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Abstract. It is well known that the linear differential equation ẋ(t)+ p(t)x(t− τ(t)) = 0
with continuous delay τ : [t0 − r, ∞)→ (0, r], r > 0, t0 ∈ R, and p : [t0, ∞)→ (0, ∞) has
a positive solution on [t0, ∞) if an explicit criterion of the integral type∫ t

t−τ(t)
p(s)ds ≤ 1

e

holds for all t ∈ [t0, ∞). In this paper new integral explicit criteria, which essentially
supplement related results in the literature are established. For example, if, for t ∈
[t0, ∞) and a fixed µ ∈ (0, 1), the integral inequality

∫ t

t−τ/2
p(s)ds ≤ 1

2e
+

µτ3

96t3e

holds, then there exists a t∗0 ≥ t0 and a positive solution x = x(t) on [t∗0 , ∞). Examples
illustrating the effectiveness of the results are given.
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1 Introduction

The purpose of the paper is to derive explicit integral criteria for the existence of eventually
positive solutions to the equation

ẋ(t) + p(t)x(t− τ(t)) = 0, (1.1)
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with t ≥ t0 ∈ R, in terms of inequalities of the integral of the coefficient p (without loss
of generality, we will assume t0 sufficiently large throughout the paper to ensure that the
performed computations are well-defined) where p : [t0, ∞)→ (0, ∞) is a continuous function.
We will also assume, that the delay τ(t) is continuous, positive and bounded on [t0− r, ∞) by
a constant r, i.e., τ(t) ≤ r. Next, define the set R+ := [0, ∞).

A solution to (1.1) is defined as follows: a continuous function x : [t∗ − r, ∞)→ R is called
a solution of (1.1) corresponding to t∗ ∈ [t0, ∞) if x is differentiable on [t∗, ∞) (the derivative
at t∗ is regarded as the right-hand derivative) and satisfies (1.1) for all t ≥ t∗. A solution
of (1.1) corresponding to t∗ is called oscillatory if it has arbitrarily large zeros. Otherwise,
it is called non-oscillatory. A non-oscillatory solution x of (1.1) corresponding to t∗ is called
positive (negative) if x(t) > 0 (x(t) < 0) on [t∗ − r, ∞). A solution x of (1.1) corresponding to
t∗ is called eventually positive (eventually negative) if there exists t∗∗ > t∗ such that x(t) > 0
(x(t) < 0) on [t∗∗, ∞).

Repeated interest in studying the existence of positive solutions of delay differential equa-
tions and their systems can be observed recently (we refer, e.g., to the monograph [1] and the
papers [3, 4, 7, 9, 18, 21, 25, 30, 33–35, 37, 40] and to the references therein). Classical results can
be found, e.g., in monographs [2,24,26,28] and further results, e.g., in papers [10,11,13–16,19,
20, 23, 27, 29].

Equation (1.1) often serves, due to its simple form, as an equation prototype for testing and
comparing new results. But equation (1.1) itself has interesting applications as well. It is, for
example, well-known in number theory that what is called the Dickman–de Bruijn function
(we refer to [36, 38] and to the references therein) is a positive solution of the initial problem

ẋ(t) +
1
t

x(t− 1) = 0, t ≥ 1 if x(t) = 1, t ∈ [0, 1].

In [22, p. 226] equation (1.1), in the case of the coefficient and the delay in (1.1) being constant,
p(t) = p > 0 and τ(t) = τ > 0, i.e.

ẋ(t) + px(t− τ) = 0, t ≥ t0 (1.2)

models the amount of salt (expressed by a positive solution) in the brine in a tank diluted by
fresh water. The same equation is used in an example of water temperature regulation by a
showering person in [32, p. 74]. A well-known example of type (1.1) equation

ẋ(t) + 2te1−2tx(t− 1) = 0

with a solution x(t) = e−t2
illustrates the fact that linear equations with delay can have positive

solutions decreasing for t→ ∞ to zero faster than an arbitrary exponential function e−αt where
α > 0 (see, e.g. [31, p. 97]).

It is well-known that either there exists an eventually positive solution of (1.1) or every
solution of (1.1) is oscillatory. In the literature, by a critical case of the coefficient p in (1.1)
is usually understood a boundary for p separating, in a sense, both the above mentioned
asymptotically different qualitative cases of behavior of solutions to (1.1). We can give an
explanation in the case of equation (1.2). In such a case, it is easy to show that there exists
a positive solution if pτ ≤ 1/e and that all solutions oscillate if pτ > 1/e, the value 1/e is
called the critical value.

In the paper, we develop some new explicit integral criteria related to the well-known
classical sharp integral criterion∫ t

t−τ(t)
p(s)ds ≤ 1

e
, ∀t ≥ t0 (1.3)
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for the existence of eventually positive solutions to (1.1) on [t0, ∞) (we refer, e.g., to [1, Corol-
lary 2.15.], [2, Corollary 2.2.15.], [24, Corollary 2.2.1.], [28, Theorem 3.3.1.] and [29, Theo-
rem 3]).

Now we give a short overview of known results stating the existence of a positive solution
to (1.1).

1.1 Implicit criterion

The following well-known implicit criterion (with conditions adapted for (1.1)) on the exis-
tence of positive solutions is often cited in the literature.

Theorem 1.1. Equation (1.1) has a positive solution with respect to t0 if and only if there exists
a continuous function λ(t) on [t0 − r, ∞) such that λ(t) > 0 for t ≥ t0 and

λ(t) ≥ p(t)e
∫ t

t−τ(t) λ(s)ds , t ≥ t0. (1.4)

This criterion can be found, e.g., in [27, Theorem 1, Assertion 7 and Corollary 2.1] and also
in [1, 2] and [24, Theorem 2.1.4.]. Inequality (1.4) is of considerable importance since it often
plays a crucial role in the process of deriving explicit criteria of positivity.

1.2 Explicit criteria

Some results cited below are formulated explicitly in terms of inequalities for the coefficient
p or in terms of integrals containing p. These results deal with the critical case and are sharp
(non-improvable) in various senses (often explained in the original papers). E.g., positive
solutions might not exist if the cited inequalities are subject to certain small perturbations.

In some of the inequalities below appears what is called the iterated logarithm. We define
iterated logarithms of k-th order as

lnk t := ln ln . . . ln︸ ︷︷ ︸
k

t, k ≥ 1, t > expk−2 1 , ln0 t := t

and the iterated exponential

expk t := ( exp(exp(. . . exp︸ ︷︷ ︸
k

t ))), exp0 t := t, exp−1 t := 0

is used to determine the domain of the iterated logarithm.

1.2.1 Point-wise criteria

In [23] it is assumed that p(t) = 1/e + a(t), τ(t) = 1 and t0 = 1. Then, the equation

ẋ(t) +
(

1
e
+ a(t)

)
x(t− 1) = 0 (1.5)

has a positive solution if
a(t) ≤ 1/(8et2) (1.6)

for all sufficiently large t [23, Theorem 3]. This result is improved in [20] as follows. If

a(t) ≤ 1
8et2

(
1 +

1
ln2 t

)
, (1.7)
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for all sufficiently large t, then (1.5) has a positive solution. A further generalization is given
in [10], where it is proved that, for the existence of a positive solution to (1.1) if τ(t) = r the
inequality

p(t) ≤ 1
er

+
r

8et2 +
r

8e(t ln t)2 +
r

8e(t ln t ln2 t)2 + · · ·+ r
8e(t ln t ln2 t · · · lnk t)2 (1.8)

for t → ∞ and an integer k ≥ 0 is sufficient. Obviously, criterion (1.3) is not applicable in
the cases where the coefficient of the equation considered satisfies the inequalities described
by (1.6)–(1.8).

Assuming t− τ(t) ≥ t0 − τ(t0) if t ≥ t0 and

∫ t

t−τ(t)

1
τ(ξ)

dξ ≤ 1, t→ ∞,

in [17], it is proved that, for the existence of an eventually positive solution of (1.1), it is
sufficient if an integer k ≥ 0 exists such that

lim
t→∞

τ(t) ·
(

1
t

ln t ln2 t · · · lnk t
)
= 0

and

p(t) ≤ 1
eτ(t)

+
τ(t)
8et2 +

τ(t)
8e(t ln t)2 + · · ·+ τ(t)

8e(t ln t ln2 t · · · lnk t)2 .

Moreover, in [3], it is showed that, if (1.8) holds and 0 ≤ τ(t) ≤ r for t→ ∞, then (1.1) has
an eventually positive solution. We finish this short overview by including a general result
published in [3]. Let 1/τ(t) be a locally integrable function and

lim
t→∞

(t− τ(t)) = ∞,
∫ ∞

t0

1
τ(ξ)

dξ = ∞.

If there exists a δ ∈ (0, ∞) such that

∫ t

t−τ(t)

1
τ(ξ)

dξ ≤ δ, t ≥ t0

and, for a fixed integer k ≥ 0,

p(t) ≤ 1
eδτ(t)

+
δ

8eτ(t)q2(t)
+

δ

8eτ(t)(q(t) ln q(t))2

+ · · ·+ δ

8eτ(t)(q(t) ln q(t) ln2 q(t) · · · lnk q(t))2

where

q(t) =
∫ t

t0

1
τ(ξ)

dξ,

then there exists an eventually positive solution of (1.1).
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1.2.2 Integral criteria

Note, that the choice λ(t) = e p(t) in (1.4) turns this inequality into (1.3). The ideas how
to utilize implicit criterion (1.4) to get new explicit integral criteria are brought from the
papers [4] and [12]. A small modification of (1.4), transforming

λ(t) := e p(t) e−ω(t) (1.9)

with ω := λ∗i , i = 0, 1, . . . , where λ∗i are special functions defined as

λ∗i (t) :=
τ(t)
2t

+
τ(t)

2t ln t
+

τ(t)
2t ln t ln2 t

+ · · ·+ τ(t)
2t ln t ln2 t · · · lni t

led to substantial progress in developing new positivity criteria. Theorem 4 in [12] states the
following

Theorem 1.2. Let us assume that, for a fixed i ∈ {0, 1, . . . }, the inequality∫ t

t−τ(t)
p(s)e−λ∗i (s) ds ≤ 1

e
[1 − λ∗i (t)]

holds for t ∈ [t0, ∞). Then there exists a positive solution x = x(t) of (1.1) on [t0, ∞). Moreover,

x(t) < exp
(
−e

∫ t

t0

p(s)e−λ∗i (s) ds
)

for t ∈ [t0, ∞).

In particular, [12] demonstrates that Theorem 1.2 covers criteria (1.6)–(1.8).

2 New explicit integral criteria

Substituting (1.9) into (1.4), where ω : [t0 − r, ∞) → R is a general function, results in the
following statement (see [12, Theorem 3]).

Theorem 2.1. Let ω : [t0 − r, ∞)→ R be a locally integrable function such that∫ t

t−τ(t)
p(s)e−ω(s) ds ≤ 1

e
[1−ω(t)] (2.1)

for t ∈ [t0, ∞). Then there exists a positive solution x = x(t) of (1.1) on [t0, ∞) satisfying the
inequality

x(t) < exp
(
−e

∫ t

t0

p(s)e−ω(s) ds
)

(2.2)

for t ∈ [t0, ∞).

Theorem 2.1 is used in the proof of the following theorem.

Theorem 2.2. Let ω : [t0 − r, ∞) → R be a nonincreasing locally integrable function and let
θ : [t0, ∞]→ [0, 1] be a function. If

e−ω(t−θ(t)τ(t))
∫ t−θ(t)τ(t)

t−τ(t)
p(s)ds + e−ω(t)

∫ t

t−θ(t)τ(t)
p(s)ds ≤ 1

e
[1−ω(t)] (2.3)

for t ∈ [t0, ∞), then there exists a positive solution x = x(t) of (1.1) on [t0, ∞).
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Proof. For the left-hand side L of inequality (2.1), we get

L =
∫ t

t−τ(t)
p(s)e−ω(s) ds =

∫ t−θ(t)τ(t)

t−τ(t)
p(s)e−ω(s) ds +

∫ t

t−θ(t)τ(t)
p(s)e−ω(s) ds

≤ e−ω(t−θ(t)τ(t))
∫ t−θ(t)τ(t)

t−τ(t)
p(s)ds + e−ω(t)

∫ t

t−θ(t)τ(t)
p(s)ds.

Now, obviously, an estimate of the right-hand side R of inequality (2.1), utilizing (2.3), is

R =
1
e
[1−ω(t)] ≥ e−ω(t−θ(t)τ(t))

∫ t−θ(t)τ(t)

t−τ(t)
p(s)ds + e−ω(t)

∫ t

t−θ(t)τ(t)
p(s)ds

≥
∫ t

t−τ(t)
p(s)e−ω(s) ds = L.

Inequality (2.1) holds and from Theorem 2.1 the proof of Theorem 2.2 is complete.

Now we use Theorem 2.2 to get an easily verifiable explicit criterion.

Theorem 2.3. Let
τ(t) ≤ τ(t− τ(t)/2) ≤ Mτ(t) (2.4)

for all t ≥ t0 > 0 and a constant M. If there exists a function α : [t0, ∞)→ R+ such that∫ t−τ(t)/2

t−τ(t)
p(s)ds ≤ 1

2e
+ α(t),

∫ t

t−τ(t)/2
p(s)ds ≤ 1

2e
+ α(t) (2.5)

for t ∈ [t0, ∞) and a constant µ ∈ (0, 1) such that

α(t) ≤ µ(τ3(t− τ(t)/2) + τ3(t))
192t3e

, t ∈ [t0, ∞), (2.6)

then there exists a t∗0 ∈ [t0, ∞) and a positive solution x = x(t) of (1.1) on [t∗0 , ∞).

Proof. In (2.3), put ω(t) = τ(t)/(2t) (in accordance with recommendation (1.9) for i = 0) and
θ(t) = 1/2. Then, (2.3) equals

L1 := e−τ(t−τ(t)/2)/(2(t−τ(t)/2))
∫ t−τ(t)/2

t−τ(t)
p(s)ds

+ e−τ(t)/(2t)
∫ t

t−τ(t)/2
p(s)ds ≤ R1 :=

1
e

[
1− τ(t)

2t

]
. (2.7)

Obviously, due to the boundedness of τ(t),

lim
t→∞

τ(t− τ(t)/2)
t− τ(t)/2

= 0, lim
t→∞

τ(t)
t

= 0, (2.8)

and in view of (2.4),
τ(t− τ(t)/2) = O(τ(t)). (2.9)

Combining both properties (2.8), (2.9) we have

τm(t− τ(t)/2)
ts = O

(
τm(t)

ts

)
,

τm(t− τ(t)/2)
(t− τ(t)/2)s = O

(
τm(t)

ts

)
(2.10)
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for positive integers m and s. Due to (2.8)–(2.10), it is possible to asymptotically decompose
both exponential functions in (2.7). For the first one, we get

e−τ(t−τ(t)/2)/(2(t−τ(t)/2))

= 1− τ(t− τ(t)/2)
2(t− τ(t)/2)

+
1
2

(
τ(t− τ(t)/2)
2(t− τ(t)/2)

)2

− 1
6

(
τ(t− τ(t)/2)
2(t− τ(t)/2)

)3

+ O

((
τ(t− τ(t)/2)

t− τ(t)/2

)4
)

= 1− 1
2t

τ(t− τ(t)/2)
(

1 +
τ(t)
2t

+
τ2(t)
4t2 + O

(
τ3(t)

t3

))

+
1
2

τ2(t− τ(t)/2)
4t2

(
1 +

τ(t)
t

+ O
(

τ2(t)
t2

))
− 1

6
τ3(t− τ(t)/2)

8t3

(
1 + O

(
τ(t)

t

))
+ O

(
τ4(t)

t4

)

= 1− τ(t− τ(t)/2)
2t

− τ(t− τ(t)/2)τ(t)
4t2 − τ(t− τ(t)/2)τ2(t)

8t3

+
τ2(t− τ(t)/2)

8t2 +
τ2(t− τ(t)/2)τ(t)

8t3 − 1
6

τ3(t− τ(t)/2)
8t3 + O

(
τ4(t)

t4

)
(2.11)

and, for the second one, we derive

e−τ(t)/(2t) = 1− τ(t)
2t

+
1
2

(
τ(t)
2t

)2

− 1
6

(
τ(t)
2t

)3

+ O
(

τ4(t)
t4

)

= 1− τ(t)
2t

+
τ2(t)
8t2 −

τ3(t)
48t3 + O

(
τ4(t)

t4

)
. (2.12)

Then, utilizing (2.5), (2.11) and (2.12), we can estimate the left-hand side L1 of (2.7),

L1 =

(
1− τ(t− τ(t)/2)

2t
− τ(t− τ(t)/2)τ(t)

4t2 − τ(t− τ(t)/2)τ2(t)
8t3

+
τ2(t− τ(t)/2)

8t2 +
τ2(t− τ(t)/2)τ(t)

8t3 − 1
6

τ3(t− τ(t)/2)
8t3

+ O
(

τ4(t)
t4

)) ∫ t−τ(t)/2

t−τ(t)
p(s)ds

+

(
1− τ(t)

2t
+

τ2(t)
8t2 −

τ3(t)
48t3 + O

(
τ4(t)

t4

)) ∫ t

t−τ(t)/2
p(s)ds

≤
(

1− τ(t− τ(t)/2)
2t

− τ(t− τ(t)/2)τ(t)
4t2 − τ(t− τ(t)/2)τ2(t)

8t3

+
τ2(t− τ(t)/2)

8t2 +
τ2(t− τ(t)/2)τ(t)

8t3 − 1
6

τ3(t− τ(t)/2)
8t3

+ O
(

τ4(t)
t4

))(
1
2e

+ α(t)
)
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+

(
1− τ(t)

2t
+

τ2(t)
8t2 −

τ3(t)
48t3 + O

(
τ4(t)

t4

))(
1
2e

+ α(t)
)

=
1
e
− τ(t− τ(t)/2) + τ(t)

4te
+

τ2(t− τ(t)/2) + τ2(t)− 2τ(t− τ(t)/2)τ(t)
16t2e

+
−6τ(t− τ(t)/2)τ2(t) + 6τ2(t− τ(t)/2)τ(t)− τ3(t− τ(t)/2)− τ3(t)

96t3e

+ α(t)
(

2 + O
(

τ(t)
t

))
+ O

(
τ4(t)

t4

)
.

So, we have

L1 ≤
1
e
− τ(t− τ(t)/2) + τ(t)

4te
+

τ2(t− τ(t)/2) + τ2(t)− 2τ(t− τ(t)/2)τ(t)
16t2e

+
−6τ(t− τ(t)/2)τ2(t) + 6τ2(t− τ(t)/2)τ(t)− τ3(t− τ(t)/2)− τ3(t)

96t3e

+ 2α(t) + O
(

α(t)τ(t)
t

)
+ O

(
τ4(t)

t4

)
. (2.13)

Then, for L1 ≤ R1,

1
e
− τ(t− τ(t)/2) + τ(t)

4te
+

τ2(t− τ(t)/2) + τ2(t)− 2τ(t− τ(t)/2)τ(t)
16t2e

+
−6τ(t− τ(t)/2)τ2(t) + 6τ2(t− τ(t)/2)τ(t)− τ3(t− τ(t)/2)− τ3(t)

96t3e

+ 2α(t) + O
(

α(t)τ(t)
t

)
+ O

(
τ4(t)

t4

)
<

1
e

[
1− τ(t)

2t

]
or

τ(t)− τ(t− τ(t)/2)
4te

+
(τ(t− τ(t)/2)− τ(t))2

16t2e
+
−6τ(t− τ(t)/2)τ(t)(τ(t)− τ(t− τ(t)/2)

96t3e

− τ3(t− τ(t)/2) + τ3(t)
96t3e

+ 2α(t) + O
(

α(t)τ(t)
t

)
+ O

(
τ4(t)

t4

)

=
τ(t)− τ(t− τ(t)/2)

4te

(
1 +

τ(t)− τ(t− τ(t)/2)
4t

− 6τ(t− τ(t)/2)τ(t)
24t2

)

− τ3(t− τ(t)/2) + τ3(t)
96t3 + 2α(t) + O

(
α(t)τ(t)

t

)
+ O

(
τ4(t)

t4

)
< 0 (2.14)

is sufficient. From (2.4), we have −τ(t − τ(t)/2) + τ(t) ≤ 0. As the delay τ is bounded,
(assuming t0 sufficiently large),

τ(t)− τ(t− τ(t)/2)
4te

(
1 +

τ(t)− τ(t− τ(t)/2)
4t

− 6τ(t− τ(t)/2)τ(t)
24t2

)
≤ 0. (2.15)



Explicit integral criteria for positive solutions 9

Finally, utilizing (2.4), (2.6) and (2.15), we conclude that (2.14) will be satisfied if

− τ3(t− τ(t)/2) + τ3(t)
96t3 + 2α(t) + O

(
α(t)τ(t)

t

)
+ O

(
τ4(t)

t4

)

≤ − (1− µ)(τ3(t− τ(t)/2) + τ3(t))
96t3e

+ O
(

α(t)τ(t)
t

)
+ O

(
τ4(t)

t4

)

= − (1− µ)(τ3(t− τ(t)/2) + τ3(t))
96t3e

+ O
(
(τ3(t− τ(t)/2) + τ3(t))τ(t)

t4

)
+ O

(
τ4(t)

t4

)
< 0.

Since 1− µ > 0, the last inequality is valid and L1 < R1. Without loss of generality, assume
that above inequalities are valid on [t∗0 , ∞) where t∗0 ≥ t0 is sufficiently large. Inequality (2.3)
holds on [t∗0 , ∞), Theorem 2.2 is applicable, and a positive solution x = x(t) of (1.1) on [t∗0 , ∞)

exists.

A minor modification in the proof of Theorem 2.3 gives the following statement.

Theorem 2.4. Let
τ(t) < τ(t− τ(t)/2) ≤ Mτ(t) (2.16)

for all t ≥ t0 and a constant M and∫ t−τ(t)/2

t−τ(t)
p(s)ds ≤ 1

2e
+ β(t),

∫ t

t−τ(t)/2
p(s)ds ≤ 1

2e
+ β(t)

for t ∈ [t0, ∞), where β : [t0, ∞)→ R+. If, moreover, there exists a µ ∈ (0, 1) such that

β(t) ≤ µ(τ(t− τ(t)/2)− τ(t))
8te

, (2.17)

then there exists a t∗0 ∈ [t0, ∞) and a positive solution x = x(t) of (1.1) on [t∗0 , ∞).

Proof. Modifying inequality (2.14) (where α is replaced by β) in the proof of Theorem 2.3, we
get

τ(t)− τ(t− τ(t)/2)
4te

(
1 +

τ(t)− τ(t− τ(t)/2)
4t

− 6τ(t− τ(t)/2)τ(t)
24t2

)

− τ3(t− τ(t)/2) + τ3(t)
96t3 + 2β(t) + O

(
β(t)τ(t)

t

)
+ O

(
τ4(t)

t4

)

≤ τ(t)− τ(t− τ(t)/2)
4te

(
1− µ +

τ(t)− τ(t− τ(t)/2)
4t

− 6τ(t− τ(t)/2)τ(t)
24t2

)

− τ3(t− τ(t)/2) + τ3(t)
96t3 + O

(
(τ(t− τ(t)/2)− τ(t))τ(t)

t2

)
+ O

(
τ4(t)

t4

)
< 0. (2.18)

It is easy to see that the asymptotically leading terms in (2.18) are

τ(t)− τ(t− τ(t)/2)
4te

(1− µ) and − τ3(t− τ(t)/2) + τ3(t)
96t3

because all the remaining terms are asymptotically smaller than the first or the second one.
Since 1− µ > 0, inequality (2.18) is valid and L1 < R1. Further, we can proceed as in the
proof of Theorem 2.3.
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Remark 2.5. Comparing inequality (2.6) in Theorem 2.3 with inequality (2.17) in Theorem 2.4,
we conclude that these theorems are independent. Let us illustrate this remark by two ex-
amples with different delays (and note that neither point-wise criteria mentioned in 1.2.1 nor
integral criterion (1.3) are applicable).

Example 2.6. Let t0 > 0 and τ(t) = e−t. Then,

τ(t− τ(t)/2) = e−(t−e−t/2)

and inequality (2.4) turns into inequality

1 ≤ ee−t/2 ≤ M,

which holds with M :=
√

e. Theorem 2.3 is applicable if α satisfies inequality (2.6), i.e.,

α(t) ≤ µ(τ3(t− τ(t)/2) + τ3(t))
192t3e

=
µ(e−3(t−e−t/2) + e−3t)

192t3e
=

µe−3t(e3 e−t/2 + 1)
192t3e

. (2.19)

Inequality (2.16) in Theorem 2.4 holds as well. Theorem 2.4 is applicable if β satisfies inequal-
ity (2.17), i.e.,

β(t) ≤ µ(τ(t− τ(t)/2)− τ(t))
8te

=
µ(e−(t−e−t/2) − e−t)

8te
=

µe−t(ee−t/2 − 1)
8te

=
µe−t

8te

(
1 +

1
2

e−t(1 + o(1))− 1
)
=

µe−2t

16te
(1 + o(1)) . (2.20)

Comparing estimates (2.19) and (2.20), we conclude that (2.20) is less restrictive and therefore
Theorem 2.4 is preferable.

Example 2.7. Let t0 > 0 and τ(t) = 1 + e−t. Then,

τ(t− τ(t)/2) = 1 + e−(t−(1+e−t)/2)

and inequality (2.4) turns into inequality

1 ≤
(

1 + e−te(1+e−t)/2
) (

1 + e−t)−1 ≤ M,

which holds with M := 1 + e. Theorem 2.3 is applicable if α satisfies inequality (2.6), i.e.,

α(t) ≤ e
µ(τ3(t− τ(t)/2) + τ3(t))

192t3e
=

µ((1 + e−(t−(1+e−t)/2))3 + ((1 + e−t)3)

192t3e

=
µ(2 + o(1))

192t3e
. (2.21)

Inequality (2.16) in Theorem 2.4 holds as well. Theorem 2.4 is applicable if β satisfies inequal-
ity (2.17), i.e.

β(t) ≤ µ(τ(t− τ(t)/2)− τ(t))
8te

=
µ(1 + e−(t−(1+es−t)/2) − 1− e−t)

8te

=
µe−t(e(1+e−t)/2) − 1)

8te
. (2.22)

Comparing estimates (2.21) and (2.22), we conclude that (2.21) is less restrictive and therefore
Theorem 2.3 is preferable.
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3 Further positivity criteria

In this part, some further positivity criteria are derived. First we generalize Theorem 2.2 in
the case that the interval [t− τ(t), t] is divided by several points.

Theorem 3.1. Let ω : [t0− r, ∞)→ R be a nonincreasing locally integrable function, let θi : [t0, ∞]→
[0, 1], i = 1, 2, . . . , n− 1 be functions satisfying inequalities θ1(t) > θ2(t) > · · · > θn−1(t) and let
the inequality

e−ω(t−θ1(t)τ(t))
∫ t−θ1(t)τ(t)

t−τ(t)
p(s)ds + e−ω(t−θ2(t)τ(t))

∫ t−θ2(t)τ(t)

t−θ1(t)τ(t)
p(s)ds

+ · · ·+ e−ω(t−θn−1(t)τ(t))
∫ t−θn−1(t)τ(t)

t−θn−2(t)τ(t)
p(s)ds

+ e−ω(t)
∫ t

t−θn−1(t)τ(t)
p(s)ds ≤ 1

e
[1−ω(t)] (3.1)

hold for t ∈ [t0, ∞). Then there exists a positive solution x = x(t) of (1.1) on [t0, ∞).

Proof. In the proof, we apply Theorem 2.1 again. For the left-hand side L of inequality (2.1)
we get, using (3.1),

L =
∫ t

t−τ(t)
p(s)e−ω(s) ds =

∫ t−θ1(t)τ(t)

t−τ(t)
p(s)e−ω(s) ds +

∫ t−θ2(t)τ(t)

t−θ1(t)τ(t)
p(s)e−ω(s) ds

+ · · ·+
∫ t−θn−1(t)τ(t)

t−θn−2(t)τ(t)
p(s)e−ω(s) ds +

∫ t

t−θn−1(t)τ(t)
p(s)e−ω(s) ds

≤ e−ω(t−θ1(t)τ(t))
∫ t−θ1(t)τ(t)

t−τ(t)
p(s)ds + e−ω(t−θ2(t)τ(t))

∫ t−θ2(t)τ(t)

t−θ1(t)τ(t)
p(s)ds

+ · · ·+ e−ω(t−θn−1(t)τ(t))
∫ t−θn−1(t)τ(t)

t−θn−2(t)τ(t)
p(s)ds + e−ω(t)

∫ t

t−θn−1(t)τ(t)
p(s)ds.

By (3.1), an estimate of the right-hand side R of inequality (2.1) is

R =
1
e
[1−ω(t)]

≥ e−ω(t−θ1(t)τ(t))
∫ t−θ1(t)τ(t)

t−τ(t)
p(s)ds + e−ω(t−θ2(t)τ(t))

∫ t−θ2(t)τ(t)

t−θ1(t)τ(t)
p(s)ds

+ · · ·+ e−ω(t−θn−1(t)τ(t))
∫ t−θn−1(t)τ(t)

t−θn−2(t)τ(t)
p(s)ds + e−ω(t)

∫ t

t−θn−1(t)τ(t)
p(s)ds

≥
∫ t

t−τ(t)
p(s)e−ω(s) ds = L,

inequality (2.1) holds, and from Theorem 2.1 the proof of Theorem 3.1 is complete.

Now we use Theorem 3.1 to get an easily verifiable explicit criterion when the interval
[t− τ, t], t ≥ t0 is divided into n subintervals. It is necessary to underline that it is assumed
that n > 2, i.e. Theorem 3.2 below cannot be reduced to Theorem 2.3 and both theorems are
independent. It is a surprising fact that the proof of Theorem 3.2 is even simpler than that of
proof of Theorem 2.3 (because the terms of the third order of accuracy in the asymptotic de-
composition are not necessary) and, simultaneously, the function α satisfies an estimation (3.3)
below which is weaker than (2.6) in Theorem 2.3.
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Theorem 3.2. Let n > 2 be an integer and

τ(t− ((n− i)/n)τ(t)) ≤ τ(t− ((n− i + 1)/n)τ(t)) ≤ Mτ(t) (3.2)

for all t ≥ t0 > 0 and i = 1, . . . , n, and a constant M. If

∫ t−((n−i)/n)τ(t)

t−((n−i+1)/n)τ(t)
p(s)ds ≤ 1

ne
+ α(t)

for t ∈ [t0, ∞), i = 1, . . . , n where α : [t0, ∞)→ R+ and there exist a µ ∈ (0, 1) such that

α(t) ≤ µ(n− 2)τ2(t))
8n2t2e

, t ∈ [t0, ∞), (3.3)

then there exists a t∗0 ∈ [t0, ∞) and a positive solution x = x(t) of (1.1) on [t∗0 , ∞).

Proof. Put in (3.1) ω(t) = τ(t)/(2t) and θi(t) = (n − i)/n, i = 1, . . . , n. Then, (3.1) equals
(below by L∗1 and R∗1 the left-hand and the right-hand sides of (3.1) are denoted)

L∗1 := exp
(
−τ(t− ((n− 1)/n)τ(t))
2(t− ((n− 1)/n)τ(t))

) ∫ t−((n−1)/n)τ(t)

t−(n/n)τ(t)
p(s)ds

+ exp
(
−τ(t− ((n− 2)/n)τ(t))
2(t− ((n− 2)/n)τ(t))

) ∫ t−((n−2)/n)τ(t)

t−((n−1)/n)τ(t)
p(s)ds

+ · · ·+ exp
(
−τ(t− ((n− n)/n)τ(t))
2(t− ((n− n)/n)τ(t))

) ∫ t−((n−n)/n)τ(t)

t−((n−n+1)/n)τ(t)
p(s)ds

=
n

∑
i=1

exp
(
−τ(t− ((n− i)/n)τ(t))
2(t− ((n− i)/n)τ(t))

) ∫ t−((n−i)/n)τ(t)

t−((n−i+1)/n)τ(t)
p(s)ds

≤ R∗1 :=
1
e

[
1− τ(t)

2t

]
. (3.4)

Obviously, due to the boundedness of τ(t),

lim
t→∞

τ(t− ((n− i)/n)τ(t))
t− ((n− i)/n)τ(t)

= 0, i = 1, . . . , n, (3.5)

due to (3.2)

τ(t− ((n− i)/n)τ(t)) = O(τ(t)), i = 1, . . . , n− 1 (3.6)

and, combining both properties (3.5), (3.6), we have

τm(t− ((n− i)/n)τ(t))
ts = O

(
τm(t)

ts

)
,

τm(t− ((n− i)/n)τ(t))
(t− ((n− i)/n)τ(t))s = O

(
τm(t)

ts

)
(3.7)

for positive integers m and s and i = 1, . . . , n− 1. By (3.5)–(3.7), it is possible to asymptotically
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decompose exponential functions in (3.4). This is the next step. For i = 1, . . . , n, we get

exp
(
−τ(t− ((n− i)/n)τ(t))
2(t− ((n− i)/n)τ(t))

)

= 1− τ(t− ((n− i)/n)τ(t))
2(t− ((n− i)/n)τ(t))

+
1
2

(
τ(t− ((n− i)/n)τ(t))
2(t− ((n− i)/n)τ(t))

)2

+ O
(

τ3(t)
t3

)

= 1− 1
2t

τ(t− ((n− i)/n)τ(t))
(

1 +
n− i

n
τ(t)

t
++O

(
τ2(t)

t2

))

+
1
2

τ2(t− ((n− i)/n)τ(t))
4t2

(
1 + O

(
τ(t)

t

))
+ O

(
τ3(t)

t3

)

= 1− τ(t− ((n− i)/n)τ(t))
2t

− (n− i)τ(t− ((n− i)/n)τ(t))τ(t)
2nt2

+
τ2(t− ((n− i)/n)τ(t))

8t2 + O
(

τ3(t)
t3

)
. (3.8)

Then, utilizing (3.3) and (3.8) we can estimate the left-hand side of (3.4),

L∗1 :=
n

∑
i=1

exp
(
−τ(t− ((n− i)/n)τ(t))
2(t− ((n− i)/n)τ(t))

) ∫ t−((n−i)/n)τ(t)

t−((n−i+1)/n)τ(t)
p(s)ds

≤
n

∑
i=1

exp
(
−τ(t− ((n− i)/n)τ(t))
2(t− ((n− i)/n)τ(t))

)(
1

ne
+ α(t)

)

≤
n

∑
i=1

(
1− τ(t− ((n− i)/n)τ(t))

2t
− (n− i)τ(t− ((n− i)/n)τ(t))τ(t)

2nt2

+
τ2(t− ((n− i)/n)τ(t))

8t2 +O
(

τ3(t)
t3

))(
1

ne
+ α(t)

)

=
1
e
−

n

∑
i=1

τ(t− ((n− i)/n)τ(t))
2net

+
n

∑
i=1

(
− (n− i)τ(t− ((n− i)/n)τ(t))τ(t)

2n2et2 +
τ2(t− ((n− i)/n)τ(t))

8net2

)

+ α(t)
(

n + O
(

τ(t)
t

))
+ O

(
τ3(t)

t3

)
.

Then, for L∗1 ≤ R∗1 ,

1
e
−

n

∑
i=1

τ(t− ((n− i)/n)τ(t))
2net

+
n

∑
i=1

(
− (n− i)τ(t− ((n− i)/n)τ(t))τ(t)

2n2et2 +
τ2(t− ((n− i)/n)τ(t))

8net2

)

+ α(t)
(

n + O
(

τ(t)
t

))
+ O

(
τ3(t)

t3

)
<

1
e

[
1− τ(t)

2t

]
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or
n−1

∑
i=1

τ(t)− τ(t− ((n− i)/n)τ(t))
2net

+
n

∑
i=1

(
−4(n− i)τ(t− ((n− i)/n)τ(t))τ(t) + nτ2(t− ((n− i)/n)τ(t))

8n2et2

)

+ nα(t) + O
(

α(t)τ(t)
t

)
+ O

(
τ3(t)

t3

)
< 0 (3.9)

is sufficient. Let us transform the second sum in (3.9). We get

∑ 2 =
1

8n2et2

n

∑
i=1

(
nτ2(t− ((n− i)/n)τ(t))− 4(n− i)τ(t)τ(t− ((n− i)/n)τ(t))

)
=

1
8n2et2

n

∑
i=1

(
n (τ(t)− τ(t− ((n− i)/n)τ(t)))2 − nτ2(t)

+ (2n− 4(n− i))τ(t)τ(t− ((n− i)/n)τ(t))
)

= [we take into account a reduction in the sum if i = n and i = n− 1]

=
1

8n2et2

n−1

∑
i=1

n (τ(t)− τ(t− ((n− i)/n)τ(t)))2 − n(n− 2)τ2(t)
8n2et2

−
n−1

∑
i=1

1
8n2et2 (2n− 4i)τ(t)τ(t− ((n− i)/n)τ(t))

=
1

8n2et2

n−1

∑
i=1

n (τ(t)− τ(t− ((n− i)/n)τ(t)))2 − n(n− 2)τ2(t)
8n2et2

−
bn/2c

∑
i=1

1
8n2et2 (2n− 4i)τ(t) [τ(t− ((n− i)/n)τ(t))− τ(t− (i/n)τ(t))]

where b·c is the floor function. Since, by (3.2),

τ(t− ((n− i)/n)τ(t))− τ(t− (i/n)τ(t)) ≥ 0,

we have

∑ 2 ≤
1

8n2et2

n−1

∑
i=1

n (τ(t)− τ(t− ((n− i)/n)τ(t)))2 − n(n− 2)τ2(t)
8n2et2

and (3.9) will hold if

n−1

∑
i=1

τ(t)− τ(t− ((n− i)/n)τ(t))
2net

+
1

8net2

n−1

∑
i=1

(τ(t)− τ(t− ((n− i)/n)τ(t)))2 − (n− 2)τ2(t)
8net2

+ nα(t) + O
(

α(t)τ(t)
t

)
+ O

(
τ3(t)

t3

)
< 0
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or if

n−1

∑
i=1

τ(t)− τ(t− ((n− i)/n)τ(t))
2net

(
1 +

τ(t)− τ(t− ((n− i)/n)τ(t))
4t

)

− (n− 2)τ2(t)
8net2 + nα(t) + O

(
α(t)τ(t)

t

)
+ O

(
τ3(t)

t3

)
< 0. (3.10)

Now we apply inequality (3.3). Then, inequality (3.10) will hold if

n−1

∑
i=1

τ(t)− τ(t− ((n− i)/n)τ(t))
2net

(
1 +

τ(t)− τ(t− ((n− i)/n)τ(t))
4t

)

− (n− 2)(1− µ)τ2(t)
8net2 + O

(
τ3(t)

t3

)
< 0. (3.11)

Since, by (3.2),
τ(t)− τ(t− ((n− i)/n)τ(t)) ≤ 0, i = 1, . . . , n− 1,

inequality (3.11) will be valid if

− (n− 2)(1− µ)τ2(t)
8net2 + O

(
τ3(t)

t3

)
= − (n− 2)(1− µ)τ2(t)

8net2

(
1 + O

(
τ(t)

t

))
< 0. (3.12)

We have n > 2 and µ ∈ (0, 1) so that the last inequality is obvious and L∗1 < R∗1 on [t∗0 , ∞),
where t∗0 ≥ t0 is sufficiently large. Inequality (3.1) holds, Theorem 3.1 is applicable, and
a positive solution x = x(t) of (1.1) on [t∗0 , ∞) exists.

Remark 3.3. Let us note that if delay τ(t) is a non increasing function, condition (3.2) holds.
As noted above, Theorems 2.3, 3.2 are independent. The reason why Theorem 3.2 does not
cover the case considered by Theorem 2.3 is the following. In the proof of Theorem 3.2, the
crucial term determining the sign of the final estimate is

− (n− 2)τ2(t)
8net2 .

If n = 2 (which is not allowed in Theorem 3.2), this term disappears and the sign will be
determined by expressions of order higher than τ2(t)/t2. Such an approach and detailed
analysis is carried out in the proof of Theorem 2.3.

A minor modification in the proof of Theorem 3.2 results in the following statement.

Theorem 3.4. Let n > 2 be an integer and

τ(t− ((n− i)/n)τ(t)) < τ(t− ((n− i + 1)/n)τ(t)) ≤ Mτ(t) (3.13)

for all t ≥ t0 > 0 and i = 1, . . . , n, and a constant M. If∫ t−((n−i)/n)τ(t)

t−((n−i+1)/n)τ(t)
p(s)ds ≤ 1

ne
+ β(t)

for t ∈ [t0, ∞), i = 1, . . . , n, where β : [t0, ∞)→ R+ and there exist a µ ∈ (0, 1) such that

β(t) ≤
n−1

∑
i=1

µ(τ(t− ((n− i)/n)τ(t))− τ(t))
2n2te

, t ∈ [t0, ∞), (3.14)

then there exists a t∗0 ∈ [t0, ∞) and a positive solution x = x(t) of (1.1) on [t∗0 , ∞).
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Proof. Repeating the proof of Theorem 3.2, we get inequality (3.10) (where α is replaced by β),
i.e.

n−1

∑
i=1

τ(t)− τ(t− ((n− i)/n)τ(t))
2net

(
1 +

τ(t)− τ(t− ((n− i)/n)τ(t))
4t

)

− (n− 2)τ2(t)
8net2 + nβ(t) + O

(
β(t)τ(t)

t

)
+ O

(
τ3(t)

t3

)
< 0. (3.15)

Utilizing (3.14), inequality (3.15) will hold if

n−1

∑
i=1

τ(t)− τ(t− ((n− i)/n)τ(t))
2net

(
(1− µ) +

τ(t)− τ(t− ((n− i)/n)τ(t))
4t

)

− (n− 2)τ2(t)
8net2

+ O


(

∑n−1
i=1 (τ(t− ((n− i)/n)τ(t))− τ(t))

)
τ(t)

t2

+ O
(

τ3(t)
t3

)
< 0. (3.16)

Asymptotic analysis of all the terms on the left-hand side of (3.16) leads to a conclusion that
its sign is determined by the sum of two negative terms (recall that 1− µ > 0)

(1− µ)
n−1

∑
i=1

τ(t)− τ(t− ((n− i)/n)τ(t))
2net

− (n− 2)τ2(t)
8net2

because all the remaining terms are of an asymptotically higher order than at least one these
two negative terms. Further, we can proceed as in the proof of Theorem 3.2.

Remark 3.5. Comparing Theorem 3.4 with Theorem 2.4, we see that the latter is not a par-
ticular case of Theorem 3.4 due to the same reason as described in Remark 3.3. Moreover, a
comparison between Theorem 3.4 and Theorem 3.2 can be made in much the same way as
between Theorem 2.4 and Theorem 2.3 (see Remark 2.5 where Example 2.6 and Example 2.7
were utilized) using suitable examples.

4 Concluding remarks and open problems

For a constant delay τ(t) ≡ τ, modifying slightly the proof of Theorem 2.3 and the proof of
Theorem 3.2, we get the following theorems respectively:

Theorem 4.1. Let ∫ t

t−τ/2
p(s)ds ≤ 1

2e
+ α(t) (4.1)

for t ∈ [t0, ∞), where α : [t0, ∞)→ R+. If, moreover, there exists a µ ∈ (0, 1) such that

α(t) ≤ µτ3

96t3e
, (4.2)

then there exists a t∗0 ∈ [t0, ∞) and a positive solution x = x(t) of (1.1) on [t∗0 , ∞).



Explicit integral criteria for positive solutions 17

Proof. From (4.1) we get ∫ t−τ/2

t−τ
p(s)ds ≤ 1

2e
+ α(t− τ/2)

and (4.2) yields

α(t− τ/2) ≤ µτ3

96(t− τ)3e
=

µτ3

96t3e
+ O

(
1
t4

)
.

With this modification against the original proof of Theorem 2.3, we can repeat it (with small
changes) up to inequality (2.13) which equals

L1 ≤
1
e
− τ

2te
− τ3

48t3e
+ α(t− τ/2)

(
1 + O

(
1
t

))
+ α(t)

(
1 + O

(
1
t

))
+ O

(
1
t4

)

≤ 1
e
− τ

2te
− (1− µ)τ3

48t3e
+ O

(
1
t4

)
.

Then, L1 ≤ R1 holds if

1
e
− τ

2te
− (1− µ)τ3

48t3e
+ O

(
1
t4

)
<

1
e

[
1− τ

2t

]
,

i.e., if

− (1− µ)τ3

48t3e
+ O

(
1
t4

)
< 0.

The last inequality holds for all t ∈ [t∗0 , ∞) where t∗0 is sufficiently large.

Theorem 4.2. Let n > 2 be an integer and∫ t

t−τ/n
p(s)ds ≤ 1

ne
+ α(t) (4.3)

for t ∈ [t0, ∞), where α : [t0, ∞)→ R+. If, moreover, there exists a µ ∈ (0, 1) such that

α(t) ≤ µ(n− 2)τ2

8n2t2e
, t ∈ [t0, ∞), (4.4)

then there exists a t∗0 ∈ [t0, ∞) and a positive solution x = x(t) of (1.1) on [t∗0 , ∞).

Proof. From (4.3), we get

∫ t−((n−i)/n)τ

t−((n−i+1)/n)τ
p(s)ds ≤ 1

ne
+ α(t− ((n− i)/n)τ), i = 1, . . . , n

and (4.4) yields

α(t− ((n− i)/n)τ) ≤ µ(n− 2)τ2

8n2(t− ((n− i)/n)τ)2e
=

µ(n− 2)τ2

8n2t2e
+ O

(
1
t3

)
.

With this modification against the original proof of Theorem 3.2, we can repeat it without
changes up to formula (3.11), which coincides (in the case of a constant delay) with (3.12).

Utilizing equation (1.1) with a constant delay τ(t) ≡ τ, it is easy to demonstrate the mutual
independence of criteria (1.3), (4.1) and (4.3).
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Remark 4.3. It is easy to see that the criterion of positivity (4.1) is independent of the classical
criterion (1.3). To show this, assume that (4.1) holds with a positive function α satisfying (4.2).
Then, ∫ t

t−τ
p(s)ds =

∫ t−τ/2

t−τ
p(s)ds +

∫ t

t−τ/2
p(s)ds ≤ 1

e
+ α(t− τ/2) + α(t) 6≤ 1

e

and the classical criterion (1.3) does not hold.

The independence of criteria (4.1) and (4.3) is demonstrated in the following example.

Example 4.4. Consider the equation

ẋ(t) +
(

1
τe

+ ε sin
6π

τ
t + e−t

)
x(t− τ) = 0 (4.5)

with p(t) = 1/τe + ε sin(6π/τ)t + e−t where 0 < ε < 1/τe. Criterion (4.3) is applicable with
n = 3 since ∫ t

t−τ/3
p(s)ds =

1
3e

+
ετ

6π

[
− cos

6π

τ
s
]∣∣∣∣t

t−τ/3
− e−s∣∣t

t−τ/3 =
1
3e

+ α(t)

where
α(t) := e−t

(
eτ/3 − 1

)
.

Let us show that α satisfies inequality (4.4), i.e., that

e−t
(

eτ/3 − 1
)
≤ µτ2

72t2e
, t ∈ [t0, ∞)

or

t2e−t ≤ µτ2

72 (eτ/3 − 1) e
, t ∈ [t0, ∞) (4.6)

holds for a µ ∈ (0, 1) and a positive t0. Let µ be fixed. Since

t2e−t = t2e−t/2e−t/2 ≤ 16e−2e−t/2 , t ∈ (0, ∞)

inequality (4.6) will be valid if simultaneously

e−t/2 ≤ µe2τ2

16 · 72 (eτ/3 − 1) e
and t > 0.

Then (4.4) holds if

t0 > max
{
−2 ln

µeτ2

1152 (eτ/3 − 1)
, 0
}

and, by Theorem 4.2, equation (4.5) has a positive solution on [t∗0 , ∞) where t∗0 ≥ t0 is suffi-
ciently large. However, criterion (4.1) is not applicable. Indeed,

∫ t

t−τ/2
p(s)ds =

1
2e

+
ετ

6π

[
− cos

6π

τ
s
]∣∣∣∣t

t−τ/2
− e−s∣∣t

t−τ/2 =
1
2e

+ α(t),

where
α(t) := − ετ

3π
cos

6π

τ
t + e−t

(
eτ/2 − 1

)
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and, for a sequence
t = tk = τ(1 + 2k)/6, k = 0, 1, . . . (4.7)

we have
α(tk) :=

ετ

3π
+ e−tk

(
eτ/2 − 1

)
and limk→∞ α(tk) = ετ/(3π) 6= 0.

We will finish this discussion by verifying the fact that the original criterion (1.3) is not
applicable either. Indeed, ∫ t

t−τ
p(s)ds =

1
e
+ e−t (eτ − 1) >

1
e

(4.8)

for every t ∈ [t0, ∞).

Let us formulate some open problems for future research. Although, in the paper, we
provided several new explicit integral criteria for the existence of a positive solution x = x(t)
of (1.1) and we demonstrated that our criteria are independent of the previously known re-
sults, unfortunately, our approach could not, in its present form, improve the classical crite-
rion (1.3). Moreover, it is well-known that the equation

ẋ(t) +
(

1
τe

+
τ

8et2

)
x(t− τ) = 0

has a positive solution (by, e.g., criterion (1.8)), and all solutions of the equation

ẋ(t) +
(

1
τe

+
ντ

8et2

)
x(t− τ) = 0,

where ν > 1 oscillate (e.g., by [10, Theorem 12]). For n ≥ 1, we have

∫ t

t−τ

(
1

τe
+

τ

8es2

)
ds =

1
e
+

τ2

8et2 + O
(

1
t3

)
.

The result of this computation suggests the best possible expected form of an estimate of the
integral of coefficient in (1.1). Based on our results we can formulate, e.g., the following open
problem.

Open Problem 1. Prove or disprove the following conjecture. Let τ(t) ≡ τ and∫ t

t−τ
p(s)ds ≤ 1

e
+ α(t)

for t ∈ [t0, ∞) where α : [t0, ∞)→ R+. If, moreover, there exists a constant µ ∈ (0, 1] such that

α(t) ≤ µτ2

8et2 , t ∈ [t0, ∞),

then there exists a t∗0 ∈ [t0, ∞) and a positive solution x = x(t) of equation

ẋ(t) + p(t)x(t− τ) = 0

on [t∗0 , ∞).
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Similarly, tracing carefully the present results, open problems connected with Theorems
2.3, 2.4, 3.2 and 3.4 can be formulated in the case of a variable delay.

In the paper we also pointed out the difference between Theorem 2.3 and Theorem 3.2. A
question arises, how the method used can be improved to get a better estimate of the function
α in Theorem 2.3. Therefore, the following problem described below is another challenge for
future investigation.

Open Problem 2. Prove or disprove the following conjecture. Let

τ(t) ≤ τ(t− τ(t)/2) ≤ Mτ(t)

for all t ≥ t0 > 0 and a constant M. If∫ t−τ(t)/2

t−τ(t)
p(s)ds ≤ 1

2e
+ α(t),

∫ t

t−τ(t)/2
p(s)ds ≤ 1

2e
+ α(t)

for t ∈ [t0, ∞) where α : [t0, ∞)→ R+ and there exists a µ ∈ (0, 1] such that

α(t) ≤ µτ2(t)
16et2 , t ∈ [t0, ∞),

then there exists a t∗0 ∈ [t0, ∞) and a positive solution x = x(t) of (1.1) on [t∗0 , ∞).

When solving Open Problem 2, perhaps another scheme of the division of interval
[t− τ(t), t] should be developed, different from the one used in the paper.

The following open problem was suggested by an anonymous referee.

Open Problem 3. Is it possible to generalize the results of Theorems 4.1 and 4.2 if the expres-
sions τ/2 and τ/n in (4.1) and (4.3) are replaced by δτ with δ ∈ (0, 1)? Is, e.g., the following
conjecture true? Let ∫ t

t−δτ
p(s)ds ≤ δ

e
+ α(t)

for t ∈ [t0, ∞) where α : [t0, ∞)→ R+. If, moreover, there exists a µ ∈ R+ such that

α(t) ≤ µ

t2 ,

then there exists a t∗0 ∈ [t0, ∞) and a positive solution x = x(t) of (1.1) on [t∗0 , ∞).

In Theorems 2.3, 2.4, 3.2, and 3.4, inequalities (2.4), (2.16), (3.2), and (3.13) were used.
These inequalities are valid if delay is nonincreasing (the case of inequalities (2.4), (3.2)) or
decreasing (such possibility is admitted in all four inequalities). The last but not least task
is whether similar results on the existence of positive solutions can be derived if the delay is
nondecreasing or increasing. Finally, we refer to papers [5, 6, 8, 39] where similar problems of
the behavior of solutions of delayed equations are treated.
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