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Abstract. In this paper, we determine a concrete interval of positive parameters λ, for
which we prove the existence of infinitely many homoclinic solutions for a discrete
problem

−∆
(
a(k)φp(∆u(k− 1))

)
+ b(k)φp(u(k)) = λ f (k, u(k)), k ∈ Z,

where the nonlinear term f : Z×R → R has an appropriate oscillatory behavior at
infinity, without any symmetry assumptions. The approach is based on critical point
theory.
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1 Introduction

In the present paper we deal with the following nonlinear second-order difference equation:{
−∆

(
a(k)φp(∆u(k− 1))

)
+ b(k)φp(u(k)) = λ f (k, u(k)) for all k ∈ Z

u(k)→ 0 as |k| → ∞.
(1.1)

Here p > 1 is a real number, λ is a positive real parameter, φp(t) = |t|p−2t for all t ∈ R,
a, b : Z → (0,+∞), while f : Z×R → R is a continuous function. Moreover, the forward
difference operator is defined as ∆u(k − 1) = u(k) − u(k − 1). We say that a solution u =

{u(k)} of (1.1) is homoclinic if lim|k|→∞ u(k) = 0.

The problem (1.1) is in a class of partial difference equations which usually describe the
evolution of certain phenomena over the course of time. The theory of nonlinear discrete
dynamical systems has been used to examine discrete models appearing in many fields such
as computing, economics, biology and physics.
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Boundary value problems for difference equations can be studied in several ways. It is
well known that variational method in such problems is a powerful tool. Many authors have
applied different results of critical point theory to prove existence and multiplicity results for
the solutions of discrete nonlinear problems. Studying such problems on bounded discrete
intervals allows for the search for solutions in a finite-dimensional Banach space (see [1, 2, 5,
6, 14]). The issue of finding solutions on unbounded intervals is more delicate. To study such
problems directly by variational methods, [13] and [8] introduced coercive weight functions
which allow for preservation of certain compactness properties on lp-type spaces.

The goal of the present paper is to establish the existence of a sequence of homoclinic solu-
tions for the problem (1.1), which has been studied recently in several papers. Infinitely many
solutions were obtained in [20] by employing Nehari manifold methods, in [9] by applying a
variant of the fountain theorem (but see Section 5), and in [18] by use of the Ricceri’s theorem
(see [3, 17]). In this present paper, the result will be achieved by providing the nonlinearity
with a suitable oscillatory behavior. For this kind of nonlinearity see [10–12]. We refer to
[7, 15, 16, 19] for related results that involve differential operators with variable exponents.

A special case of our contributions reads as follows. For b : Z → R and the continuous
mapping f : Z×R→ R define the following conditions:

(B) b(k) ≥ b0 > 0 for all k ∈ Z, b(k)→ +∞ as |k| → +∞;

(F1) lim
t→0

| f (k, t)|
|t|p−1 = 0 uniformly for all k ∈ Z;

(F2) there are sequences {cn}, {dn} such that 0 < cn < dn < cn+1, limn→∞ cn = +∞ and
f (k, t) ≤ 0 for every k ∈ Z and t ∈ [cn, dn], n ∈N

(F3) there is r < 0 such that supt∈[r,dn]
|F(·.t)| ∈ l1 for all n ∈N;

(F+
4 ) lim sup

(k,t)→(+∞,+∞)

F(k, t)
[a(k + 1) + a(k) + b(k)] tp = +∞;

(F−4 ) lim sup
(k,t)→(−∞,+∞)

F(k, t)
[a(k + 1) + a(k) + b(k)] tp = +∞;

(F5) sup
k∈Z

(
lim sup

t→+∞

F(k, t)
[a(k + 1) + a(k) + b(k)] tp

)
= +∞,

where F(k, t) is the primitive function of f (k, t), that is F(k, t) =
∫ t

0 f (k, s) ds for every t ∈ R

and k ∈ Z. The solutions are found in the normed space (X, ‖·‖), where

X =

{
u : Z→ R : ∑

k∈Z

[
a(k) |∆u(k− 1)|p + b(k)|u(k)|p

]
< ∞

}

and

‖u‖ =
(

∑
k∈Z

[
a(k) |∆u(k− 1)|p + b(k)|u(k)|p

]) 1
p

.
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Theorem 1.1. Assume that (A), (F1), (F2) and (F3) are satisfied. Moreover, assume that at least one
of the conditions (F+

4 ), (F−4 ), (F5) is satisfied. Then, for any λ > 0, the problem (1.1) admits a sequence
of non-negative solutions in X whose norms tend to infinity.

The plan of the paper is as follows: Section 2 is devoted to our abstract framework, while
Section 3 is dedicated to the main result. In Section 4 we give two examples of the indepen-
dence of conditions (F+

4 ) and (F5). Finally, we compare our result with other known results.

2 Abstract framework

We begin by defining some Banach spaces. For all 1 ≤ p < +∞, we denote `p the set of all
functions u : Z→ R such that

‖u‖p
p = ∑

k∈Z

|u(k)|p < +∞.

Moreover, we denote `∞ the set of all functions u : Z→ R such that

‖u‖∞ = sup
k∈Z

|u(k)| < +∞

We set

X =

{
u : Z→ R : ∑

k∈Z

[
a(k) |∆u(k− 1)|p + b(k)|u(k)|p

]
< ∞

}

and

‖u‖ =
(

∑
k∈Z

[
a(k) |∆u(k− 1)|p + b(k)|u(k)|p

]) 1
p

.

Clearly we have

‖u‖∞ ≤ ‖u‖p ≤ b
− 1

p
0 ‖u‖ for all u ∈ X. (2.1)

As is shown in [8, Proposition 3], (X, ‖ · ‖) is a reflexive Banach space and the embedding
X ↪→ lp is compact.

Let

Φ(u) :=
1
p ∑

k∈Z

[
a(k) |∆u(k− 1)|p + b(k) |u(k)|p

]
for all u ∈ X

and

Ψ(u) := ∑
k∈Z

F(k, u(k)) for all u ∈ lp

where F(k, s) =
∫ s

0 f (k, t)dt for s ∈ R and k ∈ Z. Let J : X → R be the functional associated to
problem (1.1) defined by

Jλ(u) = Φ(u)− λΨ(u).
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Proposition 2.1. Assume that (A) and (F1) are satisfied. Then

(a) Φ ∈ C1(X);

(b) Ψ ∈ C1(lp) and Ψ ∈ C1(X);

(c) Jλ ∈ C1(X) and every critical point u ∈ X of Jλ is a homoclinic solution of problem (1.1);

(d) Jλ is sequentially weakly lower semicontinuous functional on X.

This version of the proposition, parts (a), (b) and (c), can be proved essentially by the
same way as Propositions 5, 6 and 7 in [8], where a(k) ≡ 1 on Z and the norm on X is slightly
different. See also Lemma 2.3 in [9]. The proof of part (d) is standard.

3 Main theorem

Now we will formulate and prove a stronger form of Theorem 1.1. Let

B± := lim sup
(k,t)→(±∞,+∞)

F(k, t)
[a(k + 1) + a(k) + b(k)] tp

and

B0 := sup
k∈Z

(
lim sup

t→+∞

F(k, t)
[a(k + 1) + a(k) + b(k)] tp

)
.

Set B = max{B±, B0}. For conveniece we put 1
+∞ = 0.

Theorem 3.1. Assume that (A), (F1), (F2) and (F3) are satisfied and assume that B > 0. Then, for
any λ > 1

Bp , the problem (1.1) admits a sequence of non-negative solutions in X whose norms tend to
infinity.

Proof. Put λ > 1
Bp and put Φ, Ψ and Jλ as in the previous section. By Proposition 2.1 we need

to find a sequence {un} of critical points of Jλ with non-negative terms whose norms tend to
infinity.

Let {cn}, {dn} be sequences and r < 0 a number satisfying conditions (F2) and (F3). For
every n ∈N define the set

Wn = {u ∈ X : r ≤ u(k) ≤ dn for every k ∈ Z} .

Claim 3.2. For every n ∈ N, the functional Jλ is bounded from below on Wn and its infimum on Wn

is attained.

Clearly, the set Wn is weakly closed in X. By condition (F3) we have

J(u) =
1
p ∑

k∈Z

[
a(k) |∆u(k− 1)|p + b(k) |u(k)|p

]
− λ ∑

k∈Z

F(k, u(k))

≥ − λ ∑
k∈Z

max
t∈[r,dn]

F(k, t) > −∞

for u ∈ Wn. Thus, Jλ is bounded from below on Wn. Let ηn = infWn Jλ and {ũl} be sequence
in X such that ηn ≤ Jλ(ũl) ≤ ηn +

1
l for all l ∈N. Then

1
p
‖ũl‖p =

1
p ∑

k∈Z

[
a(k) |∆ũl(k− 1)|p + b(k) |ũl(k)|p

]
= J(ũl) + λ ∑

k∈Z

F(k, ũl(k))

≤ ηn + 1 + λ ∑
k∈Z

max
t∈[r,dn]

F(k, t)
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for all l ∈ N, i.e. {ũl} is bounded in X. So, up to subsequence, {ũl} weakly converges in
X to some un ∈ Wn. By the sequentially weakly lower semicontinuity of Jλ we conclude that
Jλ(un) = ηn = infWn Jλ. This proves Claim 3.2.

Claim 3.3. For every n ∈N, let un ∈Wn be such that Jλ(un) = infWn Jλ. Then, 0 ≤ un(k) ≤ cn for
all k ∈ Z.

Let K = {k ∈ Z : un(k) /∈ [0, cn]} and suppose that K 6= ∅. We then introduce the sets

K− = {k ∈ K : un(k) < 0} and K+ = {k ∈ K : un(k) > cn}.

Thus, K = K− ∪ K+.
Define the truncation function γ : R → R by γ(s) = min(s+, cn), where s+ = max(s, 0).

Now, set wn = γ ◦ un. Clearly wn ∈ X. Moreover, wn(k) ∈ [0, cn] for every k ∈ Z; thus
wn ∈Wn.

We also have that wn(k) = un(k) for all k ∈ Z \K, wn(k) = 0 for all k ∈ K−, and wn(k) = cn

for all k ∈ K+. Furthermore, we have

Jλ(wn)− Jλ(un) =
1
p ∑

k∈Z

a(k) (|∆wn(k− 1)|p − |∆un(k− 1)|p) +

+
1
p ∑

k∈Z

b(k)
(
|wn(k)|p − |un(k)|p

)
− λ ∑

k∈Z

[F(k, wn(k))− F(k, un(k))]

=:
1
p

I1 +
1
p

I2 − λI3.

(3.1)

Since γ is a Lipschitz function with Lipschitz-constant 1, and w = γ ◦ ũ, we have

I1 = ∑
k∈Z

a(k) (|∆wn(k− 1)|p − |∆un(k− 1)|p)

= ∑
k∈Z

a(k) (|wn(k)− wn(k− 1)|p − |un(k)− un(k− 1)|p)

≤ 0.

(3.2)

Moreover, we have

I2 = ∑
k∈Z

b(k)
(
|wn(k)|p − |un(k)|p

)
= ∑

k∈K
b(k)

(
|wn(k)|p − (un(k))p)

= ∑
k∈K−

−b(k) |un(k)|p + ∑
k∈K+

b(k)[cp
n − |un(k)|p]

≤ 0.

(3.3)

Next, we estimate I3. First, F(k, s) = 0 for s ≤ 0, k ∈ Z, and consequently ∑k∈K− [F(k, wn(k))−
F(k, un(k))] = 0. By the mean value theorem, for every k ∈ K+, there exists ξk ∈ [cn, un(k)] ⊂
[cn, dn] such that F(k, wn(k))− F(k, un(k)) = F(k, cn)− F(k, un(k)) = f (k, ξk)(cn − un(k)). Tak-
ing into account hypothesis (F2), we have that F(k, wn(k))− F(k, un(k)) ≥ 0 for every k ∈ K+.
Consequently,

I3 = ∑
k∈Z

[F(k, wn(k))− F(k, un(k))] = ∑
k∈K

[F(k, wn(k))− F(k, un(k))]

= ∑
k∈K+

[F(k, wn(k))− F(k, un(k))] ≥ 0.
(3.4)
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Combining relations (3.2)–(3.4) with (3.1), we have that

Jλ(wn)− Jλ(un) ≤ 0.

But Jλ(wn) ≥ Jλ(un) = infWn Jλ since wn ∈ Wn. So, every term in Jλ(wn)− Jλ(un) should be
zero. In particular, from I2, we have

∑
k∈K−

|un(k)|p = ∑
k∈K+

[cp
n − |un(k)|p] = 0,

which imply that un(k) = 0 for every k ∈ K− and un(k) = cn for every k ∈ K+. By definition
of the sets K− and K+, we must have K− = K+ = ∅, which contradicts K− ∪ K+ = K 6= ∅;
therefore K = ∅. This proves Claim 3.3.

Claim 3.4. For every n ∈N, let un ∈Wn be such that Jλ(un) = infWn Jλ. Then, un is a critical point
of Jλ.

It is sufficient to show that un is local minimum point of Jλ in X. Assuming the contrary,
consider a sequence {vi} ⊂ X which converges to un and Jλ(vi) < Jλ(un) = infWn Jλ for all
i ∈ N. From this inequality it follows that vi /∈ Wn for any i ∈ N. Since vi → un in X, then
due to (2.1), vi → un in l∞ as well. Choose a positive δ such that δ < 1

2 min{−r, dn− cn}. Then,
there exists iδ ∈ N such that ‖vi − un‖∞ < δ for every i ≥ iδ. By using Claim 3.3 and taking
into account the choice of the number δ, we conclude that r < vi(k) < dn for all k ∈ Z and
i ≥ iδ, which contradicts the fact vi /∈Wn. This proves Claim 3.4.

Claim 3.5. For every n ∈N, let ηn = infWn Jλ. Then limn→+∞ ηn = −∞.

Firstly, we assume that B = B±. Without loss of generality we can assume that B = B+.
We begin with B = +∞. Then there exists a number σ > 1

λp , a sequence of positive integers
{kn} and a sequence of real numbers {tn} which tends to +∞, such that

F(kn, tn) > σ(a(kn + 1) + a(kn) + b(kn))t
p
n

for all n ∈N. Up to extracting a subsequence, we may assume that dn ≥ tn ≥ 1 for all n ∈N.
Define in X a sequence {wn} such that, for every n ∈N, wn(kn) = tn and wn(k) = 0 for every
k ∈ Z\{kn}. It is clear that wn ∈Wn. One then has

Jλ(wn) =
1
p ∑

k∈Z

(
a(k) |∆wn(k− 1)|p + b(k) |wn(k)|p

)
− λ ∑

k∈Z

F(k, wn(k))

<
1
p
(a(kn + 1) + a(kn)) tp

n +
1
p

b(kn)t
p
n − λσ(a(kn + 1) + a(kn) + b(kn))t

p
n

=

(
1
p
− λσ

)
(a(kn + 1) + a(kn) + b(kn))t

p
n

which gives limn→+∞ J(wn) = −∞. Next, assume that B < +∞. Since λ > 1
Bp , we can fix

ε < B− 1
λp . Therefore, also taking {kn} a sequence of positive integers and {tn} a sequence of

real numbers with limn→+∞ tn = +∞ and dn ≥ tn ≥ 1 for all n ∈N such that

F(kn, tn) > (B− ε)(a(kn + 1) + a(kn) + b(kn))t
p
n

for all n ∈N, choosing {wn} in Wn as above, one has

Jλ(wn) <

(
1
p
− λ(B− ε)

)
(a(kn + 1) + a(kn) + b(kn))t

p
n.
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So, also in this case, limn→+∞ J(wn) = −∞.
Now, assume that B = B0. We begin with B = +∞. Then there exists a number σ > 1

λp
and an index k0 ∈ Z such that

lim sup
t→+∞

F(k0, t)
(a(k0 + 1) + a(k0) + b(k0)) |t|p

> σ.

Then, there exists a sequence of real numbers {tn} such that limn→+∞ tn = +∞ and

F(k0, tn) > σ(a(k0 + 1) + a(k0) + b(k0))t
p
n

for all n ∈ N. Up to considering a subsequence, we may assume that dn ≥ tn ≥ 1 for all
n ∈ N. Thus, take in X a sequence {wn} such that, for every n ∈ N, wn(k0) = tn and
wn(k) = 0 for every k ∈ Z\{k0}. Then, one has wn ∈Wn and

Jλ(wn) =
1
p ∑

k∈Z

(
a(k) |∆wn(k− 1)|p + b(k) |wn(k)|p

)
− λ ∑

k∈Z

F(k, wn(k))

<
1
p
(a(k0 + 1) + a(k0)) tp

n +
1
p

b(k0)t
p
n − λσ(a(k0 + 1) + a(k0) + b(k0))t

p
n

=

(
1
p
− λσ

)
(a(k0 + 1) + a(k0) + b(k0))t

p
n,

which gives limn→+∞ J(wn) = −∞. Next, assume that B < +∞. Since λ > 1
Bp , we can fix

ε > 0 such that ε < B− 1
λp . Therefore, there exists an index k0 ∈ Z such that

lim sup
t→+∞

F(k0, t)
(a(k0 + 1) + a(k0) + b(k0))tp > B− ε.

and taking {tn} a sequence of real numbers with limn→+∞ tn = +∞ and dn ≥ tn ≥ 1 for all
n ∈N and

F(k0, tn) > (B− ε) (a(k0 + 1) + a(k0) + b(k0))t
p
n

for all n ∈N, choosing {wn} in Wn as above, one has

Jλ(wn) <

(
1
p
− λ(B− ε)

)
(a(k0 + 1) + a(k0) + b(k0))t

p
n.

So, also in this case, limn→+∞ Jλ(wn) = −∞. This proves Claim 3.5.
Now we are ready to end the proof of Theorem 3.1. With Proposition 2.1, Claims 3.3–3.5,

up to a subsequence, we have infinitely many pairwise distinct non-negative homoclinic solu-
tions un of (1.1) with un ∈Wn. To finish the proof, we will prove that ‖un‖ → +∞ as n→ +∞.
Let us assume the contrary. Therefore, there is a subsequence {uni} of {un} which is bounded
in X. Thus, it is also bounded in l∞. Consequently, we can find m0 ∈ N such that uni ∈ Wm0

for all i ∈N. Then, for every ni ≥ m0 one has

ηm0 = inf
Wm0

J ≤ J(uni) = inf
Wni

J = ηni ≤ ηm0 ,

which proves that ηni = ηm0 for all ni ≥ m0, contradicting Claim 3.5. This concludes our proof.

Remark 3.6. Theorem 1.1 follows now from Theorem 3.1.
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4 Examples

Now, we will show the example of a function for which we can apply Theorem 1.1. First we
give an example of a function f for which (F+

4 ) arise, but (F5) is not satisfied.

Example 4.1. Let {a(k)}, {b(k)} be two sequences of positive numbers such that limk→+∞ b(k) =
+∞. Let {cn}, {dn} be sequences such that 0 < cn < dn < cn+1 and limn→∞ cn = +∞. Let
{hn} be a sequence such that

hn > n (a(n + 1) + a(n) + b(n)) cp
n+1

for every n ∈ N. For every nonpositive integer k let f (k, ·) : R → R be identically zero
function. For every positive integer k let f (k, ·) : R → R be any nonnegative continuous
function such that f (k, t) = 0 for t ∈ R\ (dk, ck+1) and

∫ ck+1
dk

f (k, t)dt = hk. The conditions
(F1) and (F2) are now obviously satisfied.

Set F(k, t) :=
∫ t

0 f (k, s)ds for every t ∈ R and k ∈ Z. Since for every n ∈ N and all
r < 0 only finitely many maxt∈[r,dn] F(k, t) is nonzero, (F3) is satisfied. By our choosing of the
sequence {hn} we have

lim sup
(k,t)→(+∞,+∞)

F(k, t)
(a(k + 1)a(k) + b(k)) |t|p

≥ lim
n→+∞

F(n, cn+1)

(a(n + 1) + a(n) + b(n))cp
n+1

= lim
n→+∞

hn

(a(n + 1) + a(n) + b(n))cp
n+1

= +∞

and

sup
k∈Z

(
lim sup

t→+∞

F(k, t)
(a(k + 1) + a(k) + b(k)) |t|p

)
= 0.

Now we give an example of a function f for which (F5) arises, but (F+
4 ) is not satisfied.

Example 4.2. Let {a(k)}, {b(k)} be two sequences of positive numbers such that limk→+∞ b(k) =
+∞. Let {cn}, {dn} be sequences such that 0 < cn < dn < cn+1 and limn→∞ cn = +∞. Let
{hn} be a sequence of nonnegative numbers satisfying

∑n
k=1 hk

(a(1) + a(0) + b(0))cp
n+1

> n

for every n ∈N. Let f̃ : R→ R be the continuous nonnegative function given by

f̃ (s) := ∑
n∈N

2hn

(
cn+1 − dn − 2

∣∣∣∣s− 1
2
(dn + cn+1)

∣∣∣∣) · 1[dn,cn+1]

where 1[d,c] is the indicator of the interval [d, c]. We check at once that, for every n ∈N,

∫ cn+1

dn

f̃ (s) ds = hn.

Set f (0, s) := f̃ (s) for s ∈ R and f (k, s) = 0 for k ∈ Z\{0} and s ∈ R. Set F(k, t) :=
∫ t

0 f (k, s)ds
for every t ∈ R and k ∈ Z. Then F(0, cn+1) = ∑n

k=1 hk. The conditions (F1), (F2) and (F3) are
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satisfied and

sup
k∈Z

(
lim sup

t→+∞

F(k, t)
(a(k + 1) + a(k) + b(k)) |t|p

)
= lim sup

t→+∞

F(0, t)
(a(1) + a(0) + b(0)) |t|p

≥ lim
n→+∞

F(0, cn+1)

(a(1) + a(0) + b(0))cp
n+1

= lim
n→+∞

∑n
k=1 hk

(a(1) + a(0) + b(0))cp
n+1

= +∞.

Moreover,

lim sup
(k,t)→(+∞,+∞)

F(k, t)
(a(k + 1) + a(k) + b(k))tp = 0.

5 Comparison with other known results

In the paper [9], the following theorem is presented.

Theorem 5.1. Assume that a function b : Z→ R and a continuous function f : Z×R→ R satisfy
conditions:

(B) b(k) ≥ b0 > 0 for all k ∈ Z, b(k)→ +∞ as |k| → +∞;

(H1) sup
|t|≤T
|F(·.t)| ∈ l1 for all T > 0;

(H2) f (k,−t) = − f (k, t) for all k ∈ Z and t ∈ R;

(H3) there exist d > 0 and q > p such that |F(k, t)| ≤ d |t|q for all k ∈ Z and t ∈ R;

(H4) lim
|t|→+∞

f (k,t)t
|t|p = +∞ uniformly for all k ∈ Z;

(H5) there exists σ ≥ 1 such that σF (k, t) ≥ F (k, st) for k ∈ Z, t ∈ R, and s ∈ [0, 1],

where F(k, t) is the primitive function of f (k, t), that is F(k, t) =
∫ t

0 f (k, s)ds for every t ∈ R and
k ∈ Z, and F (k, t) = t f (k, t)− pF(k, t). Then, for any λ > 0, problem (1.1) has a sequence {un(k)}
of nontrivial solutions such that Jλ(un)→ +∞ as n→ +∞.

As an example of function, which satisfied conditions (H1)–(H5) is given the function

f (k, t) =
1
kµ |t|

p−2 t ln
(
1 + |t|ν

)
, (k, t) ∈ Z×R

with µ > 1 and ν ≥ 1. But the theorem cannot be applied to this function, because it does not
satisfy the condition (H4). Moreover, the conditions (H1) and (H4) are contradictory. Indeed,
since p > 1 the hypothesis (H4) does give us T1 > 0 such that | f (k, t)| ≥ 1 for all |t| ≥ T1 and
k ∈ Z. Put αk = F(k, T1) for all k ∈ Z. Then {αk} ∈ l1, by (H1). As f is continuous we have
for T > T1 and k ∈ Z

|F(k, T)| =
∣∣∣∣∫ T

0
f (k, t)dt

∣∣∣∣ = ∣∣∣∣∫ T1

0
f (k, t)dt +

∫ T

T1

f (k, t)dt
∣∣∣∣ = ∣∣∣∣αk +

∫ T

T1

f (k, t)dt
∣∣∣∣

≥
∣∣∣∣∫ T

T1

f (k, t)dt
∣∣∣∣− |αk| =

∫ T

T1

| f (k, t)| dt− |αk| ≥ (T − T1)− |αk| ,
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and so |F(·, T)| /∈ l1, contrary to (H1).
In the paper [20], the problem (1.1) with a(k) ≡ 1 and λ = 1 was considered. The authors

obtained infinitely many pairs of homoclinic solutions assuming, among other things, that
f (k, t) is odd in t for each k ∈ Z, i.e. (H2). Our Theorem 3.1 has no symmetry assumptions
and, for instance, the function in our Example 1 is not odd. On the other hand, Example 7 in
[20] shows the function f : Z×R → R satisfying assumptions of the main theorem in [20]
with f (k, t) > 0 for all t > 1 and k ∈ Z. Such a function does not satisfy (F2) and Theorem 3.1
does not apply to it.

In the paper [18], the problem (1.1) with a(k) ≡ 1 was considered and the following
theorem was obtained.

Theorem 5.2. Assume that a function b : Z→ R and a continuous function f : Z×R→ R satisfy
conditions:

(B) b(k) ≥ b0 > 0 for all k ∈ Z, b(k)→ +∞ as |k| → +∞;

(F1) limt→0
| f (k,t)|
|t|p−1 = 0 uniformly for all k ∈ Z.

Put

A := lim inf
t→+∞

∑k∈Z max|ξ|≤t F(k, ξ)

tp ,

B±,± := lim sup
(k,t)→(±∞,±∞)

F(k, t)
(2 + b(k)) |t|p

,

B± := sup
k∈Z

(
lim sup

t→±∞

F(k, t)
(2 + b(k)) |t|p

)
and B := max{B±,±, B±}, where F(k, t) is the primitive function of f (k, t). If A < b0 · B, then for
each λ ∈ I :=

( 1
Bp , b0

Ap

)
problem (1.1) admits a sequence of solutions.

As the example 3 in [18] shows, for any two strictly positive real numbers α, β there is a
continuous function f : Z×R→ R such that A = α and B = β̇. So, if we choose α, β > 0 with
α ≥ b0 · β, we will not be able to apply the above theorem. Since this example is similar to our
Example 1, the function f satisfies the condition (F2) and (F3), and we can apply Theorem 3.1
to obtain a sequence of solutions. On the other hand, as f in example 3 in [18] is non-negative,
it is easy to see, that we can modify it in the way, that for some (or even infinitely many) k we
have f (k, t) > 0 for all t ≥ 1 and the interval I differ by as little as we wish. Therefore, such
an f does not satisfy (F2) and cannot be used in Theorem 3.1.
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