))
, (4.50)

where operators L1, L2 are defined by the right-hand sides of equations (4.44) and (4.49)
respectively. We want to show that the operator L is contracting in B1 provided that ‖z(t∗, ·)‖
is sufficiently small and t∗ is sufficiently large.
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First, we show that the operator L maps B1 to itself. Assume that (z, r) ∈ B1, then, by
using (4.3), we derive from (4.44) that

‖
(
L1(z, r)

)
(t, ·)‖Ch ≤ Me−α(t−t∗)‖z(t∗, ·)‖Ch + MKe(−α+ε)(t−t∗)

∫ t

t∗
e−ε(t−s)p(s)ds

≤ M
(
‖z(t∗, ·)‖Ch +

2KN(t∗)
1− e−ε

)
e(−α+ε)(t−t∗), t ≥ t∗.

If we now choose ‖z(t∗, ·)‖Ch sufficiently small and t∗ sufficiently large we get that function
L1(z, r) satisfies left inequality in (4.48). Note that |eD1(t−s)| ≤ C for a certain constant C (the
latter depends only on the used matrix norm) and |D2| < δ. Hence, it follows from (4.49) that

|
(
L2(z, r)

)
(t)| ≤ CKδ

α− ε
e(−α+ε)(t−t∗) + MK

∫ ∞

t
e(−α+ε)(s−t∗)p(s)ds

≤ K
(

Cδ

α− ε
+ Mε̂ + M

∫ ∞

t
γ(s)ds

)
e(−α+ε)(t−t∗), t ≥ t∗,

where M depends, actually, on δ. Here we applied formula (4.8) that describes function p(t)
and used the fact that w(t) < ε̂ for any prescribed ε̂ > 0 provided that t∗ is sufficiently large.
Since γ(t) ∈ L1[t0, ∞) and δ, ε̂ are arbitrary real constants, by choosing t∗ sufficiently large we
establish that the right inequality in (4.48) holds for function L2(z, r).

We show now that the operator L is a contraction of B1. Suppose that (z1, r1) and (z2, r2)

belong to B1. Then

‖L(z1, r1)−L(z2, r2)‖B1

= sup
t≥t∗

{
e(α−ε)(t−t∗)

(
‖(L1(z1, r1)−L1(z2, r2))(t, ·)‖Ch + |(L2(z1, r1)−L2(z2, r2))(t)|

)}
≤ M sup

t≥t∗

∫ t

t∗
e−ε(t−s)p(s)e(α−ε)(s−t∗)

{
|r1(s)− r2(s)|+ ‖z1(s, ·)− z2(s, ·)‖Ch

}
ds

+ sup
t≥t∗

{
Cδe(α−ε)t

∫ ∞

t
e(−α+ε)se(α−ε)(s−t∗)|r1(s)− r2(s)|ds

+Me(α−ε)t
∫ ∞

t
e(−α+ε)s p(s)e(α−ε)(s−t∗)

(
|r1(s)− r2(s)|+ ‖z1(s, ·)− z2(s, ·)‖Ch

)
ds
}

≤
{

2MN(t∗)
1− e−ε

+
Cδ

α− ε
+ Mε̂ + M

∫ ∞

t∗
γ(s)ds

}
‖(z1, r1)− (z2, r2)‖B1 .

Again we choose t∗ sufficiently large and δ, ε̂ sufficiently small to state that L is a contraction
of B1. Consequently, equation (4.50) has a unique solution in B1.

By recalling (4.43), we complete the proof of the theorem.

Suppose that u(1)(t), . . . , u(N)(t) are fundamental solutions of system on critical manifold
(3.7) and x(t) is an arbitrary solution of Eq. (1.1) defined for t ≥ T. By Theorem 4.7, this
solution has the following asymptotic representation as t→ ∞:

x(t) = xt(0) =
(
Φ(0) + H(t, 0)

) N

∑
i=1

ciu(i)(t) + O
(
e−βt), (4.51)

where c1, . . . , cN are arbitrary complex constants and β > 0 is a certain real number.
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5 Asymptotic integration of system on critical manifold. Example

System (3.7), describing the dynamics of the initial Eq. (1.1) on critical manifoldW(t), belongs
to the class of the dynamical systems with oscillatory decreasing coefficients. The method for
asymptotic integration of this kind of systems was proposed in [23]. Due to (3.9), (4.19),
system (3.7) has the form

u̇ =
[

D +
n

∑
i=1

vi(t)Ai(t) + ∑
1≤i1≤i2≤n

vi1(t)vi2(t)Ai1i2(t)

+ · · ·+ ∑
1≤i1≤···≤ik≤n

vi1(t) · · · vik(t)Ai1... ik(t) + W(t)
]
u, u ∈ CN . (5.1)

Here matrix D is defined by (3.18), Ai1 ... il (t) are (N × N)-matrices whose entries are trigono-
metric polynomials (i.e., matrices having the form (3.3)) and W(t) is a certain matrix from
L1[t∗, ∞). Without loss of generality we may assume that matrix D in Eq. (5.1) is, actually,
matrix D2, whose only nonzero entries are, possibly, di,i+1 = 1 for certain i ∈ N. Indeed,
we write matrix D as sum (4.46), where, by hypothesis H1, all the eigenvalues of the diagonal
matrix D1 have zero real parts. In (5.1) we can make the change of variable u = eD1tû that does
not change the properties of matrices Ai1 ... il (t) and W(t). In the transformed system matrix D
will be replaced by D2.

From now on we will assume that the only eigenvalue of the Jordan matrix D in (5.1)
is zero. The main difficulty in the asymptotic integration of system (5.1) as t → ∞ is that
its coefficients have an oscillatory behaviour. Thus, on the first step we utilize in (5.1) the
averaging change of variable that makes it possible to exclude the oscillating coefficients from
the main part of the system. The following theorem holds (see [23]).

Theorem 5.1. For sufficiently large t, system (5.1) by the change of variable

u =

[
I +

n

∑
i=1

Yi(t)vi(t) + ∑
1≤i1≤i2≤n

Yi1i2(t)vi1(t)vi2(t)

+ · · ·+ ∑
1≤i1≤···≤ik≤n

Yi1... ik(t)vi1(t) · · · vik(t)

]
u1 (5.2)

can be reduced to its averaged form

u̇1 =

[
D +

n

∑
i=1

Aivi(t) + ∑
1≤i1≤i2≤n

Ai1i2 vi1(t)vi2(t)

+ . . . + ∑
1≤i1≤···≤ik≤n

Ai1... ik vi1(t) · · · vik(t) + W1(t)

]
u1(t) (5.3)

with constant matrices Ai1... il and with matrix W1(t) from L1[t∗, ∞). In (5.2), I is the identity matrix
and the entries of matrices Yi1 ... il (t) are trigonometric polynomials having zero mean value.

As a rule, to construct the asymptotics for solutions of Eq. (5.3) we need to compute only
a few constant matrices. Hence, we give the explicit formulas only for matrices Ai and Aij.
We have

Ai = M
[
Ai(t)

]
, i = 1, . . . , n,

(
M
[
F(t)

]
= lim

T→∞

1
T

∫ T

0
F(s)ds

)
. (5.4)
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Further,
Aij = M

[
Aij(t) + Ai(t)Yj(t) + Aj(t)Yi(t)

]
, 1 ≤ i < j ≤ n

and
Aii = M

[
Aii(t) + Ai(t)Yi(t)

]
, i = 1, . . . , n. (5.5)

Here matrices Yi(t) with zero mean value are the solutions of the equations

Ẏi − DYi + YiD = Ai(t)− Ai, i = 1, . . . , n. (5.6)

The subsequent transformation of the averaged system (5.3) depends significantly on the
structure of matrix D. We consider in details only the case when matrix D in (5.1) and (5.3)
is zero matrix. Suppose that there exists a leading term in system (5.3) and this term is the
matrix Ai1...is vi1(t) · · · vis(t). This means that we can rewrite system (5.3) in the following form:

u̇1 =
[
Ai1 ...is + V(t)

]
vi1(t) · · · vis(t)u1(t) + W1(t)u1(t), (5.7)

where the matrix V(t) → 0 as t → ∞ and V̇(t) ∈ L1[t∗, ∞). The following lemma holds (see,
for instance, [7, 15, 18]).

Lemma 5.2 (Diagonalization of variable matrices). Suppose that all eigenvalues of the matrix Ai1...is

are distinct. Moreover, suppose that the matrix V(t) → 0 as t → ∞ and V̇(t) ∈ L1[t∗, ∞). Then for
sufficiently large t there exists a nonsingular matrix C(t) such that

(i) the columns of this matrix are the eigenvectors of the matrix Ai1...is + V(t) and C(t) → C0 as
t→ ∞. The columns of the constant matrix C0 are the eigenvectors of the matrix Ai1...is ;

(ii) the derivative Ċ(t) ∈ L1[t∗, ∞);

(iii) it brings the matrix Ai1...is + V(t) to diagonal form, i.e.,

C−1(t)
[
Ai1...is + V(t)

]
C(t) = Λ̂(t),

where Λ̂(t) = diag
(
λ̃1(t), . . . , λ̃N(t)

)
and λ̃j(t) (j = 1, . . . , N) are the eigenvalues of the matrix

Ai1 ...is + V(t).

In (5.3), we make the change of variable

u1(t) = C(t)u2(t), (5.8)

where C(t) is the matrix from Lemma 5.2. This change of variable brings system (5.3) to
L-diagonal form:

u̇2 =
[
Λ(t) + W2(t)

]
u2, (5.9)

where Λ(t) = diag
(
λ1(t), . . . , λN(t)

)
, λj(t) = λ̃j(t)vi1(t) · · · vis(t) (j = 1, . . . , N) and

W2(t) = −C−1(t)Ċ(t) + C−1(t)W1(t)C(t).

The properties (i) and (ii) of the matrix C(t) imply that matrix W2(t) belongs to L1[t∗, ∞).
To construct the asymptotics for solutions of the L-diagonal system (5.9) as t→ ∞ the well-

known Theorem of Levinson can be used. Suppose that the following dichotomy condition
holds for the entries of the matrix Λ(t): either the inequality∫ t2

t1

Re
(
λi(s)− λj(s)

)
ds ≤ K1, t2 ≥ t1 ≥ t∗, (5.10)
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or the inequality ∫ t2

t1

Re
(
λi(s)− λj(s)

)
ds ≥ K2, t2 ≥ t1 ≥ t∗, (5.11)

is valid for each pair of indices (i, j), where K1, K2 are some constants. The following is
Levinson’s fundamental theorem (see, e.g., [15, 18]).

Theorem 5.3 (Levinson). Let the dichotomy condition (5.10), (5.11) be satisfied. Then the fundamen-
tal matrix U(t) of system (5.9) has the following asymptotics as t→ ∞:

U(t) =
(

I + o(1)
)

exp
{∫ t

t∗
Λ(s)ds

}
. (5.12)

If matrix D in (5.3) is a nonzero Jordan matrix or matrix Ai1 ...is in (5.7) is a Jordan matrix
there is no general method to construct the asymptotics in this case. The structure of the
matrix W1(t) from L1[t∗, ∞) may play a significant role in this situation. This question will
not be discussed here. We only give some references dealing with the problem (see, e.g.,
[12, 16–18]).

Example.

We start with a remark concerning the following equation, studied in [25]:

ẍ + x +
a sin λt

tρ
x(t− h) = 0, (5.13)

where a, λ ∈ R, ρ > 0 and h > 0. We wish to emphasize that this equation differs significantly
from Eq. (1.6). Namely, we do not need to construct the critical manifold to get the asymptotics
for solutions of Eq. (5.13). On the contrary, the method from [25] cannot be used to construct
the asymptotic formulas for solutions of Eq. (1.6), since the corresponding functional B0ϕ =

−π
2 ϕ(−1) is nonzero and, consequently, a critical manifold should be constructed for this

equation.
So, consider now the asymptotic integration problem for Eq. (1.6) as t → ∞. It is known

(see, e.g., [19, 20]) that the characteristic quasipolynomial for the corresponding unperturbed
equation (1.4)

p(λ) = λ +
π

2
e−λ

has purely imaginary roots λ1,2 = ±iπ/2 and all the other roots have negative real parts.
Therefore, the hypotheses H1, H2 hold and we can apply the asymptotic integration method
developed in the paper. Easy computations show that the (1× 2)-matrix Φ(θ) and the (2× 1)-
matrix Ψ(ξ), satisfying the normalization condition (2.8), may be defined as follows:

Φ(θ) =
(
ei

π
2 θ , e−i

π
2 θ
)
, Ψ(ξ) =

4
4 + π2

(
(1− iπ

2 )e
−i π

2 ξ

(1 + iπ
2 )e

i π
2 ξ

)
,

where θ ∈ [−1, 0] and ξ ∈ [0, 1]. Since G(t, ϕ) = at−ρ sin ωtϕ(0), the system on the critical
manifold (3.7) has the form

u̇ =
[

D + t−ρB1(t) + W(t)
]
u, t ≥ t∗, (5.14)

where

D =
π

2

(
i 0
0 −i

)
, B1(t) = −

2ai
4 + π2 (e

iωt − e−iωt)

(
1− iπ

2 1− iπ
2

1 + iπ
2 1 + iπ

2

)
, (5.15)
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and W(t) = Ψ(0)G
(
t, H(t, θ)

)
. Due to the form of operator G(t, ϕ) and the form of matrix

(3.9), it follows from Theorem 4.4, Corollary 4.5 and Remark 4.6 that W(t) = O
(
t−2ρ

)
. We

should consider several cases.
If

ρ > 1,

then system (5.14) has the L-diagonal form (5.9). According to Theorem 5.3, the fundamental
solutions of Eq. (5.14) have the following asymptotics as t→ ∞:

u(j)(t) =
(
ej + o(1)

)
e±i

π
2 t, j = 1, 2. (5.16)

Here ej are the standard basis vectors in R2. Due to (4.51) and the properties of matrix H(t, θ),
all solutions of Eq. (1.6) have the following asymptotic representation as t→ ∞:

x(t) = c1
(
1 + o(1)

)
ei

π
2 t + c2

(
1 + o(1)

)
e−i

π
2 t + O

(
e−βt), (5.17)

where c1, c2 are arbitrary complex constants and β > 0 is a certain real number.
Let

1
2
< ρ ≤ 1.

We make the change of variable u = diag
(
ei

π
2 t, e−i

π
2 t)u1 to reduce (5.14) to the form

u̇1 =
[
t−ρ A1(t) + W1(t)

]
u1, (5.18)

where

A1(t) = −
2ai

4 + π2

(
(1− iπ

2 )(e
iωt − e−iωt) (1− iπ

2 )(e
iωt − e−iωt)e−iπt

(1 + iπ
2 )(e

iωt − e−iωt)eiπt (1 + iπ
2 )(e

iωt − e−iωt)

)
, (5.19)

and W1(t) ∈ L1[t∗, ∞). According to Theorem 5.1, we make in (5.18) the change of variable
u1 =

(
I + t−ρY1(t)

)
u2 to obtain the averaged system

u̇2 =
[
t−ρ A1 + W2(t)

]
u2. (5.20)

Here A1 = M
[
A1(t)

]
and W2(t) is a certain matrix from L1[t∗, ∞). The form of the matrix A1

will be different in the following cases.
Assume that

ω 6= ±π. (5.21)

Matrix A1 is a zero matrix and, hence, system (5.20) has L-diagonal form. By the Levinson
Theorem, fundamental solutions of this system have the following asymptotics as t→ ∞:

u(j)
2 (t) = ej + o(1), j = 1, 2.

If we return to system (5.14) we get the asymptotic formulas (5.16) for its fundamental solu-
tions as t→ ∞. Consequently, all solutions of Eq. (1.6) have asymptotics (5.17) as t→ ∞.

Suppose now that
ω = π. (5.22)

The case ω = −π is reduced to the case ω = π if we replace a with (−a) in (1.6). We have

A1 = − 2ai
4 + π2

(
0 1− iπ

2
−1− iπ

2 0

)
. (5.23)
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The eigenvalues of matrix A1 are µ1,2 = ± a√
4+π2 . By the change of variable u2 = Cu3, where

matrix C = [ f1, f2] brings A1 to diagonal form, system (5.20) is reduced to L-diagonal form.
Fundamental solutions of system (5.20) have the following asymptotics as t→ ∞:

u(j)
2 (t) =

(
f j + o(1)

)
exp

{
µj

∫
t−ρdt

}
, j = 1, 2,

where

f1 =

(
1
δ

)
, f2 =

(
1
−δ

)
, δ =

−π + 2i√
4 + π2

.

Therefore, all solutions of Eq. (1.6) have the following asymptotic representation as t→ ∞:

x(t) = c1

(
ei

π
2 t(1 + o(1)

)
+ e−i

π
2 t(δ + o(1)

))
exp

{
µ1

∫
t−ρdt

}
+ c2

(
ei

π
2 t(1 + o(1)

)
+ e−i

π
2 t(−δ + o(1)

))
exp

{
µ2

∫
t−ρdt

}
+ O

(
e−βt), (5.24)

where c1, c2 are arbitrary real constants and β > 0 is a certain real number.
Consider now the case

1
3
< ρ ≤ 1

2
. (5.25)

The matrix W(t) = Ψ(0)G
(
t, H(t, θ)

)
in (5.14) does not belong to L1[t∗, ∞) any more. Thus,

we need to construct an approximation for the (1× 2)-matrix H(t, θ) that describes the critical
manifoldW(t). By (3.9), (4.19), we have

H(t, θ) = t−ρH1(t, θ) + t−2ρH2(t, θ) + Z(t, θ), (5.26)

where ‖Z(t, ·)‖Ch ∈ L1[t∗, ∞). We note that only the situation when inequality (5.21) holds is
of interest. Actually, if equality (5.22) holds then we can, firstly, represent the averaged system
on the critical manifold in the form (5.7), where Ai1...is = A1, and matrix A1 is described by
formula (5.23). And, secondly, we apply Lemma 5.2 to reduce this system to the L-diagonal
form (5.9) and, then, use Levinson’s Theorem. It is easy to verify that the asymptotic formula
of the form (5.24) as t → ∞ holds for solutions of Eq. (1.6) provided that equality (5.22) is
valid and ρ ≤ 1/2. The only difference is that we should replace the quantity

∫
t−ρdt in (5.24)

by
t1−ρ

1− ρ

(
1 + o(1)

)
. (5.27)

We assume now that inequality (5.21) holds. Let us calculate the matrix H1(t, θ) using the
approximation scheme described in Section 3. We substitute (5.26) in (3.8) and collect terms
with t−ρ. We obtain the following equation for the (1× 2)-matrix H1(t, θ):

a
2i
(
eiωt − e−iωt)Φ(θ)Ψ(0)Φ(0) + H1(t, θ)D +

∂H1

∂t

=


∂H1

∂θ
, −1 ≤ θ < 0,

−π

2
H1(t,−1) +

a
2i
(
eiωt − e−iωt)Φ(0), θ = 0.

(5.28)
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By setting H1(t, θ) =
(
h1(t, θ), h2(t, θ)

)
we obtain the following equations for hj(t, θ):

− 2ai
4 + π2

(
eiωt − e−iωt) ((1− i

π

2

)
ei

π
2 θ +

(
1 + i

π

2

)
e−i

π
2 θ
)
+ (−1)j−1i

π

2
hj(t, θ) +

∂hj

∂t

=


∂hj

∂θ
, −1 ≤ θ < 0,

−π

2
hj(t,−1) +

a
2i
(
eiωt − e−iωt), θ = 0,

j = 1, 2. (5.29)

Each of these equations is uniquely solvable due to Theorem 3.2. From the latter and the form
of equations (5.29) we can derive that h2(t, θ) = h1(t, θ), where notation z̄ means the complex
conjugate for z ∈ C. We seek solution h1(t, θ) as

h1(t, θ) = g1(θ)eiωt + g2(θ)e−iωt. (5.30)

We substitute (5.30) in (5.29) and collect the terms with the same exponentials. We get

(−1)j 2ai
4 + π2

((
1− i

π

2

)
ei

π
2 θ +

(
1 + i

π

2

)
e−i

π
2 θ
)
+ i

π

2
gj(θ) + (−1)j−1iωgj(θ)

=


dgj

dθ
, −1 ≤ θ < 0,

−π

2
gj(−1) + (−1)j ai

2
, θ = 0,

j = 1, 2. (5.31)

Some easy computations show that

g1,2(θ) = K1,2ei(
π
2 ±ω)θ +

2a
ω(4 + π2)

(
1− i

π

2

)
ei

π
2 θ +

2a
(ω± π)(4 + π2)

(
1 + i

π

2

)
e−i

π
2 θ , (5.32)

K1,2 = ∓ a
2
(

π
2 ±ω− π

2 exp{∓iω}
) .

Here the upper sign and constant K1 stand for function g1(θ) and the lower sign with constant
K2 stand for g2(θ). Thus, matrix H1(t, θ) has the form

H1(t, θ) =
(
h1(t, θ), h1(t, θ)

)
, (5.33)

where h1(t, θ) is described by formulas (5.30), (5.32).
We return to system (5.14). Taking into account (5.26), (5.33), we obtain

u̇ =
[

D + t−ρB1(t) + t−2ρB2(t) + R(t)
]
u, t ≥ t∗, (5.34)

where matrices D and B1(t) are defined in (5.15), matrix R(t) belongs to L1[t∗, ∞) and

B2(t) = −
ai
2
(eiωt − e−iωt)Ψ(0)H1(t, 0)

= − 2ai
4 + π2

(
eiωt − e−iωt) ((1− iπ

2

)
h1(t, 0)

(
1− iπ

2

)
h1(t, 0)(

1 + iπ
2

)
h1(t, 0)

(
1 + iπ

2

)
h1(t, 0)

)
. (5.35)

In (5.34) we make the change of variable u = diag
(
ei

π
2 t, e−i

π
2 t)u1 to get

u̇1 =
[
t−ρ A1(t) + t−2ρ A2(t) + R1(t)

]
u1. (5.36)
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Here R1(t) ∈ L1[t∗, ∞), matrix A1(t) is defined by (5.19) and

A2(t) = −
2ai

4 + π2

(
(1− iπ

2 )(e
iωt − e−iωt)h1(t, 0) (1− iπ

2 )(e
iωt − e−iωt)e−iπth1(t, 0)

(1 + iπ
2 )(e

iωt − e−iωt)eiπth1(t, 0) (1 + iπ
2 )(e

iωt − e−iωt)h1(t, 0)

)
.

(5.37)
In (5.36) we apply the averaging change of variable u1 =

[
I + t−ρY1(t)+ t−2ρY2(t)

]
u2 according

to Theorem 5.1. This yields that

u̇2 =
[
t−2ρ A2 + R2(t)

]
u2. (5.38)

We used the fact that, due to (5.21), A1 = M
[
A1(t)

]
is a zero matrix. Further,

A2 = M
[
A2(t) + A1(t)Y1(t)

]
, Ẏ1 = A1(t)− A1 = A1(t) (5.39)

and R2(t) ∈ L1[t∗, ∞).
We assume first that

ω =
π

2
,

(
ω = −π

2

)
. (5.40)

After some easy but tedious computations one gets that

A2 =
a2

4 + π2

(
− 2

5 +
8

5π + i
(
− 4

5 −
4

5π

)
− 2

π + i

− 2
π − i − 2

5 +
8

5π − i
(
− 4

5 −
4

5π

)) .

The eigenvalues of matrix A2 are

µ1,2 =
a2

5π(4 + π2)

(
8− 2π ±

√
9π2 − 32π + 84

)
. (5.41)

System (5.38) by the change of variable u2 = Cu3, where C is a certain constant matrix, may
be reduced to L-diagonal form. Hence, the linearly independent solutions of Eq. (5.38) have
the following asymptotics as t→ ∞:

u(j)
2 (t) =

(
f j + o(1)

)
exp

{
µj

∫
t−2ρdt

}
, j = 1, 2,

where f1 =
(
δ1, δ2

)T and f2 are the eigenvectors of A2 corresponding to the eigenvalues µ1

and µ2 respectively. Solutions of initial Eq. (1.6) are described by the following asymptotic
formula as t→ ∞:

x(t) = c1

(
ei

π
2 t(δ1 + o(1)

)
+ e−i

π
2 t(δ2 + o(1)

))
exp

{
µ1

∫
t−2ρdt

}
+ O

(
exp

{
µ2

∫
t−2ρdt

})
,

(5.42)
where c1 is an arbitrary complex constant.

We suppose now that

ω 6= ±π

2
,±π (5.43)

and inequality (5.25) holds. Matrix A2, that is defined in (5.39), has the form

A2 =

(
ν 0
0 ν̄

)
, ν = − a2i

4 + π2

(
1− i

π

2

)( 1
π
2 −ω− π

2 eiω
+

1
π
2 + ω− π

2 e−iω

)
. (5.44)

Thus, the fundamental solutions of (5.38) have asymptotics

u(1,2)
2 (t) =

(
e1,2 + o(1)

)
exp

{(
Re ν± i Im ν

) ∫
t−2ρdt

}
, t→ ∞,
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where ej are the standard basis vectors in R2. Consequently, all solutions of Eq. (1.6) have the
following asymptotics as t→ ∞:

x(t) = c1
(
1 + o(1)

)
exp

{
i

(
π

2
t + Im ν

∫
t−2ρdt

)}
exp

{
Re ν

∫
t−2ρdt

}
+ c2

(
1 + o(1)

)
exp

{
−i
(

π

2
t + Im ν

∫
t−2ρdt

)}
exp

{
Re ν

∫
t−2ρdt

}
+ O

(
e−βt), (5.45)

where c1, c2 are arbitrary complex constants and β > 0 is a certain real number. Evidently, the
qualitative behaviour of solutions of Eq. (1.6) will be defined in this situation by the sign of
the real part of ν. It can be shown (e.g., by using the packages for symbolic calculations) that
this quantity has the following expression:

Re ν =
2π2a2 sin2 (ω

2

) (
2ω2 + 4ω sin ω + π2 cos ω− π2)

(4 + π2)
(
4ω4 + π4 + π2 (4ω2 − 2π2) cos ω + π2 (π2 − 4ω2) cos2 ω

) . (5.46)

The graph of Re ν as a function of ω is given in Fig. 5.1.
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Figure 5.1: Graph of quantity (5.46), when a = 1.

By using (5.46), it is not difficult to check that Re ν > 0 for all ω 6= 2πn, n ∈ N (ω > 0).
Moreover,

lim
ω→0

Re ν =
π2a2(12− π2)

(4 + π2)3 , lim
ω→π

Re ν =
a2(π2 − 4)
4(4 + π2)2 (5.47)

and

Re ν =
π2a2 sin2(ω

2 )

(4 + π2)ω2

(
1 + O

(
ω−1)), ω → +∞. (5.48)

Finally, consider the case

ρ ≤ 1
3

. (5.49)
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Due to (3.9), (4.19), we have

H(t, θ) = t−ρH1(t, θ) + · · ·+ t−kρHk(t, θ) + Z(t, θ). (5.50)

Here k ∈N is chosen in the way that kρ ≤ 1 < (k + 1)ρ and Z(t, θ) is a (1× 2)-matrix function
such that ‖Z(t, ·)‖Ch ∈ L1[t∗, ∞). The system on the critical manifold has the following form:

u̇ =
[

D + t−ρB1(t) + t−2ρB2(t) + · · ·+ t−kρBk(t) + R(t)
]
u, t ≥ t∗, (5.51)

where matrices D, B1(t) are defined by formulas (5.15), matrix B2(t) is described by (5.35)
and matrix R(t) is a certain matrix from L1[t∗, ∞). In (5.51), we utilize the change of variable
u = diag

(
ei

π
2 t, e−i

π
2 t)u1 to obtain system

u̇1 =
[
t−ρ A1(t) + t−2ρ A2(t) + · · ·+ t−kρ Ak(t) + R1(t)

]
u1. (5.52)

Then, according to Theorem 5.1, in (5.52) we make the averaging change of variable u1 =[
I + t−ρY1(t) + t−2ρY2(t) + · · ·+ t−kρYk(t)

]
u2 to get

u̇2 =
[
A1t−ρ + t−2ρ A2 + · · ·+ t−kρ Ak + R2(t)

]
u2. (5.53)

We write (5.53) in the form (5.7) and then use Lemma 5.2 to reduce this system to the L-
diagonal form (5.9). If ω = ±π then the eigenvalues of matrix A1 are distinct. Thus, in this
case the asymptotic representation (5.24) holds for solutions of Eq. (1.6), where the integral∫

t−ρdt should be replaced by expression (5.27). Further, if ω = ±π
2 then A1 = 0 and the

eigenvalues of A2 are distinct and have the form (5.41). Therefore, the asymptotics of all
solutions of Eq. (1.6) is defined by formula (5.42), where

∫
t−2ρdt should be replaced by

t1−2ρ

1− 2ρ

(
1 + o(1)

)
. (5.54)

Finally, if inequalities (5.43) hold then A1 = 0 and matrix A2 is defined by (5.44). The eigen-
values of A2 are distinct provided that Im ν 6= 0. Suppose that Re ν 6= 0, then the asymptotics
for all solutions of Eq. (1.6) has the form (5.45), where

∫
t−2ρdt should be replaced by (5.54).

6 Appendix. Proof of Theorem 3.2

Before we proceed to the proof of Theorem 3.2 we need to introduce some notation and
formulate two auxiliary propositions. Analogously to (3.19), (3.21), we write the (m × N)-
matrix function Φ(θ), whose columns form the basis of the generalized eigenspace PΛ, as
follows:

Φ(θ) =
[
Φ(1)(θ), . . . , Φ(l)(θ)

]
, Φ(p)(θ) =

[
ϕ
(p)
1 (θ), . . . , ϕ

(p)
Np

(θ)
]
, (6.1)

where Φ(p)(θ) are (m× Np)-matrices and ϕ
(p)
s (θ) are m-dimensional column vectors. Taking

into account (3.18) and also (2.9), (2.11), we obtain

Φ(p)(θ) = Φ(p)(0)eD(p)θ , Φ(p)(0)D(p) −
∫ 0

−h
dη(θ)Φ(p)(0)eD(p)θ = 0, −h ≤ θ ≤ 0. (6.2)
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Using (2.2), (2.3), we conclude that

ϕ
(p)
1 (θ) = ϕ

(p)
1 (0)eλ(p)θ ,

ϕ
(p)
2 (θ) =

(
ϕ
(p)
1 (0)θ + ϕ

(p)
2 (0)

)
eλ(p)θ ,

...

ϕ
(p)
Np

(θ) =
(

ϕ
(p)
1 (0)

θNp−1

(Np − 1)!
+ · · ·+ ϕ

(p)
Np−1(0)θ + ϕ

(p)
Np

(0)
)

eλ(p)θ ,

(6.3)

and vectors ϕ
(p)
1 (0), . . . , ϕ

(p)
Np

(0) are defined from the equations

∆(λ(p))ϕ
(p)
1 (0) = 0,

∆′(λ(p))ϕ
(p)
1 (0) + ∆(λ(p))ϕ

(p)
2 (0) = 0,

...

∆(Np−1)(λ(p))

(Np − 1)!
ϕ
(p)
1 (0) + · · ·+ ∆′(λ(p))ϕ

(p)
Np−1(0) + ∆(λ(p))ϕ

(p)
Np

(0) = 0.

(6.4)

In much the same way we handle the (N × m)-matrix function Ψ(ξ), whose rows form the
basis of the generalized eigenspace PT

Λ of the transposed equation (2.4). We have

Ψ(ξ) = col(Ψ(1)(ξ), . . . , Ψ(l)(ξ)
)
, Ψ(p)(ξ) = col

(
ψ
(p)
1 (ξ), . . . , ψ

(p)
Np

(ξ)
)
, (6.5)

where Ψ(p)(ξ) are (Np×m)-matrices and ψ
(p)
s (ξ) are m-dimensional row vectors. We then use

(3.18) and also (2.10), (2.12) to derive that

Ψ(p)(ξ) = e−D(p)ξΨ(p)(0), D(p)Ψ(p)(0)−
∫ 0

−h
eD(p)θΨ(p)(0)dη(θ) = 0, 0 ≤ ξ ≤ h. (6.6)

We recall (2.2), (2.3) to deduce that

ψ
(p)
Np

(ξ) = ψ
(p)
Np

(0)e−λ(p)ξ ,

ψ
(p)
Np−1(ξ) =

(
ψ
(p)
Np

(0)(−ξ) + ψ
(p)
Np−1(0)

)
e−λ(p)ξ ,

...

ψ
(p)
1 (ξ) =

(
ψ
(p)
Np

(0)
(−ξ)Np−1

(Np − 1)!
+ · · ·+ ψ

(p)
2 (0)(−ξ) + ψ

(p)
1 (0)

)
e−λ(p)ξ ,

(6.7)

and vectors ψ
(p)
1 (0), . . . , ψ

(p)
Np

(0) are defined from the equations

ψ
(p)
Np

(0)∆(λ(p)) = 0,

ψ
(p)
Np

(0)∆′(λ(p)) + ψ
(p)
Np−1(0)∆(λ

(p)) = 0,

...

ψ
(p)
Np

(0)∆(Np−1)(λ(p))

(Np − 1)!
+ · · ·+ ψ

(p)
2 (0)∆′(λ(p)) + ψ

(p)
1 (0)∆(λ(p)) = 0.

(6.8)

The following propositions hold.
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Proposition 6.1. Let µ 6= λ(p) for some p = 1, . . . , l. Then, for every f (θ) ∈ Ch and ν ∈ N the
following formulas are valid:(

Ψ(p)(ξ),
∫ θ

0
eµ(θ−s) f (s)ds

)
= − (µI − D(p))−1

[
Ψ(p)(0)B0

(∫ θ

0
eµ(θ−s) f (s)ds

)
+
(

Ψ(p)(ξ), f (θ)
)
−Ψ(p)(0) f (0)

]
,

(6.9)(
Ψ(p)(ξ),

∫ θ

0

(θ − s)ν

ν!
eµ(θ−s) f (s)ds

)
= − (µI − D(p))−1Ψ(p)(0)B0

(∫ θ

0

(θ − s)ν

ν!
eµ(θ−s) f (s)ds

)
+ (µI − D(p))−2Ψ(p)(0)B0

(∫ θ

0

(θ − s)ν−1

(ν− 1)!
eµ(θ−s) f (s)ds

)
+ · · ·+ (−1)ν+1(µI − D(p))−(ν+1)

[
Ψ(p)(0)B0

(∫ θ

0
eµ(θ−s) f (s)ds

)
+
(
Ψ(p)(ξ), f (θ)

)
−Ψ(p)(0) f (0)

]
. (6.10)

Corollary 6.2. Let µ 6= λ(p) for some p = 1, . . . , l. Then for every ν ∈N the following formulas hold:(
Ψ(p)(ξ), eµθ I

)
= (µI − D(p))−1Ψ(p)(0)∆(µ), (6.11)(

Ψ(p)(ξ),
θν

ν!
eµθ
)
= (µI − D(p))−1Ψ(p)(0)

∆(ν)(µ)

ν!

− (µI − D(p))−2Ψ(p)(0)
∆(ν−1)(µ)

(ν− 1)!

+ · · ·+ (−1)ν(µI − D(p))−(ν+1)Ψ(p)(0)∆(µ). (6.12)

Proposition 6.3. Let µ = λ(p) for some p = 1, . . . , l. Then for every f (θ) ∈ Ch and ν ∈ N the
following formula holds:

(
Ψ(p)(ξ),

∫ θ

0

(θ − s)ν−1

(ν− 1)!
eµ(θ−s) f (s)ds

)

= −
∫ 0

−h

∫ θ

0



(θ−ξ)ν

ν!
(θ−ξ)ν+1

(ν+1)! . . . . . . (θ−ξ)ν+Np−1

(ν+Np−1)!

0 (θ−ξ)ν

ν!
(θ−ξ)ν+1

(ν+1)! . . . (θ−ξ)ν+Np−2

(ν+Np−2)!
...

. . . . . . . . .
...

0 . . . 0 (θ−ξ)ν

ν!
(θ−ξ)ν+1

(ν+1)!

0 . . . . . . 0 (θ−ξ)ν

ν!


Ψ(p)(0)dη(θ)eµ(θ−ξ) f (ξ)dξ.

(6.13)



34 P. Nesterov

Corollary 6.4. Let µ = λ(p) for some p = 1, . . . , l. Then for every ν ∈N the following formulas hold:

(
Ψ(p)(ξ), eµθ I

)
= Ψ(p)(0)−

∫ 0

−h



θ θ2

2! . . . . . . θNp

Np !

0 θ θ2

2! . . . θNp−1

(Np−1)!
...

. . . . . . . . .
...

0 . . . 0 θ θ2

2!
0 . . . . . . 0 θ


Ψ(p)(0)dη(θ)eµθ , (6.14)

(
Ψ(p)(ξ),

θν

ν!
eµθ
)
= −

∫ 0

−h



θν+1

(ν+1)!
θν+2

(ν+2)! . . . . . . θν+Np

(ν+Np)!

0 θν+1

(ν+1)!
θν+2

(ν+2)! . . . θν+Np−1

(ν+Np−1)!
...

. . . . . . . . .
...

0 . . . 0 θν+1

(ν+1)!
θν+2

(ν+2)!

0 . . . . . . 0 θν+1

(ν+1)!


Ψ(p)(0)dη(θ)eµθ . (6.15)

We emphasize that the proofs of Propositions 6.1, 6.3 and the corresponding Corollar-
ies 6.2, 6.4 are, actually, technical exercises. We omit them here in order to focus on the main
result. The corresponding proofs may be provided by the author on request.

We are now in a position to prove Theorem 3.2.

Proof of Theorem 3.2. For the sake of brevity in the sequel we will omit the upper index (i) in
the notation of the coefficients and variables in problems P1, . . . , PNi , setting µ = µ(i), gr = g(i)r ,
pr(θ) = p(i)r (θ), qr(θ) = q(i)r (θ) and zr(0) = z(i)r (0) (r = 1, . . . Ni). We need to consider two
cases.
Case 1. Number µ ∈ C is not a root of characteristic equation (1.5).

Consider the problem P1. Since matrix ∆(µ) is nonsingular, vector z1(0) is uniquely de-
fined from the first equation of system (3.26)

z1(0) = ∆−1(µ)

[
B0

(∫ θ

0
eµ(θ−s)(p1(s) + q1(s)

)
ds
)
+ g1 − p1(0)− q1(0)

]
. (6.16)

We substitute this expression into the left-hand side of the second equation of system (3.26)
and set Ψ(ξ) = Ψ(p)(ξ), where p is an arbitrary natural number from 1 to l. Using formula
(6.11) from Corollary 6.2, we get(

Ψ(p)(ξ), eµθ I
)
z1(0) = (µI − D(p))−1Ψ(p)(0)

×
[

B0

(∫ θ

0
eµ(θ−s)(p1(s) + q1(s)

)
ds
)
+ g1 − p1(0)− q1(0)

]
. (6.17)

Now, consider the right-hand side of the second equation in system (3.26). It follows from
(2.13) that (

Ψ(p)(ξ), qr(θ)
)
= 0, r = 1, . . . , Ni, (6.18)

since qr(θ) ∈ QΛ due to (3.14), (3.19) and (3.21). Moreover, we derive from (2.8), (3.12), (3.13),
(3.19), (3.21), that (

Ψ(p)(ξ), pr(θ)
)
= Ψ(p)(0)gr, r = 1, . . . , Ni. (6.19)
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We apply now formula (6.9) from Proposition 6.1 with f (θ) = p1(θ) + q1(θ) and take into
account (6.18), (6.19). The right-hand side of the second equation in (3.26) takes the form

−
(

Ψ(p)(ξ),
∫ θ

0
eµ(θ−s)(p1(s) + q1(s)

)
ds
)

= (µI − D(p))−1

×
[

Ψ(p)(0)B0

(∫ θ

0
eµ(θ−s)(p1(s) + q1(s)

)
ds
)

+ Ψ(p)(0)g1 −Ψ(p)(0)
(

p1(0) + q1(0)
)]

.

(6.20)

Comparing the right-hand sides of (6.17) and (6.20) and varying p from 1 to l we state the
unique solvability of the problem P1.

Let us turn to the problem P2. We have

z2(0) = ∆−1(µ)

[
B0

(∫ θ

0

(
(θ − s)eµ(θ−s)(p1(s) + q1(s)

)
+ eµ(θ−s)(p2(s) + q2(s)

))
ds
)

+ g2 − p2(0)− q2(0)− ∆′(µ)z1(0)
]

.

We substitute the above expression into the left-hand side of the second equation of system
(3.27) and set Ψ(ξ) = Ψ(p)(ξ), where p is an arbitrary natural number from 1 to l. Using
formulas (6.11), (6.12) from Corollary 6.2 and also (6.16) yields(

Ψ(p)(ξ), θeµθ I
)
z1(0) +

(
Ψ(ξ), eµθ I

)
z2(0)

= − (µI − D(p))−2Ψ(p)(0)
[

B0

(∫ θ

0
eµ(θ−s)(p1(s) + q1(s)

)
ds
)
+ g1 − p1(0)− q1(0)

]
+ (µI − D(p))−1Ψ(p)(0)

×
[

B0

(∫ θ

0

(
(θ − s)eµ(θ−s)(p1(s) + q1(s)

)
+ eµ(θ−s)(p2(s) + q2(s)

))
ds
)

+ g2 − p2(0)− q2(0)
]

. (6.21)

We apply (6.9), (6.10) to modify the right-hand side of the second equation in (3.27). By (6.18),
(6.19), we conclude that the obtained expression coincides with (6.21). Varying p from 1 to l
we state the unique solvability of the problem P2.

In much the same manner we can prove the unique solvability of the problems Pr (r =

3, . . . , Ni). All we need is to substitute the obtained expressions for z1(0), . . . , zr(0) into the
left-hand side of the second equation of the corresponding system for the problem Pr and,
then, use formulas (6.9), (6.10), (6.11), (6.12), (6.18), (6.19).
Case 2. Number µ ∈ C is a root of characteristic equation (1.5).

In this case matrix ∆(µ) is singular. The first equations in the problems Pr (r = 1, . . . , Ni)

may be written in the form
∆(µ)zr(0) = fr, (6.22)

where fr ∈ Cm is the corresponding right-hand side of the first equation in Pr. It is well-known
that Eq. (6.22) has solution iff y∗ fr = 0 for all fundamental solutions of adjoint system

∆∗(µ)y = 0. (6.23)
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Here (∗) denotes the Hermitian conjugate. Conjugating both sides of (6.23) and using (6.8),
we get the following solvability condition for Eq. (6.22):

ψ
(p)
Np

(0) fr = 0. (6.24)

This condition should be fulfilled for numbers p such that µ = λ(p). We note that, due to
(6.4), the fundamental solutions of the corresponding homogeneous equation (6.22) are the
vectors ϕ

(p)
1 (0) with numbers p (p = 1, . . . , l) such that µ = λ(p). Consequently, if Eq. (6.22) is

solvable, its general solution has the form

zr(0) = ∑
p: λ(p)=µ

cp ϕ
(p)
1 (0) + z̃r, (6.25)

where cp ∈ C are arbitrary constants and z̃r is a certain partial solution of Eq. (6.22).
As in Case 1 we will study problems P1, . . . , PNi successively. First we consider the problem

P1. Let us establish the solvability of the first equation in (3.26). We have

ψ
(p)
Np

(0)
[

B0

(∫ θ

0
eµ(θ−s)(p1(s) + q1(s)

)
ds
)
+ g1 − p1(0)− q1(0)

]
=
∫ 0

−h

∫ θ

0
ψ
(p)
Np

(0)eµ(θ−s)dη(θ)
(

p1(s) + q1(s)
)
ds + ψ

(p)
Np

(0)
(

g1 − p1(0)− q1(0)
)

= −
(
ψ
(p)
Np

(ξ), p1(θ) + q1(θ)
)
+ ψ

(p)
Np

(0)
(

p1(0) + q1(0)
)
+ ψ

(p)
Np

(0)
(

g1 − p1(0)− q1(0)
)

= 0.

Here we used equality µ = λ(p) and formulas (6.7), (6.18), (6.19). Thus, the general solution
of the first equation in (3.26) may be written in form (6.25), where r = 1. We substitute this
expression for z1(0) in the left-hand side of the second equation in (3.26) and use (2.8), (6.3).
We get (

Ψ(ξ), eµθ I
)
z1(0) = ∑

p: λ(p)=µ

cp
(
Ψ(ξ), ϕ

(p)
1 (θ)

)
+
(
Ψ(ξ), eµθ z̃1

)
= ∑

p: λ(p)=µ

cpe(p) +
(
Ψ(ξ), eµθ z̃1

)
. (6.26)

Here, e(p) is the N-dimensional column vector whose only nonzero element is the number 1 in
position 1 + N1 + · · ·+ Np−1 (N0 = 0). Taking into account the right-hand side of the second
equation in (3.26), we uniquely define constants cp:

cp = −(e(p))∗
(

Ψ(ξ),
∫ θ

0
eµ(θ−s)(p1(s) + q1(s)

)
ds
)
− (e(p))∗

(
Ψ(ξ), eµθ z̃1

)
= −

(
ψ
(p)
1 (ξ),

∫ θ

0
eµ(θ−s)(p1(s) + q1(s)

)
ds
)
−
(
ψ
(p)
1 (ξ), eµθ z̃1

)
. (6.27)

Therefore, if solution z1(0) of (3.26) exists, it has form (6.25), where r = 1, and constants
cp are described by (6.27). Moreover, if this solution exists it is uniquely defined. Namely, if
we consider the corresponding homogeneous system (3.26), by (6.25), (6.27) we conclude that
it has only zero solution.

We will now show that the constructed solution z1(0) of the first equation in (3.26) satisfies
the second equation, where Ψ(ξ) = Ψ(p)(ξ) and p varies from 1 to l. We remark that if number
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p is such that λ(p) 6= µ this is done in the same way as in Case 1. Actually, equality (6.17)
holds for the left-hand side of the second equation in (3.26) and equality (6.20) holds for the
right-hand side. Consequently, for each number p such that λ(p) = µ we should verify the
validity of the vector equality

(
Ψ(p)(ξ), eµθ I

)
z1(0) = −

(
Ψ(p)(ξ),

∫ θ

0
eµ(θ−s)(p1(s) + q1(s)

)
ds
)

, (6.28)

consisting of Np scalar equalities. It follows from (6.14), with account of (2.3) and (6.8), that

(
Ψ(p)(ξ), eµθ I

)
z1(0) =



(
ψ
(p)
1 (ξ),eµθ I

)
ψ
(p)
2 (0)∆′(µ)+···+ψ

(p)
Np (0)

∆(Np−1)
(µ)

(Np−1)!

ψ
(p)
3 (0)∆′(µ)+···+ψ

(p)
Np (0)

∆(Np−2)
(µ)

(Np−2)!

...
ψ
(p)
Np (0)∆

′(µ)


z1(0)

=



(
ψ
(p)
1 (ξ),eµθ I

)
−ψ

(p)
1 (0)∆(µ)

−ψ
(p)
2 (0)∆(µ)

...
−ψ

(p)
Np−1(0)∆(µ)

z1(0)

=


(

ψ
(p)
1 (ξ),eµθ I

)
z1(0)

0
0
...
0

−


0
ψ
(p)
1 (0)

ψ
(p)
2 (0)

...
ψNp−1(0)

∆(µ)z1(0). (6.29)

Since the above constructed vector z1(0) satisfies the first equation in (3.26), we obtain

(
Ψ(p)(ξ), eµθ I

)
z1(0)

=


(

ψ
(p)
1 (ξ),eµθ I

)
z1(0)

0
0
...
0



−


0

ψ
(p)
1 (0)

ψ
(p)
2 (0)

...
ψNp−1(0)


[

B0

(∫ θ

0
eµ(θ−s)(p1(s) + q1(s)

)
ds
)
+ g1 − p1(0)− q1(0)

]
. (6.30)

Consider the right-hand side of (6.28). We apply formula (6.13) from Proposition 6.3 and use
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(6.7). We get

−
(

Ψ(p)(ξ),
∫ θ

0
eµ(θ−s) f (s)ds

)

= −


(

ψ
(p)
1 (ξ),

∫ θ
0 eµ(θ−s) f (s)ds

)
0
0
...
0



+
∫ 0

−h

∫ θ

0


0

ψ
(p)
2 (0)(θ−ξ)+ψ

(p)
3 (0) (θ−ξ)2

2! +···+ψ
(p)
Np (0)

(θ−ξ)
Np−1

(Np−1)!

...
ψ
(p)
Np−1(0)(θ−ξ)+ψ

(p)
Np (0)

(θ−ξ)2
2!

ψ
(p)
Np (0)(θ−ξ)

eµ(θ−ξ)dη(θ) f (ξ)dξ

= −


(

ψ
(p)
1 (ξ),

∫ θ
0 eµ(θ−s) f (s)ds

)
0
0
...
0

+
∫ 0

−h

∫ θ

0


0

ψ
(p)
1 (ξ−θ)−ψ

(p)
1 (0)e−µ(ξ−θ)

...
ψ
(p)
Np−2(ξ−θ)−ψ

(p)
Np−2(0)e

−µ(ξ−θ)

ψ
(p)
Np−1(ξ−θ)−ψ

(p)
Np−1(0)e

−µ(ξ−θ)

dη(θ) f (ξ)dξ.

Hence, by (2.2) and (2.5),

−
(

Ψ(p)(ξ),
∫ θ

0
eµ(θ−s) f (s)ds

)
= −



(
ψ
(p)
1 (ξ),

∫ θ
0 eµ(θ−s) f (s)ds

)
(

ψ
(p)
1 (ξ), f (θ)

)
...(

ψ
(p)
Np−2(ξ), f (θ)

)(
ψ
(p)
Np−1(ξ), f (θ)

)



+


0

ψ
(p)
1 (0) f (0)

...
ψ
(p)
Np−2(0) f (0)

ψ
(p)
Np−1(0) f (0)

−


0
ψ
(p)
1 (0)

...
ψ
(p)
Np−2(0)

ψ
(p)
Np−1(0)

B0

(∫ θ

0
eµ(θ−s) f (s)ds

)
. (6.31)

Setting f (θ) = p1(θ) + q1(θ) and recalling (6.18), (6.19), we conclude that the right-hand side
of (6.31) coincides with the right-hand side of (6.30) with the possible exception of the first
components of the corresponding vectors. But the first components of these vectors coincide
due to (6.26) and the choice of cp according to (6.27). Therefore, all Np equalities in (6.28) hold.

Consider now the problem Pr with 2 ≤ r ≤ Ni, assuming that the unique solvability of
all the previous problems is already proven. First, we show that the first equation of the
corresponding system is solvable. Writing this equation in the form (6.22) and using the
solvability condition (6.24) yields

ψ
(p)
Np

(0)
[

B0

(∫ θ

0

( (θ − s)r−1

(r− 1)!
eµ(θ−s)(p1(s) + q1(s)

)
+ · · ·+ eµ(θ−s)(pr(s) + qr(s)

))
ds
)

+ gr − pr(0)− qr(0)− ∆′(µ)zr−1(0)− · · · −
∆(r−1)(µ)

(r− 1)!
z1(0)

]
= −

(
ψ
(p)
Np

(ξ),
∫ θ

0

(θ − s)r−2

(r− 2)!
eµ(θ−s)(p1(s) + q1(s)

)
ds
)



Asymptotic integration of functional differential systems 39

− · · · −
(

ψ
(p)
Np

(ξ),
∫ θ

0
eµ(θ−s)(pr−1(s) + qr−1(s)

)
ds
)

−
(

ψ
(p)
Np

(ξ), pr(θ) + qr(θ)
)
+ ψ

(p)
Np

(0)
(

pr(0) + qr(0)
)

+ ψ
(p)
Np

(0)
(

gr − pr(0)− qr(0)− ∆′(µ)zr−1(0)− · · · −
∆(r−1)(µ)

(r− 1)!
z1(0)

)
. (6.32)

Here we also used formula (6.13) (to be precise, we used the equality for the last components
of the corresponding vectors on the left-hand side and on the right-hand side of this formula).
Moreover, we took into account the form of the function ψ

(p)
Np

(ξ) that is defined by (6.7), the
Riesz representation (2.2) of B0 and the definition of the bilinear form (2.5). Let fr denote the
vector in the square brackets on the left-hand side of (6.32). We use the second equation in
the corresponding system of the problem Pr−1 and apply (6.18), (6.19). Then it follows from
(6.32) that

ψ
(p)
Np

(0) fr =

(
ψ
(p)
Np

(ξ),
θr−2

(r− 2)!
eµθ I

)
z1(0) + · · ·+

(
ψ
(p)
Np

(ξ), eµθ I
)

zr−1(0)

− ψ
(p)
Np

(0)
(

∆′(µ)zr−1(0) + · · ·+
∆(r−1)(µ)

(r− 1)!
z1(0)

)
. (6.33)

What is left is to use formulas (6.14), (6.15) (namely, we should use the equality for the last
components of the corresponding vectors on the left-hand side and on the right-hand side of
these formulas) to modify the right-hand side of (6.33) with account of (2.3). Finally, some
easy computations imply (6.24). Consequently, the first equation in the problem Pr is solvable
and its general solution is described by (6.25). Exactly in the same manner as for the problem
P1 we define constants cp by substitution of (6.25) into the second equation in Pr:(

Ψ(p)(ξ),
θr−1

(r− 1)!
eµθ I

)
z1(0) + · · ·+

(
Ψ(p)(ξ), θeµθ I

)
zr−1(0) +

(
Ψ(p)(ξ), eµθ I

)
zr(0)

= −
(

Ψ(p)(ξ),
∫ θ

0

(θ − s)r−1

(r− 1)!
eµ(θ−s)(p1(s) + q1(s)

)
ds
)

− · · · −
(

Ψ(p)(ξ),
∫ θ

0
eµ(θ−s)(pr(s) + qr(s)

)
ds
)

. (6.34)

Hence

cp = −
(

ψ
(p)
1 (ξ),

∫ θ

0

(θ − s)r−1

(r− 1)!
eµ(θ−s)(p1(s) + q1(s)

)
ds
)

− · · · −
(

ψ
(p)
1 (ξ),

∫ θ

0
eµ(θ−s)(pr(s) + qr(s)

)
ds
)
−
(

ψ
(p)
1 (ξ),

θr−1

(r− 1)!
eµθ I

)
z1(0)

− · · · −
(
ψ
(p)
1 (ξ), θeµθ I

)
zr−1(0)−

(
ψ
(p)
1 (ξ), eµθ z̃r

)
. (6.35)

We should now verify for each p the validity of Np scalar equalities in (6.34). If number p is
such that λ(p) 6= µ, the validity of these equalities is verified in the same way as for the Case 1.
We should only note that we need not to have the expression of the form zs(0) = ∆−1(µ) fs

for zs(0) (s = 1, . . . , r). It is sufficient to know that there exists zs(0) that satisfies equation
∆(µ)zs(0) = fs.

In what follows we will analyze equalities in (6.34) only for numbers p such that λ(p) = µ.
Note that the first equality in (6.34) holds due to the representation (6.25) of zr(0) and the
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choice of cp according to (6.35). Let us verify the validity of the (ν + 1)-th equality in (6.34),
where 1 ≤ ν ≤ Np − 1. The right-hand side of the (ν + 1)-th equality in (6.34) with account of
(6.13) takes the form∫ 0

−h

∫ θ

0

(
ψ
(p)
ν+1(0)

(θ − ξ)r

r!
+ ψ

(p)
ν+2(0)

(θ − ξ)r+1

(r + 1)!
+ · · ·+ ψ

(p)
Np

(0)
(θ − ξ)Np+r−1−ν

(Np + r− 1− ν)!

)
× eµ(θ−ξ)dη(θ)

(
p1(ξ) + q1(ξ)

)
dξ

+
∫ 0

−h

∫ θ

0

(
ψ
(p)
ν+1(0)

(θ − ξ)r−1

(r− 1)!
+ · · ·+ ψ

(p)
Np

(0)
(θ − ξ)Np+r−2−ν

(Np + r− 2− ν)!

)
× eµ(θ−ξ)dη(θ)

(
p2(ξ) + q2(ξ)

)
dξ (6.36)

+ · · ·+
∫ 0

−h

∫ θ

0

(
ψ
(p)
ν+1(0)

(θ − ξ)2

2!
+ · · ·+ ψ

(p)
Np

(0)
(θ − ξ)Np+1−ν

(Np + 1− ν)!

)
× eµ(θ−ξ)dη(θ)

(
pr−1(ξ) + qr−1(ξ)

)
dξ

+
∫ 0

−h

∫ θ

0

(
ψ
(p)
ν+1(0)(θ − ξ) + · · ·+ ψ

(p)
Np

(0)
(θ − ξ)Np−ν

(Np − ν)!

)
eµ(θ−ξ)dη(θ)

(
pr(ξ) + qr(ξ)

)
dξ.

The ν-th equality in the second equation of the problem Pr−1 with account of (6.13) has the
form(

ψ
(p)
ν (ξ),

θr−2

(r− 2)!
eµθ I

)
z1(0) + · · ·+

(
ψ
(p)
ν (ξ), θeµθ I

)
zr−2(0) +

(
ψ
(p)
ν (ξ), eµθ I

)
zr−1(0)

=
∫ 0

−h

∫ θ

0

(
ψ
(p)
ν (0)

(θ − ξ)r−1

(r− 1)!
+ ψ

(p)
ν+1(0)

(θ − ξ)r

r!
+ · · ·+ ψ

(p)
Np

(0)
(θ − ξ)Np+r−1−ν

(Np + r− 1− ν)!

)
× eµ(θ−ξ)dη(θ)

(
p1(ξ) + q1(ξ)

)
dξ

+
∫ 0

−h

∫ θ

0

(
ψ
(p)
ν (0)

(θ − ξ)r−2

(r− 2)!
+ · · ·+ ψ

(p)
Np

(0)
(θ − ξ)Np+r−2−ν

(Np + r− 2− ν)!

)
× eµ(θ−ξ)dη(θ)

(
p2(ξ) + q2(ξ)

)
dξ

+ · · ·+
∫ 0

−h

∫ θ

0

(
ψ
(p)
ν (0)(θ − ξ) + ψ

(p)
ν+1(0)

(θ − ξ)2

2!
+ · · ·+ ψ

(p)
Np

(0)
(θ − ξ)Np+1−ν

(Np + 1− ν)!

)
× eµ(θ−ξ)dη(θ)

(
pr−1(ξ) + qr−1(ξ)

)
dξ. (6.37)

We express the common part of (6.36) and (6.37) from relation (6.37) and substitute it into
(6.36). The right-hand side of the (ν + 1)-th equality in (6.34), therefore, takes the form∫ 0

−h

∫ θ

0

(
ψ
(p)
ν+1(0)(θ − ξ) + · · ·+ ψ

(p)
Np

(0)
(θ − ξ)Np−ν

(Np − ν)!

)
eµ(θ−ξ)dη(θ)

(
pr(ξ) + qr(ξ)

)
dξ

+

(
ψ
(p)
ν (ξ),

θr−2

(r− 2)!
eµθ I

)
z1(0) + · · ·+

(
ψ
(p)
ν (ξ), θeµθ I

)
zr−2(0) +

(
ψ
(p)
ν (ξ), eµθ I

)
zr−1(0)

−
∫ 0

−h

∫ θ

0
ψ
(p)
ν (0)

(θ − ξ)r−1

(r− 1)!
eµ(θ−ξ)dη(θ)

(
p1(ξ) + q1(ξ)

)
dξ

− · · · −
∫ 0

−h

∫ θ

0
ψ
(p)
ν (0)(θ − ξ)eµ(θ−ξ)dη(θ)

(
pr−1(ξ) + qr−1(ξ)

)
dξ. (6.38)
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In (6.38), we add and subtract the quantity

∫ 0

−h

∫ θ

0
ψ
(p)
ν (0)eµ(θ−ξ)dη(θ)

(
pr(ξ) + qr(ξ)

)
dξ = ψ

(p)
ν (0)B0

(∫ θ

0
eµ(θ−s)(pr(s) + qr(s)

)
ds
)

.

Then, by using (2.2), we deduce from the first equation of the problem Pr the following repre-
sentation for (6.38):

∫ 0

−h

∫ θ

0

(
ψ
(p)
ν (0) + ψ

(p)
ν+1(0)(θ − ξ) + · · ·+ ψ

(p)
Np

(0)
(θ − ξ)Np−ν

(Np − ν)!

)
× eµ(θ−ξ)dη(θ)

(
pr(ξ) + qr(ξ)

)
dξ

+

(
ψ
(p)
ν (ξ),

θr−2

(r− 2)!
eµθ I

)
z1(0) + · · ·+

(
ψ
(p)
ν (ξ), θeµθ I

)
zr−2(0) +

(
ψ
(p)
ν (ξ), eµθ I

)
zr−1(0)

− ψ
(p)
ν (0)

(
∆(r−1)(µ)

(r− 1)!
z1(0) + · · ·+ ∆′(µ)zr−1(0) + ∆(µ)zr(0)− gr + pr(0) + qr(0)

)
. (6.39)

We now use the expression (6.7) for function ψν(ξ) and apply (2.5) to write the integral term
in (6.39) in the form

−
(
ψ
(p)
ν (ξ), pr(θ) + qr(θ)

)
+ ψ

(p)
ν (0)

(
pr(0) + qr(0)

)
.

Due to (6.18), (6.19), we can rewrite (6.39) as follows:

(
ψ
(p)
ν (ξ),

θr−2

(r− 2)!
eµθ I

)
z1(0) + · · ·+

(
ψ
(p)
ν (ξ), θeµθ I

)
zr−2(0) +

(
ψ
(p)
ν (ξ), eµθ I

)
zr−1(0)

− ψ
(p)
ν (0)

(
∆(r−1)(µ)

(r− 1)!
z1(0) + · · ·+ ∆′(µ)zr−1(0) + ∆(µ)zr(0)

)
. (6.40)

By applying (2.3), (6.14), (6.15) and collecting terms containing zs(0), we get the following
representation for (6.40):

(
ψ
(p)
ν+1(0)

∆(r)(µ)

r!
+ · · ·+ ψ

(p)
Np

(0)
∆(Np+r−1−ν)

(Np + r− 1− ν)!

)
z1(0)

+ · · ·+
(

ψ
(p)
ν+1(0)

∆′′(µ)
2!

+ · · ·+ ψ
(p)
Np

(0)
∆(Np+1−ν)

(Np + 1− ν)!

)
zr−1(0)− ψ

(p)
ν (0)∆(µ)zr(0)

=

(
ψ
(p)
ν+1(ξ),

θr−1

(r− 1)!
eµθ I

)
z1(0) + · · ·+

(
ψ
(p)
ν+1(ξ), θeµθ I

)
zr−1(0)

+
(
ψ
(p)
ν+1(ξ), eµθ I

)
zr(0). (6.41)

Here, to obtain the last term on the right-hand side of the above expression we also used
formula (6.29) that is evidently valid if we replace z1(0) by zr(0). Finally, we note that the
right-hand side of (6.41) coincides with the left-hand side of the (ν + 1)-th equality in (6.34).
Thus, we have established the validity of the (ν + 1)-th equality in (6.34).

The proof is complete.
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