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Abstract. We consider two simple boundary value problems at resonance for an ordi-
nary differential equation. Employing a shift argument, a regular fixed point operator
is constructed. We employ the monotone method coupled with a method of upper
and lower solutions and obtain sufficient conditions for the existence of solutions of
boundary value problems at resonance for nonlinear boundary value problems. Three
applications are presented in which explicit upper solutions and lower solutions are
exhibited for the first boundary value problem. Two applications are presented for the
second boundary value problem. Of interest, the upper and lower solutions are eas-
ily and explicitly constructed. Of primary interest, the upper and lower solutions are
elements of the kernel of the linear problem at resonance.
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1 Introduction

We consider two boundary value problems at resonance for second order ordinary differential
equations. Specifically, we shall consider

y′′(t) = f (t, y(t)), 0 ≤ t ≤ 1, (1.1)

y′(0) = 0, y′(1) = 0, (1.2)

where f : [0, 1]×R→ R is continuous and

y′′(t) = f (t, y(t), y′(t)), 0 ≤ t ≤ 1, (1.3)

y(0) = 0, y′(0) = y′(1), (1.4)

where f : [0, 1] ×R2 → R is continuous. We shall employ the method of upper and lower
solutions coupled with monotone methods.
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The boundary value problem (1.1)–(1.2) is said to be at resonance because the homoge-
neous problem

y′′(t) = 0, 0 ≤ t ≤ 1, y′(0) = 0, y′(1) = 0,

has nontrivial constant solutions. Similarly, the boundary value problem (1.3)–(1.4) is said to
be at resonance because the homogeneous problem

y′′(t) = 0, 0 ≤ t ≤ 1, y(0) = 0, y′(0) = y′(1),

has nontrivial solutions of the form y(t) = ct.
Boundary value problems at resonance have been investigated for many years; coincidence

degree theory, credited to Mawhin [24, 25], has been employed by many researchers and we
cite, for example, [3, 6–8, 10, 13, 18, 19, 21, 22]. More recently, beginning with interest to obtain
sufficient conditions for the existence of solutions in a cone, researchers have been developing
a variety of new methods. As examples, the following methods have been developed: (i)
a coincidence theorem of Schauder type [30], (ii) a Lyapunov–Schmidt procedure [23], (iii)
topological degree [5, 12, 27, 29], (iv) a Leggett–Williams type theorem for coincidences [9, 15,
28], (v) a fixed point index theorem [2, 4, 19, 20], and (vi) fixed point index theory [32]. More
in line with the approach employed in this work, Han [14] modified the problem at resonance
and considered a regular boundary value problem (a method referred as the shift argument
by Infante, Pietramala and Tojo [16]) in order to apply the Krasnosel′skiı̆–Guo fixed point
theorem [11].

Szymańska-Dębowska [31] generalized Miranda’s theorem [26] and provided applications
to boundary value problems at resonance for second order ordinary differential equations.
Yang et al. [33] recently extended the work in [31] to nth order ordinary differential equations.

Infante, Pietramala and Tojo [16] provided a thorough study of boundary value problems
related to the Neumann boundary conditions, (1.2), using the shift argument. Motivated by
[16], Almansour and Eloe [1] applied the shift argument and presented three applications,
one using the Krasnosel′skiı̆–Guo fixed point theorem, motivated by Han [14], one using the
Schauder fixed point theorem and one using the Leray–Schauder nonlinear alternative.

In this work, we develop the monotone method, coupled with the method of upper and
lower solutions, for the shifted boundary value problem. We revisit the applications of Al-
mansour and Eloe [1]. We also present some new applications; in particular, we develop the
monotone method, coupled with the method of upper and lower solutions for the more com-
plicated problem, (1.3)–(1.4). The boundary value problem (1.3)–(1.4) is more complicated
because nonlinear dependence on velocity is assumed. In each application, explicit upper and
lower solutions are exhibited and thus, a numerical algorithm to estimate solutions is implied.
However, the primary contribution of this work is that the upper and lower solutions, in each
application, are nontrivial solutions of the homogeneous problem at resonance.

For boundary value problems not at resonance, the method of upper and lower solutions
provides a stand alone method for studying existence of solutions of boundary value problems
[17]. In this case, one employs the upper solution and the lower solution to truncate the
problem and then applies the Schauder fixed point theorem to a bounded nonlinearity. We
are unsuccessful to employ the method of upper and lower solutions as a stand alone method
for boundary value problems at resonance and we shall address this observation in a remark
in Section 2.
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2 The monotone method coupled with the method of upper and
lower solutions

Since we couple the monotone method with the method of upper and lower solutions, the
analysis is simple. Hence, as this is not the primary contribution of this work, we present the
method briefly. Throughout, C[0, 1] will denote the space of continuous real valued functions
defined on [0, 1], where for y ∈ C[0, 1] the norm is the usual supremum norm,

‖y‖0 = max
0≤x≤1

|y(x)|;

C1[0, 1] will denote the space of continuously differentiable real valued functions defined on
[0, 1], where for y ∈ C1[0, 1] the norm is the standard

‖y‖ = max{‖y‖0, ‖y′‖0}.

First, consider the boundary value problem (1.1)–(1.2). Assume β ∈ R and define g(t, y) =
f (t, y) + β2y. To employ the monotone methods, we shall assume that g is increasing in y.
Consider an equivalent boundary value problem,

y′′(t) + β2y(t) = f (t, y(t)) + β2y(t) = g(t, y(t)), 0 ≤ t ≤ 1, (2.1)

with the boundary conditions (1.2). Assume throughout that f : [0, 1]×R→ R is continuous
and when considering the boundary value problem (1.1)–(1.2), we shall assume

β ∈
(

0,
π

2

)
. (2.2)

The Green’s function, G1(β; t, s), for the boundary value problem (2.1)–(1.2) exists and has the
form

G1(β; t, s) =
1

β sin(β)


cos(βt) cos β(s− 1), 0 ≤ t ≤ s ≤ 1,

cos(βs) cos β(t− 1), 0 ≤ s ≤ t ≤ 1;

(2.3)

in particular, y is a solution of the boundary value problem (2.1)–(1.2) if, and only if, y ∈ C[0, 1]
and

y(t) =
∫ 1

0
G1(β; t, s)g(s, y(s)) ds, 0 ≤ t ≤ 1.

Define K1 : C[0, 1]→ C[0, 1] by

K1y(t) =
∫ 1

0
G1(β; t, s)g(s, y(s)) ds, 0 ≤ t ≤ 1. (2.4)

Then y is a solution of the boundary value problem (1.1)–(1.2) if, and only if, y ∈ C[0, 1] and
y(t) = K1y(t), 0 ≤ t ≤ 1.

Note that under the assumption (2.2), it follows that

G1(β; t, s) > 0, (t, s) ∈ (0, 1)× (0, 1);

so under an additional assumption that g(t, y) = f (t, y) + β2y is increasing in y, it is the case
that K1 is a monotone operator; that is, if y1, y2 ∈ C[0, 1] and y1(t) ≤ y2(t), t ∈ [0, 1], then∫ 1

0
G1(β; t, s)g(s, y1(s)) ds ≤

∫ 1

0
G1(β; t, s)g(s, y2(s)) ds, t ∈ [0, 1].
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In particular,

y1(t) ≤ y2(t), t ∈ [0, 1] implies K1y1(t) ≤ K1y2(t), t ∈ [0, 1]. (2.5)

Theorem 2.1. Assume f : [0, 1] × R → R is continuous. Assume β satisfies (2.2) and assume
g(t, y) = f (t, y) + β2y increasing in y. Assume there exist lower and upper solutions, w0, v0 ∈
C2[0, 1], respectively, of (1.1)–(1.2), such that

w0(t) ≤ v0(t), 0 ≤ t ≤ 1,

w′′0 (t) + β2w0(t) ≤ g(t, w0(t)), 0 ≤ t ≤ 1, w′0(0) = 0, w′0(1) = 0,

v′′0 (t) + β2v0(t) ≥ g(t, v0(t)), 0 ≤ t ≤ 1, v′0(0) = 0, v′0(1) = 0.

Then there exists a solution y of the boundary value problem (1.1)–(1.2) such that

w0(t) ≤ y(t) ≤ v0(t), 0 ≤ t ≤ 1. (2.6)

Moreover, construct inductively, {wn(t)} and {vn(t)}, 0 ≤ t ≤ 1, by

wn+1(t) = K1wn(t), vn+1(t) = K1vn(t), t ∈ [0, 1]. (2.7)

Then if y is a solution of (1.1)–(1.2) satisfying (2.6), then, for each n = 0, 1, . . . ,

wn(t) ≤ wn+1(t) ≤ y(t) ≤ vn+1(t) ≤ vn(t), 0 ≤ t ≤ 1. (2.8)

In addition, {wn(t)} converges in C[0, 1] to w(t), {vn(t)} converges in C[0, 1] to v(t) where

w(t) ≤ y(t) ≤ v(t), 0 ≤ t ≤ 1, (2.9)

and each of w and v are solutions of the boundary value problem (1.1)–(1.2).

Proof. Define the operator K1 by (2.4). Since g(t, y) = f (t, y) + β2y is increasing in y, and
G1(β; t, s) > 0 on (0, 1)× (0, 1), then K1 is monotone as stated in (2.5).

Define sequences by {wn(t)} and {vn(t)} by (2.7). Since K1 is monotone, and w0(t) ≤ v0(t),
for 0 ≤ t ≤ 1, it follows inductively that

wn(t) ≤ vn(t), 0 ≤ t ≤ 1, (2.10)

for each n = 0, 1, . . . .
Moreover, it is the case that

wn(t) ≤ wn+1(t), vn+1(t) ≤ vn(t), 0 ≤ t ≤ 1.

To see this, note that w0 is the solution of

y′′(t) + β2y(t) = w′′0 (t) + β2w0(t), y′(0) = 0, y′(1) = 0.

Thus,

w0(t) =
∫ 1

0
G1(β; t, s)(w′′0 (s) + β2w0(s)) ds.

Since w0 is a lower solution and in particular, satisfies the differential inequality

w′′0 (t) + β2w0(t) ≤ g(t, w0), 0 ≤ t ≤ 1,
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it follows that

w0(t) =
∫ 1

0
G1(β; t, s)(w′′0 (s) + β2w0(s)) ds

≤
∫ 1

0
G1(β; t, s)g(s, w0(s)) ds = K1w0(t) = w1(t).

In particular,
w0(t) ≤ w1(t), 0 ≤ t ≤ 1,

and now inductively,
wn(t) ≤ wn+1(t), 0 ≤ t ≤ 1, (2.11)

n = 0, 1, . . . , follows by the monotonicity of K1. Similarly, it is shown that

vn+1(t) ≤ vn(t), 0 ≤ t ≤ 1, (2.12)

n = 0, 1, . . . . And so, it follows from (2.10), (2.11) and (2.12) that (2.8) is valid.
From (2.8), it follows that {wn} is monotone increasing and bounded above by v0. By Dini’s

theorem, there exists w ∈ C[0, 1] such that {wn} converges uniformly to w. Similarly, {vn} is a
monotone decreasing sequence and bounded below by w0. Thus there exists v ∈ C[0, 1] such
that {vn} converges uniformly to v. Thus,

wn(t) ≤ wn+1(t) ≤ w(t) ≤ v(t) ≤ vn+1(t) ≤ vn(t), 0 ≤ t ≤ 1,

n = 0, 1, . . . .
From the continuity of g and K1 (not shown here), and from the uniform convergence of

wn+1(t) = K1wn(t) and vn+1(t) = K1vn(t), it follows that w(t) = K1w(t) or v(t) = K2v(t) and
the proof is complete.

Remark 2.2. It is interesting to note that we are unable to develop a stand alone method of
upper and lower solutions for the boundary value problem at resonance (1.1)–(1.2). For the
regular boundary value problem (1.1) with Dirichlet boundary conditions,

y(0) = 0, y(1) = 0,

the corresponding Green’s function for this boundary value problem is negative on (0, 1)×
(0, 1) and in the definition of upper solution, one assumes,

v′′0 (t) ≤ f (t, v0(t)), 0 ≤ t ≤ 1.

One then shows that the solution y of the truncated problem (obtained as an application of
the Schauder fixed point theorem) satisfies

y(t) ≤ v0(t), 0 < t < 1,

by showing that sign of the differential inequality contradicts the second derivative test for
local maximum values. For the problem considered in Theorem 2.1, the Green’s function,
G1, is positive on (0, 1) × (0, 1). This implies that in the definition of upper solution, the
differential inequality is reversed; in particular,

v′′0 (t) ≥ f (t, v0(t)), 0 < t < 1.

There is no contradiction to the second derivative test.
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Second, consider the boundary value problem (1.3)–(1.4). Replace the assumption (2.2)
by the assumption β > 0 and define g(t, y1, y2) = f (t, y1, y2) + βy2. To employ monotone
methods, we shall assume that g is increasing in each of y1 and y2. Consider an equivalent
boundary value problem,

y′′(t) + βy′(t) = f (t, y(t), y′(t)) + βy′(t) = g(t, y(t), y′(t)), 0 ≤ t ≤ 1, (2.13)

with the boundary conditions (1.4). Assume throughout that f : [0, 1]×R2 → R is continuous.
The Green’s function for the boundary value problem (2.13)–(1.4) has the form

G2(β; t, s) =


e−β(1−s)−e−βe−β(t−s)

β(1−e−β)
, 0 ≤ t ≤ s ≤ 1,

e−β(1−s)−e−βe−β(t−s)

β(1−e−β)
+ 1−e−β(t−s)

β , 0 ≤ s ≤ t ≤ 1;

(2.14)

in particular, y is a solution of the boundary value problem (2.13)–(1.4) if, and only if, y ∈
C1[0, 1] and

y(t) =
∫ 1

0
G2(β; t, s)g(s, y(s), y′(s)) ds, 0 ≤ t ≤ 1.

Define K2 : C1[0, 1]→ C1[0, 1] by

K2y(t) =
∫ 1

0
G2(β; t, s)g(s, y(s), y′(s)) ds, 0 ≤ t ≤ 1. (2.15)

Then y is a solution of the boundary value problem (1.3)–(1.4) if, and only if, y ∈ C1[0, 1] and
y(t) = K2y(t), 0 ≤ t ≤ 1.

Note that

∂

∂t
G2(β; t, s) =


e−βe−β(t−s)

(1−e−β)
, 0 ≤ t ≤ s ≤ 1,

e−βe−β(t−s)

(1−e−β)
+ e−β(t−s), 0 ≤ s ≤ t ≤ 1;

It is the case that

G2(β; t, s) > 0, 0 < t < 1, 0 < s < 1,

and
∂

∂t
G2(β; t, s) > 0, 0 < t < 1, 0 < s < 1.

Then, under an additional hypothesis that g(t, y1, y2) is increasing in each of y1 and y2,
it follows that K2 : C1[0, 1] → C1[0, 1] is a monotone map in the following sense. If y1, y2 ∈
C1[0, 1],

y(i)1 (t) ≤ y(i)2 (t), 0 ≤ t ≤ 1, i = 0, 1,

then

(K2y1)
(i)(t) ≤ (K2y2)

(i)(t), 0 ≤ t ≤ 1, i = 0, 1.

We state the following application of the method of upper and lower solutions, coupled
with monotone methods, without proof.
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Theorem 2.3. Assume f : [0, 1] ×R2 → R is continuous. Let β > 0 and assume g(t, y1, y2) =

f (t, y1, y2) + βy2 is increasing in each of y1 and y2. Assume there exist lower and upper solutions,
w0, v0 ∈ C2[0, 1], respectively, of (1.3)–(1.4), such that

w(i)
0 (t) ≤ v(i)0 (t), 0 ≤ t ≤ 1, i = 0, 1,

w′′0 (t) + βw0(t) ≤ g(t, w0(t), w′0(t)), 0 ≤ t ≤ 1, w0(0) = 0, w′0(0) = w′0(1),

v′′0 (t) + βv0(t) ≥ g(t, v0(t), v′0(t)), 0 ≤ t ≤ 1, v0(0) = 0, v′0(0) = v′0(1).

Then there exists a solution y of the boundary value problem (1.3)–(1.4) such that

w(i)
0 (t) ≤ y(i)(t) ≤ v(i)0 (t), 0 ≤ t ≤ 1, i = 0, 1. (2.16)

Moreover, construct inductively, {wn(t)} and {vn(t)}, 0 ≤ t ≤ 1, by

wn+1(t) = K2wn(t), vn+1(t) = K2vn(t), t ∈ [0, 1].

If y is a solution of (1.3)–(1.4) satisfying (2.16), then, for each n = 0, 1, . . . ,

w(i)
n (t) ≤ w(i)

n+1(t) ≤ y(i)(t) ≤ v(i)n+1(t) ≤ v(i)n (t), 0 ≤ t ≤ 1, i = 0, 1.

In addition, {wn(t)} converges in C1[0, 1] to w(t), {vn(t)} converges in C1[0, 1] to v(t) where

w(i)(t) ≤ y(i)(t) ≤ v(i)(t), 0 ≤ t ≤ 1, i = 0, 1,

and each of w and v are solutions of the boundary value problem (1.3)–(1.4).

3 Construction of upper and lower solutions

The method of upper and lower solutions is of value in the case when explicit upper and lower
solutions can be constructed. In this section we exhibit explicit upper and lower solutions
for five applications. Each application can be obtained using standard fixed point theorems
(following the shift argument). In each application, the explicit upper and lower solutions are
nontrivial solutions of the original linear problem at resonance. The first three applications
illustrate the usage of Theorem 2.1. The fourth and fifth applications will illustrate the usage
of Theorem 2.3.

Theorem 3.1. Assume f : [0, 1]×R→ R is continuous. Assume there exists β ∈ (0, π
2 ) such that

g(t, y) = f (t, y) + β2y

is bounded on [0, 1]×R and g is increasing in y. Then there exists a solution of the boundary value
problem (1.1)–(1.2).

Remark 3.2. Remove the hypothesis that g is increasing in y and the Schauder fixed point
theorem implies the existence of a solution of the shifted boundary value problem (1.1)–(1.2)
in the case that g is bounded.

Proof. Since g is bounded, assume M > 0 such that

|g(t, y)| ≤ M, (t, y) ∈ [0, 1]×R.
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Construct constant upper and lower solutions,

v0 =
M
β2 , w0 =

−M
β2

which implies

w0(t) ≤ v0(t), 0 ≤ t ≤ 1,

w′′0 (t) + β2w0(t) = −M ≤ g(t, w0(t)), 0 ≤ t ≤ 1, w′0(0) = 0, w′0(1) = 0,

v′′0 (t) + β2v0(t) = M ≥ g(t, v0(t)), 0 ≤ t ≤ 1, v′0(0) = 0, v′0(1) = 0.

The hypotheses of Theorem 2.1 are satisfied.

Theorem 3.3. Assume f : [0, 1]×R→ R is continuous. Assume there exists β ∈ (0, π
2 ) such that

g(t, y) = f (t, y) + β2y

is increasing in y. Assume, moreover, that

f (t, y) ≥ −β2y

holds. Assume f satisfies the asymptotic properties

(1) lim sup
y→+∞

max
t∈[0,1]

f (t,y)
y = −β2.

(2) lim inf
y→0+

min
t∈[0,1]

f (t,y)
y = +∞.

Then there is at least one positive solution for the boundary value problem (1.1)–(1.2).

Remark 3.4. Remove the hypothesis that g is increasing in y and the compression contraction
fixed point theorem often credited to Krasnosel′skiı̆-Guo [11] implies the existence of a positive
solution of the shifted boundary value problem (1.1)–(1.2) in the case that f (t, y) ≥ −β2y and
f satisfies (1) and (2).

Proof. Since

lim sup
y→+∞

max
t∈[0,1]

f (t, y)
y

= −β2

then

lim sup
y→+∞

max
t∈[0,1]

g(t, y)
y

= 0.

Let ε = β2. Find M > 0 such that if y ≥ M then,

g(t, y)
y
≤ ε = β2,

or
g(t, y) ≤ β2y.

Choose
v0 = M.
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Then
v′′0 (t) + β2v0 = β2v0 ≥ g(t, v0).

So, the constant v0 = M serves as an appropriate upper solution.
Now construct w0, a positive constant, such that

w′′0 (t) + β2w0 6 g(t, w0(t)).

Since

lim inf
y→0+

min
t∈[0,1]

f (t, y)
y

= +∞

then

lim inf
y→0+

min
t∈[0,1]

g(t, y)
y

= +∞.

Let ε = β2, and find M > δ > 0 such that if 0 < y < δ then,

g(t, y)
y
≥ ε,

or
g(t, y) ≥ εy ≥ β2y.

Choose
w0 = δ.

Then w is lower solution such that,

w′′0 (t) + β2w0 = β2w0 ≤ g(t, w0).

Thus,

w0(t) ≤ v0(t), 0 ≤ t ≤ 1,

w′′0 (t) + β2w0(t) = β2w0(t) ≤ g(t, w0(t)), 0 ≤ t ≤ 1, w′0(0) = 0, w′0(1) = 0,

v′′0 (t) + β2v0(t) = β2v0(t) ≥ g(t, v0(t)), 0 ≤ t ≤ 1, v′0(0) = 0, v′0(1) = 0.

Again, the hypotheses of Theorem 2.1 are satisfied.

Theorem 3.5. Assume f : [0, 1]×R→ R is continuous. Assume there exists β ∈ (0, π
2 ) such that

g(t, y) = f (t, y) + β2y

is increasing in y. Assume there exist σ ∈ C[0, 1] and a nondecreasing function ψ : R+ → R+ such
that

|g(t, y)| 6 σ(t)ψ(|y|), (t, y) ∈ [0, 1]×R.

Moreover, assume there exists M > 0 such that

β2M
‖σ‖0ψ(M)

> 1.

Then the boundary value problem (1.1)–(1.2) has a solution.

Remark 3.6. Remove the hypothesis that g is increasing in y and the Leray–Schauder alter-
native theorem implies the existence of a solution of the shifted boundary value problem
(1.1)–(1.2).
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Proof. To exhibit v0, an upper solution, set

v0 = M.

Then
v′′0 (t) + β2v0 = β2M ≥ ‖σ‖0ψ(M) ≥ σ(t)ψ(|v0|) ≥ g(t, v0).

To exhibit w0 a lower solution, set
w0 = −M.

Then,
w′′0 (t) + β2w0 = −β2M ≤ −‖σ‖0ψ(M) ≤ −σ(t)ψ(|w0|) ≤ g(t, w0).

In particular,

w0(t) ≤ v0(t), 0 ≤ t ≤ 1,

w′′0 (t) + β2w0(t) = β2w0(t) ≤ g(t, w0(t)), 0 ≤ t ≤ 1, w′0(0) = 0, w′0(1) = 0,

v′′0 (t) + β2v0(t) = β2v0(t) ≥ g(t, v0(t)), 0 ≤ t ≤ 1, v′0(0) = 0, v′0(1) = 0,

and the hypotheses of Theorem 2.1 are satisfied.

Corollary 3.7. Assume f : [0, 1]×R→ R is continuous, there exists β ∈ (0, π
2 ) such that

g(t, y) = f (t, y) + β2y

is increasing in y, and there exist σ ∈ C[0, 1] and some 0 < α < 1 such that

|g(t, y)| ≤ σ(t)|y|α, (t, y) ∈ [0, 1]×R.

Then the boundary value problem (1.1)–(1.2) has a solution.

The final two applications in this section employ Theorem 2.3.

Theorem 3.8. Assume f : [0, 1]×R2 → R is continuous. Assume there exists β > 0 such that

g(t, y1, y2) = f (t, y1, y2) + βy2

is bounded on [0, 1]×R2. Moreover, assume that g is increasing in each of y1 and y2. Then there exists
a solution of the boundary value problem (1.3)–(1.4).

Remark 3.9. Analogous to Remark 3.2, remove the hypotheses that g is increasing in each of
y1 and y2 and the Schauder fixed point theorem implies the existence of solutions in the case
that g is bounded.

Proof. Assume there exists M > 0 such that |g| ≤ M on [0, 1]×R2. Set v0(t) = M
β t and set

w0(t) = −v0(t). Then

w(i)
0 (t) ≤ v(i)0 (t), 0 ≤ t ≤ 1, i = 0, 1,

w′′0 (t) + βw′0(t) = −M ≤ g(t, w0(t), w′0(t)), 0 ≤ t ≤ 1, w0(0) = 0, w′0(0) = w′0(1),

v′′0 (t) + βv′0(t) = M ≥ g(t, v0(t), v′0(t)), 0 ≤ t ≤ 1, v0(0) = 0, v′0(0) = v′0(1).

The hypotheses of Theorem 2.3 are satisfied.
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Motivated by the application in Theorem 3.5, we shall provide a second application of
Theorem 2.3.

Theorem 3.10. Assume f : [0, 1]×R2 → R is continuous. Assume there exists β > 0 such that

g(t, y1, y2) = f (t, y1, y2) + βy2

is increasing in each of y1 and y2. Assume there exist σ ∈ C[0, 1] and a nondecreasing function
ψ : R+ → R+ such that if

|g(t, y1, y2)| 6 σ(t)ψ(|y2|), (t, y1, y2) ∈ [0, 1]×R2.

Moreover, assume there exists M > 0 such that

βM
‖σ‖0ψ(M)

> 1.

Then the boundary value problem (1.3)–(1.4) has a solution.

Proof. For this application, set v0(t) = Mt. To verify that v0 satisfies the differential inequality
for the upper solution, note that

v′′0 (t) + βv′0(t) = βM ≥ ‖σ‖0ψ(M) ≥ σ(t)ψ(|v′0(t)|) ≥ g(t, v0(t), v′0(t)).

Set w0(t) = −v0(t) and the remainder of the verification is clear.
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