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Abstract. We discuss boundary value problems for Riemann–Liouville fractional differ-
ential equations with certain fractional integral boundary conditions. Such boundary
conditions are different from the widely considered pointwise conditions in the sense
that they allow solutions to have singularities, and different from other conditions given
by integrals with a singular kernel since they arise from well-defined initial value prob-
lems. We derive Lyapunov-type inequalities for linear fractional differential equations
and apply them to establish nonexistence, uniqueness, and existence-uniqueness of so-
lutions for certain linear fractional boundary value problems. Parallel results are also
obtained for sequential fractional differential equations. An example is given to show
how computer programs and numerical algorithms can be used to verify the conditions
and to apply the results.
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1 Fractional integral boundary conditions

Boundary value problems (BVPs) for fractional differential equations are important in applica-
tions and have been studied extensively by many authors, see [3,6,10–13,16,19,20,22,27,29,34]
and the references cited therein. A lot of work has been done on fractional BVPs consisting of
a fractional differential equation in the form

(Dα
a+x) (t) = f (t, x) on (a, b) (1.1)

with α > 0, and a pointwise boundary condition (BC) at the end points; in particular, the
Dirichlet BC

x(a) = x(b) = 0 (1.2)
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for 1 < α ≤ 2. Here with α > 0 and t > a,(
Iα
a+x
)
(t) :=

1
Γ(α)

∫ t

a
(t− s)α−1x(s)ds (1.3)

is the αth-order left-sided Riemann–Liouville fractional integral of x(t) at a, and
(

Dα
a+x
)
(t)

denotes the αth-order left-sided Riemann–Liouville fractional derivative of x(t) at a defined
as

(Dα
a+x) (t) :=

dn

dtn

(
In−α
a+ x

)
(t) =

1
Γ(n− α)

dn

dtn

∫ t

a
(t− s)n−α−1x(s)ds, (1.4)

where n = bαc + 1 with bαc the integer part of α and Γ(α) =
∫ ∞

0 tα−1e−tdt is the gamma
function. In particular, when α = i ∈N0, then(

Di
a+u
)
(t) = u(i)(t). (1.5)

In the following, for the consistence of notations for BCs, we also denote
(

D−α
a+ x

)
(t) :=(

Iα
a+x
)
(t) for 0 < α < 1.

We note that with Riemann–Liouville fractional derivative involved, any solution of
Eq. (1.1) with a pointwise BC such as (1.2), if it exists, must be bounded on [a, b]. How-
ever, unlike integer-order differential equations, the majority of the solutions of Eq. (1.1) is
unbounded at the left endpoint a no matter how good the right-hand function f (t, x) is. This
can be seen from [18, (2.1.39)] that every solution of Eq. (1.1) satisfies

x(t) = (Iα
a+Dα

a+x) (t) +
n

∑
j=1

cj

Γ(α− j + 1)
(t− a)α−j, (1.6)

with cj ∈ R for j = 1, . . . , n, which shows that either x(a) = 0 or x(t) is unbounded at a.
Consequently, we should not expect that any BVP consisting Eq. (1.1) and a pointwise BC
to have any solution unless the BC includes or implies the condition x(a) = 0. This is the
reason why fractional BVPs have been studied mainly with the Dirichlet BC at a so far. More
specifically, any pointwise BC including one of the following is ill-posed:

(i) x(a) = c for some c 6= 0,

(ii) x(a) + cx′(a) = 0 for some c 6= 0,

(iii) x(a) + cx(i)(b) = 0 for some c 6= 0, i = 0, 1.

In fact, the BC in (i) violates (1.6); and the BCs in (ii) and (iii) are each equivalent to one of
the two sets of conditions: x(a) = x′(a) = 0 and x(a) = x(i)(b) = 0, and hence does not agree
with the number requirement for well-posed BCs.

In this paper, we use fractional integral BCs to allow and “smoothen” the singularity of
solutions at a. This idea is motivated by the initial conditions for Cauchy problems associated
with Eq. (1.1) given in [18, (3.1.2)]:(

Dα−k
a+ x

)
(a+) = bk, bk ∈ R, k = 1, 2, . . . , n, (1.7)

where n = bαc+ 1 for α /∈N and n = α for α ∈N, and(
Dα−k

a+ x
)
(a+) := lim

t→a+

(
Dα−k

a+ x
)
(t)
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except that (
Dα−n

a+ x
)
(a+) = lim

t→a+

(
Dα−n

a+ x
)
(t) = lim

t→a+

(
In−α
a+ x

)
(t) for α /∈N.

Note that α− n = 0 for α ∈N. By (1.5)(
D0

a+x
)
(a+) = lim

t→a+

(
D0

a+x
)
(t) = x(a). (1.8)

We notice that the existence and uniqueness of solutions have been established for the Cauchy
problem (1.1), (1.7) with any bk ∈ R. From this point of view, a more reasonable BC should
involve

(
Dα−k

a+ x
)
(a+) rather than x(k)(a) for k = 1, 2, . . . , n. In particular, for Eq. (1.1) with

1 < α ≤ 2, we may assign a homogeneous linear separated BC as{
c11
(

Dα−2
a+ x

)
(a+) + c12

(
Dα−2

a+ x
)
(a+) = 0,

c21
(

Dα−2
a+ x

)
(b) + c22

(
Dα−2

a+ x
)
(b) = 0;

(1.9)

and a coupled BC as [
Dα−2

a+ x
Dα−1

a+ x

]
(b) = K

[
Dα−2

a+ x
Dα−1

a+ x

]
(a+); (1.10)

where cij ∈ R and K ∈ R2×2 such that det K 6= 0. Nonhomogeneous BCs can be defined
accordingly. Such BCs permit solutions unbounded at a and hence are more general than
pointwise BCs. It is easy to see from (1.8) that when α = 2, BCs (1.9) and (1.10) reduce to the
two point BCs {

c11x(a) + c12x(a) = 0,

c21x(b) + c22x(b) = 0;

and [
x
x′

]
(b) = K

[
x
x′

]
(a);

respectively. Therefore, (1.9) and (1.10) are natural extensions of the self-adjoint BCs for
second-order linear differential equations to fractional differential equations with 1 < α ≤ 2.

We point out that the BCs considered in this paper are different from the general integral
BCs with a singular kernel in the sense that they originate from the fractional initial conditions
with which the existence-uniqueness results are derived. Problems with such BCs can be
investigated in many approaches based on results on initial value problems. For instance,
using the Fredholm alternative method to study the existence and uniqueness of boundary
value problems, as shown in our Theorems 5.3 and 5.7. Such approaches are not allowed for
general integral BCs.

In this paper, we consider the fractional BVP consisting of the linear equation

(Dα
a+x) (t) + q(t)x = 0, 1 < α ≤ 2, (1.11)

and the BC (
Dα−2

a+ x
)
(a+) =

(
Dα−2

a+ x
)
(b) = 0. (1.12)

Lyapunov-type inequalities are derived and used to establish the existence and uniqueness
for solutions of this BVP. Parallel results are also obtained for certain sequential fractional
BVPs. Further discussions on higher order and nonlinear fractional BVPs will be given in
forthcoming papers.
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This paper is organized as follows: after this section, we briefly review the existing results
on Lyapunov-type inequalities in Section 2. In Sections 3 and 4, we derive new Lyapunov-type
inequalities for fractional differential equations and sequential fractional differential equa-
tions, respectively. Finally in Section 5, we apply the obtained Lyapunov-type inequalities to
establish the existence and uniqueness for solutions of some fractional BVPs. We also give an
example to show how computer programs and numerical algorithms can be used to verify the
conditions and to apply the results.

2 Existing results on Lyapunov-type inequalities

For the second-order linear differential equation

x′′ + q(t)x = 0 on (a, b) (2.1)

with q ∈ L([a, b], R), the following result is known as the Lyapunov inequality, see [1, 21].

Theorem 2.1. Assume Eq. (2.1) has a solution x(t) satisfying x(a) = x(b) = 0 and x(t) 6= 0 for
t ∈ (a, b). Then ∫ b

a
|q (t)| dt >

4
b− a

. (2.2)

It was first noticed by Wintner [30] and later by several other authors that inequality (2.2)
can be improved by replacing |q(t)| by q+(t) := max{q(t), 0}, the positive part of q(t), to
become ∫ b

a
q+(t)dt >

4
b− a

. (2.3)

Inequality (2.3) was further generalized to a more general form of second-order differential
equations by Hartman [15, Chapter XI], and improved by Brown and Hinton [2] and Harris
and Kong [14] later on.

Lyapunov-type inequalities have also been developed for higher order linear and half-
linear differential equations by many authors. See [24–26,31–33,35] for the higher order linear
case, and [4, 5] for half-linear case.

Recently, Ferreira obtained the following Lyapunov-type inequality for the Riemann–
Liouville fractional-order differential equation (1.11) with the Dirichlet BC (1.2) in [8].

Theorem 2.2. Assume Eq. (1.11) has a nontrivial solution x(t) satisfying x(a) = x(b) = 0. Then∫ b

a
|q(t)|dt > Γ(α)

(
4

b− a

)α−1

. (2.4)

With a simple modification in the theorem, we can easily obtain a variation of Theorem 2.2.

Theorem 2.3. Assume Eq. (1.11) has a nontrivial solution x(t) satisfying x(a) = x(b) = 0. Then∫ b

a
q+(t)dt > Γ(α)

(
4

b− a

)α−1

.

These results are derived using the Green’s function

G(t, s) =
1

Γ(α)


(t−a)α−1(b−s)α−1

(b−a)α−1 − (t− s)α−1, a ≤ s ≤ t ≤ b

(t−a)α−1(b−s)α−1

(b−a)α−1 , a ≤ t ≤ s ≤ b
(2.5)
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for BVP (1.11), (1.2) obtained in [8], which is an extension of the one given in [3] for the case
that a = 0 and b = 1.

For more Lyapunov-type inequalities involving the Riemann–Liouville and Caputo frac-
tional derivatives, we refer the reader to [7, 17, 23, 28].

3 Fractional Lyapunov-type inequalities

In this section, we let −∞ < a < b < ∞ and consider fractional differential equation

(Dα
a+x) (t) + q(t)x = 0 on (a, b), (3.1)

where 1 < α ≤ 2 and q ∈ L(a, b). To present our main results, we need the concept of γ-th
right-sided Riemann–Liouville fractional derivative of a function u(t) at b defined as

(
Dγ

b−u
)
(t) =

−1
Γ(n− γ)

dn

dtn

∫ b

t
(s− t)n−γ−1u(s)ds for t < b, (3.2)

where γ ≥ 0 and n = bγc+ 1. In particular, when 0 ≤ γ < 1, (3.2) reduces to

(
Dγ

b−u
)
(t) =

−1
Γ(1− γ)

d
dt

∫ b

t
(s− t)−γu(s)ds for t < b. (3.3)

More specifically,
(

D0
b−u
)
(t) = u(t). With the left-sided and right-sided fractional derivatives

given in (1.4) and (3.3), we have the following fractional integration by parts formula, see
[29, (2.64)]: ∫ b

a
φ(s)Dγ

a+ψ(s)ds =
∫ b

a
ψ(s)Dγ

b−φ(s)ds for 0 ≤ γ < 1, (3.4)

where φ ∈ Lp(a, b) and ψ ∈ Lr(a, b) such that p−1 + r−1 ≤ 1 + γ.
In the following we define

G(t, s) :=
1

b− a

{
(s− a)(b− t), a ≤ s ≤ t ≤ b,

(t− a)(b− s), a ≤ t ≤ s ≤ b;
(3.5)

and let D2−α
b− [G(t, s)q(s)] be the right-sided fractional derivative of G(t, s)q(s) with respect to

s and
[
D2−α

b− [G(t, s)q(s)]
]
+

be the positive part of D2−α
b− [G(t, s)q(s)]. Now we present our main

result on fractional Lyapunov-type inequalities.

Theorem 3.1. (a) Assume Eq. (3.1) has a nontrivial solution x(t) satisfying(
Dα−2

a+ x
)
(a+) =

(
Dα−2

a+ x
)
(b) = 0. (3.6)

Then

max
t∈[a,b]

{∫ b

a

∣∣D2−α
b− [G(t, s)q(s)]

∣∣ ds
}

> 1. (3.7)

(b) Assume Eq. (3.1) has a solution x(t) satisfying(
Dα−2

a+ x
)
(a+) =

(
Dα−2

a+ x
)
(b) = 0 and

(
Dα−2

a+ x
)
(t) 6= 0 on (a, b). (3.8)

Then

max
t∈[a,b]

{∫ b

a

[
D2−α

b− [G(t, s)q(s)]
]
+

ds
}

> 1. (3.9)
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Proof. (a) Let y(t) =
(

Dα−2
a+ x

)
(t) for a < t ≤ b and y(a) =

(
Dα−2

a+ x
)
(a+). Then y(t) is

continuous on [a, b]. Note that x(t) = (D2−α
a+ y)(t). We claim that(

Dα−2
a+ x

)
(t) = y′′(t) for 1 < α ≤ 2. (3.10)

In fact, for 1 < α < 2, from (1.4) we have

(Dα
a+x) (t) =

d2

dt2

(
I2−α
a+ x

)
(t) =

d2

dt2

(
Dα−2

a+ x
)
(t) = y′′(t);

and (3.10) holds clearly when α = 2 since y(t) = x(t). Then it follows that BVP (3.1), (3.6)
becomes the second-order linear BVP

− y′′ = q(t)x, y(a) = y(b) = 0. (3.11)

Hence the solution y(t) satisfies

y(t) =
∫ b

a
G(t, s)q(s)x(s)ds =

∫ b

a
G(t, s)q(s)D2−α

a+ y(s)ds, (3.12)

where G(t, s), given in (3.5), is the Green’s function for BVP (3.11). For a fixed t ∈ [a, b],
applying (3.4) with φ(s) = G(t, s)q(s) ∈ L(a, b) and ψ(s) = y(s) ∈ Lγ(a, b) for γ = 2− α, we
obtain

y(t) =
∫ b

a
G(t, s)q(s)D2−α

a+ y(s)ds =
∫ b

a
y(s)D2−α

b− [G(t, s)q(s)]ds. (3.13)

By taking the absolute value on both sides we have

|y(t)| =
∣∣∣∣∫ b

a
y(s)D2−α

b− [G(t, s)q(s)]ds
∣∣∣∣ ≤ ∫ b

a
|y(s)|

∣∣D2−α
b− [G(t, s)q(s)]

∣∣ ds.

Let m = maxt∈[a,b] |y(t)|. By taking the maximum of |y(t)| on both sides we obtain

m ≤ max
t∈[a,b]

∫ b

a
|y(s)|

∣∣D2−α
b− [G(t, s)q(s)]

∣∣ ds. (3.14)

If |y(t)| < m a.e. on [a, b], then

m < m max
t∈[a,b]

∫ b

a

∣∣D2−α
b− [G(t, s)q(s)]

∣∣ ds

which leads to (3.7). Otherwise, there exists J = ∪k
i=1[ai, bi] ⊂ [a, b] for 1 ≤ k ≤ ∞ with ai < bi

such that y(t) ≡ m on J and y(t) < m a.e. on [a, b]\J. Then for t ∈ J, y′′(t) = 0 and

x(t) = (D2−α
a+ y)(t) = (D2−α

a+ m) =
m(t− a)α−2

Γ(α− 1)
6= 0.

From (3.11), q(t) ≡ 0 on J. This implies that for any t ∈ [a, b], D2−α
b− [G(t, s)q(s)] = 0 for s ∈ J.

Hence it follows from (3.14) that

m ≤ max
t∈[a,b]

∫
[a,b]\J

|y(s)|
∣∣D3−α

b− [G(t, s)q(s)]
∣∣ ds

< m max
t∈[a,b]

∫
[a,b]\J

∣∣D3−α
b− [G(t, s)q(s)]

∣∣ ds

= m max
t∈[a,b]

∫ b

a

∣∣D3−α
b− [G(t, s)q(s)]

∣∣ ds
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which also leads to (3.7).

(b) From the proof of Part (a) we see that (3.13) holds. By the assumption, y(t) 6= 0 on
(a, b). Without loss of generality, we assume that y(t) > 0 on (a, b). Then it follows that

y(t) ≤
∫ b

a
y(s)

[
D2−α

b− [G(t, s)q(s)]
]
+

ds. (3.15)

Now, a similar argument as in Part (a) leads to (3.9).

The corollary below is a special case of Theorem 3.1.

Corollary 3.2. Assume D2−α
b− [G(t, s)q(s)] ≥ 0 for t, s ∈ [a, b] and Eq. (3.1) has a nontrivial solution

x(t) satisfying (3.6). Then ∫ b

a
q+(t)dt >

ααΓ(α− 1)
(α− 1)α−1(b− a)α−1 . (3.16)

Proof. By Theorem 3.1 we see that (3.7) holds. By the assumption and the definition of
D2−α

b− [G(t, s)q(s)] given in (3.3) we have

∫ b

a

∣∣D2−α
b− [G(t, s)q(s)]

∣∣ ds =
∫ b

a
D2−α

b− [G(t, s)q(s)]ds

=
−1

Γ(α− 1)

∫ b

a

(∫ b

s
(τ − s)α−2G(t, τ)q(τ)dτ

)′
ds

=
1

Γ(α− 1)

∫ b

a
(τ − a)α−2G(t, τ)q(τ)dτ. (3.17)

Hence (3.9) becomes

max
t∈[a,b]

∫ b

a
(τ − a)α−2G(t, τ)q(τ)dτ > Γ(α− 1).

Using the facts that q(t) ≤ q+(t), G(t, s) ≥ 0 on [a, b]× [a, b], and

max
t∈[a,b]

G(t, τ) = G(τ, τ) =
(τ − a)(b− τ)

b− a
, τ ∈ [a, b],

we see that

Γ(α− 1) < max
t∈[a,b]

∫ b

a
(τ − a)α−2G(t, τ)q+(τ)dτ

≤ 1
b− a

∫ b

a
(τ − a)α−1(b− τ)q+(τ)dτ. (3.18)

Denote g(τ) = (τ − a)α−1(b − τ). From the fact that 1 < α ≤ 2, we see g(τ) is continuous
on [a, b], g(a) = g(b) = 0, and g(τ) > 0 on (a, b). Thus there exists a c ∈ (a, b) such that
g(c) = maxτ∈[a,b] g(τ). Now a simple calculation shows that c = [(α− 1)b + a]/α and hence

g(τ) ≤ g(c) =
(α− 1)α−1(b− a)α

αα
. (3.19)

Substituting (3.19) in (3.18) we see that (3.16) holds.



8 S. Dhar, Q. Kong and M. McCabe

Remark 3.3. By (1.5) we have (D2
a+x)(t) = x′′(t) and (D0

a+x)(t) = x(t). Hence for α = 2,
Eq. (3.1) with condition (3.8) becomes the second-order equation with pointwise condition

x′′ + q(t)x = 0, x(a) = x(b) = 0 and x(t) 6= 0 on (a, b). (3.20)

Since G(t, s) ≥ 0 on [a, b]× [a, b], it follows from Theorem 3.1, Part (b) with α = 2 that

1 < max
t∈[a,b]

{∫ b

a

[
D2−α

b− [G(t, s)q(s)]
]
+

ds
}

= max
t∈[a,b]

{∫ b

a
[G(t, s)q(s)]+ ds

}
= max

t∈[a,b]

∫ b

a
G(t, s)q+(s)ds. (3.21)

Note that

max
t∈[a,b]

G(t, s) = G(s, s) =
(s− a)(b− s)

b− a
≤ b− a

4
.

Hence (3.21) reduces to ∫ b

a
q+(t)dt >

4
b− a

,

which becomes the Lyapunov inequality for the second-order equation (2.1).

4 Sequential fractional Lyapunov-type inequalities

Here we let −∞ < a < b < ∞ and consider the sequential fractional differential equation[(
Dβ

a+(Dα
a+x)

)]
(t) + q(t)x = 0 on (a, b), (4.1)

where q ∈ L([a, b], R), and 0 < α, β ≤ 1. In the following, we define

G(t, s) :=
1

Γ(β + 1)


(t−a)β(b−s)β

(b−a)β − (t− s)β, a ≤ s ≤ t ≤ b,

(t−a)β(b−s)β

(b−a)β , a ≤ t ≤ s ≤ b;
(4.2)

and let D1−α
b− [G(t, s)q(s)] and

[
D1−α

b− [G(t, s)q(s)]
]
+

be defined in the same way as in Section 3.
Now we present Lyapunov-type inequalities for Eq. (4.1).

Theorem 4.1. (a) Assume Eq. (4.1) has a nontrivial solution x(t) satisfying(
Dα−1

a+ x
)
(a+) =

(
Dα−1

a+ x
)
(b) = 0. (4.3)

Then

max
t∈[a,b]

{∫ b

a

∣∣∣D1−α
b− [G(t, s)q(s)]

∣∣∣ ds
}

> 1. (4.4)

(b) Assume Eq. (4.1) has a solution x(t) satisfying(
Dα−1

a+ x
)
(a+) =

(
Dα−1

a+ x
)
(b) = 0 and

(
Dα−1

a+ x
)
(t) 6= 0 on (a, b). (4.5)

Then

max
t∈[a,b]

{∫ b

a

[
D1−α

b− [G(t, s)q(s)]
]
+

ds
}

> 1, (4.6)
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Proof. Let y(t) =
(

Dα−1
a+ x

)
(t) for a < t ≤ b and y(a) =

(
Dα−1

a+ x
)
(a+). Then y(t) is continuous

on [a, b]. Note that x(t) = (D1−α
a+ y)(t). As shown in the proof of Theorem 3.1, we have(

Dα
a+x
)
(t) = y′(t). It follows that BVP (4.1), (4.3) becomes the fractional BVP

− (Dβ
a+y′)(t) = q(t)x, y(a) = y(b) = 0. (4.7)

We claim that
(

Dβ+1
a+ y

)
(t) =

(
Dβ

a+y′
)
(t). In fact, from the relation [18, (2.1.28)] we have(

Dβ
a+y
)
(t) =

1
Γ(1− β)

[
y(a)

(t− a)β
+
∫ t

a

y′(s)
(t− s)β

ds
]

.

Using the fact that y(a) = 0 and differentiating both sides with respect to t we have(
Dβ+1

a+ y
)
(t) =

d
dt

(
Dβ

a+y
)
(t) =

1
Γ(1− β)

d
dt

∫ t

a

y′(s)
(t− s)β

ds = (Dβ
a+y′)(t).

Thus BVP (4.7) becomes

− (Dβ+1
a+ y)(t) = q(t)x, y(a) = y(b) = 0. (4.8)

Note that BVP (4.8) is in the form of BVP (1.11), (1.2) with α replaced by β+ 1, and the Green’s
function G(t, s) in (2.5) for BVP (1.11), (1.2) becomes the one in (4.2). Then the solution y(t)
satisfies

y(t) =
∫ b

a
G(t, s)q(s)x(s)ds =

∫ b

a
G(t, s)q(s)D1−α

a+ y(s)ds.

The rest of the proof is essentially the same as the proof of Theorem 3.1. We omit the details.

The following corollary is a special case of Theorem 4.1.

Corollary 4.2. Assume D1−α
b− [G(t, s)q(s)] ≥ 0 for t, s ∈ [a, b] and 1 < α + β ≤ 2. Suppose Eq. (4.1)

has a nontrivial solution x(t) satisfying (4.3). Then∫ b

a
q+(t)dt >

(α + 2β− 1)α+2β−1Γ(α)Γ(β + 1)
(α + β− 1)α+β−1ββ(b− a)α+β−1 . (4.9)

Proof. The proof is similar to that of Corollary 3.2. By Theorem 4.1 we see that (4.4) holds.
From the assumption and the definition of D1−α

b− [G(t, s)q(s)] given in (3.3) we have∫ b

a

∣∣∣D1−α
b− [G(t, s)q(s)]

∣∣∣ds =
∫ b

a
D1−α

b− [G(t, s)q(s)]ds

=
−1

Γ(α)

∫ b

a

(∫ b

s
(τ − s)α−1G(t, τ)q(τ)dτ

)′
ds

=
1

Γ(α)

∫ b

a
(τ − a)α−1G(t, τ)q(τ)dτ. (4.10)

Hence (4.4) becomes

max
t∈[a,b]

∫ b

a
(τ − a)α−1G(t, τ)q(τ)dτ > Γ(α).

Using the facts that q(t) ≤ q+(t), G(t, s) ≥ 0 on [a, b]× [a, b], and

max
t∈[a,b]

G(t, τ) = G(τ, τ) =
(τ − a)β(b− τ)β

(b− a)βΓ(β + 1)
, τ ∈ [a, b],
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we see that

Γ(α) < max
t∈[a,b]

∫ b

a
(τ − a)α−1G(t, τ)q+(τ)dτ

≤ 1
(b− a)βΓ(β + 1)

∫ b

a
(τ − a)α+β−1(b− τ)βq+(τ)dτ. (4.11)

Denote h(τ) = (τ − a)α+β−1(b − τ)β. From the fact that 0 < β ≤ 1 and 1 < α + β ≤ 2,
we see h(τ) is continuous on [a, b], h(a) = h(b) = 0 and h(τ) > 0 on (a, b). Thus there
exists a d ∈ (a, b) such that h(d) = maxτ∈[a,b] h(τ). Now a simple calculation shows that
d = [(α + β− 1)b + βa]/(α + 2β− 1) and hence

h(τ) ≤ h(d) =
(α + β− 1)α+β−1ββ

(α + 2β− 1)α+2β−1 (b− a)α+2β−1. (4.12)

Substituting (4.12) in (4.11) we see that (4.9) holds.

Remark 4.3. By (1.5) we have (D2
a+x)(t) = x′′(t) and (D0

a+x)(t) = x(t). Hence for α = β = 1,
Eq. (4.1) and condition (4.5) becomes (3.20). Letting β = 1 in (4.2), we see that G(t, s) becomes
the same as the one in (3.5). Since G(t, s) ≥ 0 on [a, b]× [a, b], it follows from Theorem 4.1,
Part (b) with α = 1 that

1 < max
t∈[a,b]

{∫ b

a

[
D1−α

b− [G(t, s)q(s)]
]
+

ds
}

= max
t∈[a,b]

{∫ b

a

[
G(t, s)q(s)

]
+

ds
}

= max
t∈[a,b]

∫ b

a
G(t, s)q+(s)ds. (4.13)

Note that

max
t∈[a,b]

G(t, s) = G(s, s) =
(s− a)(b− s)

b− a
≤ b− a

4
.

Hence (4.13) reduces to ∫ b

a
q+(t)dt >

4
b− a

,

which becomes the Lyapunov inequality for the second-order equation (2.1).

5 Applications to boundary value problems

In the last section, we apply the results on the Lyapunov-type inequalities obtained in Sec-
tions 2 and 3 to study the nonexistence, uniqueness, and existence-uniqueness of solutions of
related fractional-order linear BVPs. We first consider the BVP consisting of the equation

(Dα
a+x) (t) + q(t)x = 0, 1 < α ≤ 2, (5.1)

and the BC (
Dα−2

a+ x
)
(a+) =

(
Dα−2

a+ x
)
(b) = 0. (5.2)

Definition 5.1. A solution x(t) of Eq. (5.1) is said to be an I-positive solution if
(

In−α
a+ x

)
(t) > 0 on

(a, b), where n = bαc+ 1.
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The following result is on the nonexistence of solutions of BVP (5.1), (5.2).

Lemma 5.2. (a) Assume

max
t∈[a,b]

{∫ b

a

∣∣D2−α
b− [G(t, s)q(s)]

∣∣ ds
}
≤ 1. (5.3)

Then BVP (5.1), (5.2) has no nontrivial solution.

(b) Assume

max
t∈[a,b]

{ ∫ b

a

[
D2−α

b− [G(t, s)q(s)]
]
+

ds
}
≤ 1. (5.4)

Then BVP (5.1), (5.2) has no I-positive solution.

Proof. (a) Assume the contrary, i.e., BVP (5.1), (5.2) has a nontrivial solution x(t). Then by
Theorem 3.1 Part (a), (3.7) holds. This contradicts assumption (5.3).

(b) The proof is similar to Part (a) and hence is omitted.

Next we consider the fractional-order nonhomogeneous linear BVP consisting of the equa-
tion

(Dα
a+x) (t) + q(t)x = w(t) on (a, b) (5.5)

with 1 < α ≤ 2 and q, w ∈ L((a, b), R); and the BC(
Dα−2

a+ x
)
(a+) = k1,

(
Dα−2

a+ x
)
(b) = k2, (5.6)

where k1, k2 ∈ R. Based on Theorem 3.1, we obtain a criterion for BVP (5.5), (5.6) to have a
unique solution and a relation among solutions if the problem has more than one solution.

Theorem 5.3. (a) Assume

max
t∈[a,b]

{∫ b

a

∣∣D2−α
b− [G(t, s)q(s)]

∣∣ ds
}
≤ 1.

Then BVP (5.5), (5.6) has a unique solution on (a, b) for any k1, k2 ∈ R.

(b) Assume

max
t∈[a,b]

{∫ b

a

[
D2−α

b− [G(t, s)q(s)]
]
+

ds
}
≤ 1 < max

t∈[a,b]

{∫ b

a

∣∣D2−α
b− [G(t, s)q(s)]

∣∣ ds
}

.

If BVP (5.5), (5.6) has two solutions x1(t) and x2(t), then there exists a c ∈ (a, b) such that(
I2−α
a+ x1

)
(c) =

(
I2−α
a+ x2

)
(c).

Proof. (a) We first show that BVP (5.5), (5.6) has at most one solution for any k1, k2 ∈ R.
Assume the contrary, i.e., it has two solutions x1(t) and x2(t) in (a, b). Let x(t) = x1(t)− x2(t).
Then x(t) is a solution of BVP (5.1), (5.2). By Lemma 5.2, Part (a), we have x(t) ≡ 0, i.e.,
x1(t) ≡ x2(t). This shows the uniqueness of the solution of BVP (5.5), (5.6).

Since BVP (3.1), (5.2) has only the zero solution, then by the Fredholm alternative theorem
[9], we conclude that BVP (5.5), (5.6) has a unique solution.

(b) Let x(t) = x1(t)− x2(t). Then x(t) is a solution of the BVP (5.1), (5.2). By Lemma 5.2
Part (b), x(t) is not an I-positive on [a, b]. Then there exists a c ∈ (a, b) such that

(
I2−α
a+ x

)
(c) =

0, i.e.,
(

I2−α
a+ x1

)
(c) =

(
I2−α
a+ x2

)
(c).



12 S. Dhar, Q. Kong and M. McCabe

With a similar argument, from Corollary 3.2 we obtain the result below.

Corollary 5.4. Assume D2−α
b− [G(t, s)q(s)] ≥ 0 in [a, b] and

∫ b

a
q+(t)dt ≤ ααΓ(α− 1)

(α− 1)α−1(b− a)α−1 . (5.7)

Then BVP (5.5), (5.6) has a unique solution on (a, b) for any k1, k2 ∈ R.

Remark 5.5. We note from Section 1 that the BVP consisting of Eq. (5.5) and the pointwise BC

x(a) = k1, x(b) = k2 (5.8)

does not have a solution unless k1 = 0. Even for the case with k1 = 0, the existence and
uniqueness of solutions of BVP (5.5), (5.8) cannot be established by the Fredholm alternative
method. This is due to the fact that Eq. (5.5) with a pointwise initial condition may not have
a unique solution.

For the case with k1 = k2 = 0 and w(t) ≡ 0, from Theorem 2.2, we can easily derive the
following result: Assume ∫ b

a
|q(t)|dt ≤ Γ(α)

(
4

b− a

)α−1

. (5.9)

Then BVP (5.5), (5.8) has only the zero solution.
We observe that this result has been improved by Corollary 5.4 for α = 2 since BVPs

(5.5), (5.6) and (5.5), (5.8) become the same second-order homogeneous linear problem. When
1 < α < 2, we compare the two results by comparing the right-hand numbers of (5.7) and
(5.9) (under the assumption that D2−α

b− [G(t, s)q(s)] ≥ 0 for BVP (5.5), (5.6)). We claim that

H(α) :=
ααΓ(α− 1)

(α− 1)α−1(b− a)α−1 − Γ(α)
(

4
b− a

)α−1

> 0 (5.10)

and H(α)→ ∞ as α→ 1+. In fact,

H(α) =
(α− 1)Γ(α− 1)

(b− a)α−1

((
α

α− 1

)α

−
(

41− 1
α

)α
)

.

Then (5.10) follows from the fact that α/(α − 1) > 41−1/α for 1 < α < 2. This shows that
condition (5.7) is weaker than condition (5.9), and much weaker when α is close to 1; which
is reasonable since BC (5.6) allows the solution x(t) to have a singularity at a, while BC (5.8)
requires the solution to be bounded.

Now, we state the results for the sequential fractional BVPs which are parallel to Theo-
rem 5.3 and Corollary 5.4. We omit the proofs since they are essentially in the same way.
Consider the BVP consisting of the equation[(

Dβ
a+(Dα

a+x)
)]

(t) + q(t)x = 0, 0 < α, β ≤ 1, (5.11)

and the BC (
Dα−1

a+ x
)
(a+) =

(
Dα−1

a+ x
)
(b) = 0. (5.12)

The following result is on the nonexistence of solutions of BVP (5.11), (5.12).
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Lemma 5.6. (a) Assume

max
t∈[a,b]

{∫ b

a

∣∣∣D1−α
b− [G(t, s)q(s)]

∣∣∣ ds
}
≤ 1.

Then BVP (5.11), (5.12) has only the trivial solution.
(b) Assume

max
t∈[a,b]

{∫ b

a

[
D1−α

b− [G(t, s)q(s)]
]
+

ds
}
≤ 1.

Then BVP (5.11), (5.12) has no I-positive solution.

Next we consider the sequential nonhomogeneous linear BVPs consisting of the equation

(Dβ
a+(Dα

a+x))(t) + q(t)x = w(t) on (a, b), (5.13)

where 0 < α, β ≤ 1 and q, w ∈ L((a, b)), R), and the BC(
Dα−1

a+ x
)
(a+) = k1,

(
Dα−1

a+ x
)
(b) = k2, (5.14)

where k1, k2 ∈ R. Now we present a criterion for BVP (5.13), (5.14) to have a unique solution
and a relation among the solutions if the problem has more than one solution.

Theorem 5.7. (a) Assume

max
t∈[a,b]

{∫ b

a

∣∣∣D1−α
b− [G(t, s)q(s)]

∣∣∣ ds
}
≤ 1.

Then BVP (5.13), (5.14) have a unique solution on (a, b) for any k1, k2 ∈ R.

(b) Assume

max
t∈[a,b]

{∫ b

a

[
D1−α

b− [G(t, s)q(s)]
]
+

ds
}
≤ 1 < max

t∈[a,b]

{∫ b

a

∣∣∣D1−α
b− [G(t, s)q(s)]

∣∣∣ ds
}

.

If BVP (5.13), (5.14) has two solutions x1(t) and x2(t), then there exists a c ∈ (a, b) such that(
I1−α
a+ x1

)
(c) =

(
I1−α
a+ x2

)
(c).

As before, we have the following corollary from Corollary 4.2.

Corollary 5.8. Let 1 < α + β ≤ 2. Assume D1−α
b− [G(t, s)q(s)] ≥ 0 in [a, b] and

∫ b

a
q+(t)dt ≤ (α + 2β− 1)α+2β−1Γ(α)Γ(β + 1)

(α + β− 1)α+β−1ββ(b− a)α+β−1 .

Then BVP (5.13), (5.14) have a unique solution on (a, b) for any k1, k2 ∈ R.

Finally, we point out that the applications of the results in this paper involve evaluations
of fractional derivatives of functions. However, conditions involving fractional derivatives
and integrals are hard to check analytically, even with pointwise BCs. So computer programs
and numerical algorithms are the main tools for applications. We refer the reader to [13]
for numerical algorithms for computing fractional derivatives. Here, we give an example to
illustrate the application of Theorem 5.3. A similar example for Theorem 5.7 can be easily
elaborated and hence is left to the interested reader.
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Example 5.9. We consider the BVP

(Dα
0+x) (t) + k(sin t)x = w(t),

(
Dα−2

0+ x
)
(0+) = k1,

(
Dα−2

0+ x
)
(2π) = k2, (5.15)

where 1 < α ≤ 2, w ∈ L((0, 2π)), R), and k, k1, k2 ∈ R. Using Mathematica, we sketch the
graphs of the integrals

∫ 2π
0

∣∣D2−α
2π− [G(t, s) sin s]

∣∣ ds and
∫ 2π

0

[
D2−α

2π− [G(t, s) sin s]
]
+

ds as functions
of t. From them we find that

max
t∈[0,2π]

∫ 2π

0

∣∣D2−α
2π− [G(t, s) sin s]

∣∣ ds = 3.29

and

max
t∈[0,2π]

∫ 2π

0

[
D2−α

2π− [G(t, s) sin s]
]
+

ds = 1.81,

see Figures 5.1 and 5.2 respectively. Hence, applying Theorem 5.3, we observe the following:

(a) for k ≤ 0.3, BVP (5.15) has a unique solution on (0, 2π);

(b) for 0.3 < k ≤ 0.55, if BVP (5.15) has two solutions x1(t) and x2(t), then there exists a
c ∈ (0, 2π) such that

(
I2−α
0+ x1

)
(c) =

(
I2−α
0+ x2

)
(c).

Figure 5.1:
∫ 2π

0

∣∣D2−α
2π− [G(t, s) sin s]

∣∣ ds.

Figure 5.2:
∫ 2π

0

[
D2−α

2π− [G(t, s) sin s]
]
+

ds
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