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Abstract. We prove the existence of positive solutions for the boundary value problem{
y′′ + a(t)y = λg(t) f (y), 0 ≤ t ≤ 2π,
y(0) = y(2π), y′(0) = y′(2π),

where λ is a positive parameter, f is superlinear at ∞ and could change sign, and the
associated Green’s function may have zeros.
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1 Introduction

In this paper, we consider the existence of nonnegative solutions for the periodic boundary
value problem {

y′′ + a(t)y = λg(t) f (y), 0 ≤ t ≤ 2π,

y(0) = y(2π), y′(0) = y′(2π),
(1.1)

where the associated Green’s function is nonnegative and f is allowed to change sign. When
a(t) = m2, where m is a positive constant and m 6= 1, 2, . . . , the Green’s function for (1.1) is
given by

G(t, s) =
sin(m|t− s|) + sin m(2π − (|t− s|)

2m(1− cos 2mπ)
, s, t ∈ [0, 2π].

Note that G(t, s) > 0 on [0, 2π]× [0, 2π] iff m < 1/2 and G(t, s) ≥ 0 = G(s, s) on [0, 2π]×
[0, 2π] if m = 1/2. For a general nonnegative time-dependent a ∈ Lp(0, 2π), 1 ≤ p ≤ ∞, Torres
[14] showed that the Green’s function for (1.1) is positive (resp. nonnegative) provided that a >
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0 on a set of positive measure, ‖a‖p < K(2p∗) (resp. ‖a‖p ≤ K(2p∗)), where p∗ = p/(p− 1)
and

K(q) =


1

q(2π)1/q

(
2

2+q

)1−2/q
(

Γ( 1
q )

Γ( 1
2+

1
q )

)2

if 1 ≤ q < ∞,

1
2π if q = ∞.

In particular, when a ∈ L∞(0, 2π), the Green’s function is positive if ‖a‖∞ < 1/4 and nonneg-
ative if ‖a‖∞ ≤ 1/4, which have been obtained in [12] when a is a constant. These conditions
were extended to sign-changing a(t) with nonnegative average in [5]. Existence results for
positive solutions of (1.1) when the associated Green’s function is positive have been obtained
in [2, 4, 7, 8, 11, 13, 14, 18] using Krasnosel’skii’s fixed point theorem on the cone

K =

{
u ∈ C[0, 2π] : u(t) ≥ A

B
‖u‖∞ ∀t

}
,

where A and B denote the minimum and maximum values of G(t, s) on [0, 2π]× [0, 2π] respec-
tively. When A = 0, this cone becomes the cone of nonnegative functions and is not effective in
obtaining the desired estimates. The case when the Green’s function G(t, s) is nonnegative but
β = min0≤s≤2π

∫ 2π
0 G(t, s)dt is positive was studied by Graef et al. in [6]. Specifically, assume

g is continuous with g(t) > 0 ∀t ∈ [0, 2π], they proved that (1.1) has a nonnegative solution
for all λ > 0 when f is continuous, nonnegative with f0 = ∞, f∞ = 0 (sublinear), or when
f0 = 0, f∞ = ∞ (superlinear) and f is convex. Here f0 = limu→0+

f (u)
u , f∞ = limu→∞

f (u)
u . The

method used in [6] is Krasnosel’skii’s fixed point theorem on the cone

K =

{
u ∈ C[0, 2π] : u ≥ 0 on [0, 2π] and

∫ 2π

0
u(t)dt ≥ β

B
‖u‖∞

}
.

The results in [6] were improved by Webb [16], in which g is allowed to be 0 at some points
and the existence of nonnegative nontrivial solutions were obtained when f ≥ 0 and either
f∞ < µ1,λ < f0 (sublinear) or f0 < µ1,λ, f (R)

R is large enough and f is convex on [0, Tλ] for a
specific Tλ > 0 (superlinear), where µ1,λ denote the principal characteristic value of the linear
operator

Lλu = λ
∫ 2π

0
G(t, s)g(s)u(s)ds

on C[0, 2π]. The approach in [16] depends on fixed point theory on the modified cone

K̃ =

{
u ∈ C[0, 2π] : u ≥ 0 on [0, 2π] and

∫ 2π

0
g(t)u(t)dt ≥ B0‖u‖∞

}
,

where B0 is a suitable positive constant. For results on the system{
y′′i + ai(t)y = λgi(t) fi(y), 0 ≤ t ≤ 2π,

yi(0) = yi(2π), y′i(0) = y′i(2π), i = 1, . . . , n,

see [9], where both the sublinear and superlinear cases were discussed. Note that convexity
is needed for one of the fi in the superlinear case. Related results in the sublinear case when
the Green’s function is nonnegative can be found in [4]. We refer to [10] for results in the
case when the Green’s function may change sign. In this paper, motivated by the results in
[6,16], we shall establish the existence of positive solutions to (1.1) when the Green’s function
is nonnegative, and f is superlinear at ∞ without assuming convexity of f . We also allow
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the case when f can change sign. Note that nonnegative and convexity assumptions of f are
essential for some of the proofs in [6, 16]. Our approach depends on a Krasnosel’skii type
fixed point theorem in a Banach space.

We shall make the following assumptions:

(A1) f : [0, ∞)→ R is continuous;

(A2) a : [0, 2π]→ [0, ∞) is continuous, a(t) ≤ 1/4 for all t, and a 6≡ 0;

(A3) g ∈ L1(0, 2π), g ≥ 0 and g 6≡ 0 on any subinterval of (0, 2π).

Our main result is the following.

Theorem 1.1. Let (A1)–(A3) hold. Then

(i) if f0 = 0, f∞ = ∞, and f ≥ 0 then (1.1) has a positive solution for all λ > 0;

(ii) if f∞ = ∞, then there exists a constant λ∗ > 0 such that (1.1) has a positive solution yλ for
λ < λ∗. Furthermore ‖yλ‖∞ → ∞ as λ→ 0+.

Example 1.2. Let c be a nonnegative constant, g satisfy (A3), and a satisfy (A2). Let f (y) =

yα cos2 ( 1
y

)
− c for y > 0, f (0) = −c, where α > 1. Then Theorem 1.1 (i) gives the existence

of a positive solution to (1.1) for c = 0 and λ > 0, while if c > 0, Theorem 1.1 (ii) gives the
existence of a large positive solution to (1.1) for λ > 0 small. Note that when α > 1, f is
not convex on [0, T) for any T > 0 since it is easy to see that f

( y
2

)
6≤ 1

2 ( f (y) + f (0) when
y =

(
π
2 + 2nπ

)−1, n ∈N. Hence the results in [6, 16] cannot be applied here.

2 Preliminary results

Let AC1[0, 2π] = {u ∈ C1[0, 2π] : u′ is absolutely continuous on [0, 2π]}. We first recall the fol-
lowing fixed point result of Krasnosel’skii type in a Banach space (see e.g. [1, Theorem 12.3]).

Lemma A. Let X be a Banach space and T : X → X be a compact operator. Suppose there
exist h ∈ X, h 6= 0and positive constants r, R with r 6= R such that

(a) If y ∈ X satisfies y = θTy for some θ ∈ (0, 1], then ‖y‖ 6= r;

(b) If y ∈ X satisfies y = Ty + ξh for some ξ ≥ 0, then ‖y‖ 6= R.

Then T has a fixed point y ∈ X with min(r, R) < ‖y‖ < max(r, R).

Lemma 2.1. Let α, β ∈ R with α < β and let y ∈ AC1[α, β] be a nonnegative solution of

y′′ +
1
4

y ≥ 0 a.e. on (α, β). (2.1)

Suppose one of the following conditions holds

(i) y′(α) = y(β) = 0 or y(α) = y′(β) = 0 and β− α < π,

(ii) y(α) = y(β) = 0 and β− α < 2π,

(iii) y(α) = y(β) = 0, y′(α) = y′(β), and β− α = 2π.

Then y ≡ 0 on [α, β].
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Proof. (i) Suppose y′(α) = y(β) = 0. Multiplying (2.1) by sin
(π(β−t)

2(β−α)

)
and integrating on [α, β],

we obtain

0 ≥
(

1
4
−
(

π

2(β− α)

)2
) ∫ β

α
y(t) sin

(
π(β− t)
2(β− α)

)
dt ≥ 0,

which implies y ≡ 0 on [α, β]. On the other hand, if y(α) = y′(β) = 0 then the function
ỹ(t) = y(β + α− t) satisfies ỹ′(α) = ỹ(β) = 0 and (2.1). Hence ỹ ≡ 0 i.e. y ≡ 0 on [α, β], which
completes the proof.

(ii) Multiplying (2.1) by sin
(π(β−t)

β−α

)
and integrating on [α, β], we obtain

0 ≥
(

1
4
−
(

π

β− α

)2
) ∫ β

α
y(t) sin

(
π(β− t)

β− α

)
dt ≥ 0,

which implies y ≡ 0 on [α, β].
(iii) Let τ ∈ [α, β] and h(t) = y′′(t) + 1

4 y(t).
Multiplying the equation

y′′ +
1
4

y = h(t) (2.2)

by sin
(

τ−t
2

)
and integrating on [α, τ] gives

1
2

y(τ)− y′(α) sin
(

τ − α

2

)
=
∫ τ

α
h(t) sin

(
τ − t

2

)
dt. (2.3)

Next, multiplying (2.2) by sin
( t−τ

2

)
and integrating on [τ, β] gives

1
2

y(τ) + y′(β) sin
(

β− τ

2

)
=
∫ β

τ
h(t) sin

(
t− τ

2

)
dt. (2.4)

Adding (2.3), (2.4) and using y′(α) = y′(β) together with β = α + 2π, we obtain

y(τ) =
∫ τ

α
h(t) sin

(
τ − t

2

)
dt +

∫ β

τ
h(t) sin

(
t− τ

2

)
dt. (2.5)

Since y(α) = 0 and h(t) sin
( t−α

2

)
≥ 0 on (α, β), it follows that h(t) sin

( t−α
2

)
= 0 for a.e.

t ∈ (α, β). Hence h ≡ 0 and therefore (2.5) implies y(τ) = 0 for all τ ∈ [α, β], which completes
the proof.

As a consequence of Lemma 2.1, we have the following result, which was obtained in [15]
(see also [12] when a is a constant). However, our proof is new and simple. We refer to [17]
for related results when a ∈ L1(S, R), where S is the circle of length 1.

Corollary 2.2. Let y ∈ AC1[0, 2π] satisfy{
y′′ + a(t)y ≥ 0 a.e. on [0, 2π],

y(0) = y(2π), y′(0) = y′(2π).
(2.6)

Then either y > 0 on [0, 2π] or y ≡ 0 on [0, 2π]. In particular, if yi, i = 1, 2, satisfy{
y′′1 + a(t)y1 ≥ y′′2 + a(t)y2 a.e. on[0, 2π],

yi(0 = yi(2π), y′i(0) = y′i(2π), i = 1, 2,

then y1 ≥ y2 on [0, 2π].
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Proof. Extend y to be a 2π-periodic function on R. Then y ∈ C1(R) and y′ is absolutely
continuous on R. Suppose y(τ) > 0 for some τ ∈ [0, 2π]. We claim that y > 0 on [0, 2π].
Suppose to the contrary that y(τ0) ≤ 0 for some τ0 ∈ [0, 2π]. Since y(τ0) = y(τ0 ± 2π),
there exists an interval (α, β) containing τ such that y > 0 on (α, β), y(α) = y(β) = 0, 0 <

β − α ≤ 2π, and (2.1) holds, which contradicts Lemma 2.1(ii) and (iii). Hence y > 0 on
[0, 2π] as claimed. On the other hand, if y ≤ 0 on [0, 2π] then y′′ ≥ 0 a.e. on [0, 2π]. Let
y(τ1) = maxt∈[0,2π] y(t). Then y′(τ1) = 0, and hence y(t) = y(τ1) for all t ∈ [0, 2π]. Hence
(2.6) immediately gives y ≥ 0 on [0, 2π]. Consequently y ≡ 0, which completes the proof of
the first part. The second part follows by using the first part with y = y1 − y2.

Let I1 = [π
2 , 3π

4 ], I2 = [π, 5π
4 ], I3 = [ 3π

2 , 7π
4 ], I4 = [ 5π

4 , 3π
2 ] and J1 = [0 π

2 ], J2 = [π
2 , π],

J3 = [π, 3π
2 ], J4 = [ 3π

2 , 2π]. The next result plays an important role in the proof of the main
results.

Lemma 2.3. There exists a positive constant m such that all solutions y ∈ AC1[0, 2π] of (2.6) satisfy

y(t) ≥ m‖y‖

for t ∈ Ii for some i ∈ {1, 2, 3, 4}.

Proof. Let y ∈ AC1[0, 2π] be a solution of (2.6). Then y ≥ 0 on [0, 2π] by Corollary 2.2. Let
‖y‖ = y(τ) for some τ ∈ [0, 2π]. Then y′(τ) = 0. Let zτ satisfy{

z′′τ + a(t)zτ = 0 on [0, 2π],

zτ(τ) = 1, z′τ(τ) = 0.
(2.7)

Note that the existence of a unique solution zτ ∈ C2[0, 2π] follows from the basic theory for
linear differential equations (see e.g. [3, Theorem 3.7.1]). We shall verify that zτ is bounded
in C2[0, 2π] by a constant independent of τ ∈ [0, 2π]. Indeed, by integrating the equation in
(2.7), we get

zτ(t) = 1−
∫ t

τ
(t− s)a(s)zτ(s)ds

for t ∈ [0, 2π], which, together with (A2), implies

|zτ(t)| ≤ 1 +
π

2

∫ t

τ
|zτ(s)|ds for t ≥ τ,

and
|zτ(t)| ≤ 1 +

π

2

∫ τ

t
|zτ(s)|ds for t ≤ τ.

Hence Gronwall’s inequality gives

|zτ(t)| ≤ e(π/2)|t−τ| ≤ eπ2
(2.8)

for t ∈ [0, 2π]. Since z′τ(t) = −
∫ t

τ a(s)zτ(s)ds and z′′τ = −a(t)zτ on [0, 2π], it follows from (2.8)
that zτ is bounded in C2[0, 2π] by a constant independent of τ ∈ [0, 2π].

Claim 1: There exists a constant m > 0 such that zτ(t) ≥ m for all τ ∈ Ji and t ∈ Ii, i ∈ {1, 2, 3, 4}.
Suppose to the contrary that there exists i ∈ {1, 2, 3, 4} and sequences (τn) ⊂ Ji, (tn) ⊂

Ii, (zn) ⊂ C2[0, 2π] such that zn(tn) ≤ 1
n for all n and{

z′′n + a(t)zn = 0 on [0, 2π],

zn(τn) = 1, z′n(τn) = 0.
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Since (zn) is bounded in C2[0, 2π] by the above discussion, and (τn), (tn) are bounded in
Ji, Ii respectively, by passing to a subsequence if necessary, we can assume that there exist
τi ∈ Ji, ti ∈ Ii, and z ∈ C1[0, 2π] such that τn → τi, tn → ti, and zn → z in C1[0, 2π]. Note that
tn ≥ τn for i < 4 and n ∈N, and so ti ≥ τi for i < 4. Since

zn(t) = 1−
∫ t

τn

(t− s)a(s)zn(s)ds,

by passing to the limit as n→ ∞, we obtain

z(t) = 1−
∫ t

τi

(t− s)a(s)z(s)ds,

i.e. z satisfies {
z′′ + a(t)z = 0 on [0, 2π],

z(τi) = 1, z′(τi) = 0.

Since z(ti) = lim n→∞zn(tn) ≤ 0, we obtain for i < 4 that ti > τi (since ti 6= τi), and there exists
t̃i ∈ (τi, ti] such that z > 0 on (τi, t̃i) and z(t̃i) = 0. Since t̃i − τi ≤ 3π

4 , Lemma 2.1 (i) gives z = 0
on (τi, t̃i), a contradiction. On the other hand, if i = 4 then t4 < τ4 and there exists t̃4 ∈ [t4, τ4)

such that z > 0 on (t̃4, τ4) and z(t̃4) = 0. Since τ4 − t̃4 ≤ 3π
4 , we obtain a contradiction with

Lemma 2.1 (i). This proves the claim.

Let u = y− ‖y‖zτ. Then u satisfies{
u′′ + a(t)u ≥ 0 a.e. on [0, 2π],

u(τ) = 0, u′(τ) = 0.

Claim 2: u ≥ 0 on [0, 2π].
Indeed, suppose u(τ̃) < 0 for some τ̃ ∈ [0, 2π] with τ̃ < τ. Then there exists τ̃0 ∈ (τ̃, τ]

such that u < 0 on (τ̃, τ̃0) and u(τ̃0) = 0. Hence

u′′ ≥ −a(t)u ≥ 0 a.e. on (τ̃, τ̃0]. (2.9)

If u′(τ̃0) ≤ 0, then (2.9) implies u′ ≤ 0 on (τ̃, τ̃0] and so u(t) ≥ u(τ̃0) = 0 on (τ̃, τ̃0], a
contradiction. On the other hand, if u′(τ̃0) > 0 then there exists τ̃1 ∈ (τ̃0, τ] such that u > 0
on (τ̃0, τ̃1) and u(τ̃1) = 0. Since τ̃1 − τ̃0 < 2π, Lemma 2.1 (ii) implies u ≡ 0 on (τ̃0, τ̃1), a
contradiction. Similarly, we reach a contradiction in the case τ̃ > τ, which proves claim 2.

Since τ ∈ ∪4
i=1 Ji, it follows from claims 1 and 2 that there exists i ∈ {1, 2, 3, 4} such that

y(t) ≥ ‖y‖zτ(t) ≥ m‖y‖

for all t ∈ Ii, which completes the proof of Lemma 2.3.

By Lemma 2.6 below, there exists z ∈ AC1[0, 2π] satisfying{
z′′ + a(t)z = g(t) a.e. on [0, 2π],

z(0) = z(2π), z′(0) = z′(2π).
(2.10)

Since g 6≡ 0, Corollary 2.2 gives z > 0 on [0, 2π].
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Corollary 2.4. Let k be a positive constant and y ∈ AC1[0, 2π] satisfy{
y′′ + a(t)y ≥ −λkg(t) a.e. on [0, 2π],

y(0) = y(2π), y′(0) = y′(2π).
(2.11)

Then

(i) y ≥ −λkz on [0, 2π]

(ii) If ‖y‖ ≥ 2λk‖z‖(m + 1)m−1 then
y(t) ≥ m0‖y‖ (2.12)

for t ∈ Ii for some i ∈ {1, 2, 3, 4}, where m0 = m/2 and m is given by Lemma 2.3.

Proof. Let u = y + λkz. Then u satisfies

u′′ + a(t)u ≥ 0 a.e. on [0, 2π],

from which Corollary 2.2 and Lemma 2.3 give u ≥ 0 on [0, 2π] and

y(t) + λkz(t) = u(t) ≥ ‖u‖m = ‖y + λkz‖m

for t ∈ Ii for some i ∈ {1, 2, 3, 4}. Thus y ≥ −λkz on [0, 2π] and

y(t) ≥ ‖y‖m− λk‖z‖(m + 1),

from which (2.12) follows if ‖y‖ ≥ 2λk‖z‖(m + 1)m−1.

Lemma 2.5. Let U, V ∈ C2[0, 2π] be the solutions of{
U′′ + a(t)U = 0 on [0, 2π],

U(0) = 1, U′(0) = 0,

and {
V ′′ + a(t)V = 0 on [0, 2π],

V(0) = 0, V ′(0) = 1.

Then U(2π), V ′(2π) < 1.

Proof. Suppose U(2π) ≥ 1. If there exists τ ∈ (0, 2π) such that U(τ) < 0 then, since
U(0) > 0, there exists an interval [α, β] ⊂ (0, 2π) such that U < 0 on (α, β) and U(α) =

U(β) = 0. Since a(t) ≤ 1/4, it follows from Lemma 2.1 (ii) with y = −U that U = 0 on
(α, β), a contradiction. On the other hand, if U ≥ 0 on (0, 2π) then U′′ ≤ 0 on (0, 2π) i.e.
U′ is nonincreasing on [0, 2π]. Hence U′ ≤ 0 on [0, 2π], which implies U(2π) ≤ U(0) = 1.
Thus U(2π) = 1 = U(0) and since U is nonincreasing, we deduce that U = 1 on [0, 2π].
Consequently, the equation in U gives a(t) = 0 for all t ∈ [0, 2π], a contradiction. Hence
U(2π) < 1. Next, we show that V ′(2π) < 1. Since V(0) = 0 and V ′(0) > 0, it follows that
V(t) > 0 for t > 0 near 0. Hence if V(τ0) < 0 for some τ0 ∈ (0, 2π) then there exists β ∈ (0, τ0)

such that V > 0 on (0, β) and V(β) = 0 = V(0), a contradiction with Lemma 2.1 (ii). Hence
V ≥ 0 on (0, 2π), which implies V ′′ ≤ 0 on (0, 2π). Consequently, V ′(2π) ≤ V ′(0) = 1. If
V ′(2π) = 1 then V ′ = 1 on [0, 2π], which implies V(t) = t for t ∈ [0, 2π]. Using the equation
in V, we see that a(t) = 0 for all t ∈ [0, 2π], a contradiction. Hence V ′(2π) < 1, which
completes the proof.
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Lemma 2.6. Let h ∈ L1(0, 2π). Then the problem{
y′′ + a(t)y = h(t) a.e. on [0, 2π],

y(0) = y(2π), y′(0) = y′(2π)
(2.13)

has a unique solution y ∈ AC1[0, 2π], which is given by

y(t) =
∫ 2π

0
G(t, s)h(s)ds, (2.14)

where

G(t, s) = c1V(t)V(s)− c2U(t)U(s) +

{
c3U(s)V(t)− c4U(t)V(s), 0 ≤ s ≤ t ≤ 2π,

c3U(t)V(s)− c4U(s)V(t), 0 ≤ t ≤ s ≤ 2π,

c1 = U′(2π)
D , c2 = V(2π)

D , c3 = U(2π)−1
D , c4 = V′(2π)−1

D , D = U(2π) + V ′(2π) − 2, and U, V are
defined in Lemma 2.5.

Proof. By Corollary 2.2, the only solution of{
y′′ + a(t)y = 0 a.e. on [0, 2π],

y(0) = y(2π), y′(0) = y′(2π),

is the trivial one. Hence Fredholm’s alternative theorem implies that the inhomogeneous
problem (2.13) has a unique solution, which is given by (2.14) (see [2, Theorem 2.4]). Note that
G(t, s) is defined since D < 0 in view of Lemma 2.5. From (2.14), a calculation shows that

y′(t) = c1

(∫ 2π

0
V(s)h(s)ds

)
V ′(t)− c2

(∫ 2π

0
U(s)h(s)ds

)
U′(t)

+ c3

(∫ t

0
U(s)h(s)ds

)
V ′(t)− c4

(∫ t

0
V(s)h(s)ds

)
U′(t)

+ c3

(∫ 2π

t
V(s)h(s)ds

)
U′(t)− c4

(∫ 2π

t
U(s)h(s)ds

)
V ′(t),

from which we see that y ∈ AC1[0, 2π] and satisfies (2.13).

3 Proof of the main results

Let X be the Banach space C[0, 2π] equipped with the norm ‖u‖ = supt∈[0,2π] |u(t)|. For
u ∈ X, define

Tu(t) = λ
∫ 2π

0
G(t, s)g(s) f (|u(s)|)ds

for t ∈ [0, 2π], where G(t, s) is the Green’s function of y′′ + a(t)y with the periodic boundary
conditions in (1.1) given by Lemma 2.6. Then y = Tu ∈ AC1[0, 1] satisfies{

y′′ + a(t)y = λg(t) f (|u|) a.e. on [0, 2π],

y(0) = y(2π), y′(0) = y′(2π).
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It is easy to see that T : X → X is continuous and since T maps bounded sets in X into
bounded sets in C1[0, 2π], T is a compact operator. For the rest of the paper, we shall use the
following notations:

f 0,z = sup
0≤t≤z

| f (t)| and fz,∞ = inf
t≥z

f (t) for z ≥ 0.

Note that f 0,z and fz,∞ are nondecreasing on [0, ∞).

Proof of Theorem 1.1. (i) By Corollary 2.2, Tu ≥ 0 for all u. Let 0 < ε < 1
λ‖z‖ , where z is defined

by (2.10). Since f0 = 0, there exists a constant r > 0 such that

f (z) < εz for z ∈ (0, r].

We shall verify that the conditions of Lemma A with h ≡ 1 are satisfied.
(a) Let y ∈ X satisfy y = θTy for some θ ∈ (0, 1]. Then ‖y‖ 6= r.
Indeed, suppose to the contrary that ‖y‖ = r. Then

y′′ + a(t)y = λθg(t) f (|y|) ≤ λεg(t)‖y‖ a.e. on [0, 2π],

from which Corollary 2.2 implies

y ≤ λεz‖y‖ on [0, 2π].

Hence λε‖z‖ ≥ 1, a contradiction with the choice of ε.
(b) Let y ∈ X satisfy y = Ty +ξ for some ξ ≥ 0. Then ‖y‖ < R for R >> 1.
Note that y satisfies

y′′ + a(t)y = a(t)ξ + λg(t) f (|y|) a.e. on [0, 2π].

Let M be a constant such that λMmc > π/2, where c = min1≤i≤4
∫

Ii
g(t)dt and m is given by

Lemma 2.3. Since f∞ = ∞, there exists a constant A > 0 such that

f (z) > Mz for z ≥ A.

We claim that ‖y‖ < R for R > A/m. Indeed, suppose ‖y‖ ≥ R > A/m. By Lemma 2.3, there
exists i ∈ {1, 2, 3, 4} such that

y(t) ≥ ‖y‖m ≥ Rm > A

for t ∈ Ii, which implies
f (y(t)) > My(t) ≥ Mm‖y‖

for t ∈ Ii. Thus

y′′ + a(t)y ≥
{

λMm‖y‖g(t), t ∈ Ii,

0 t /∈ Ii
a.e. on [0, 2π],

and upon integrating on [0, 2π], we get∫ 2π

0
a(t)y(t)dt ≥ λMm‖y‖

∫
Ii

g(t)dt ≥ λMmc‖y‖.

Since a ≤ 1/4 on [0, 2π], this implies

π

2
‖y‖ ≥ λMmc‖y‖,
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i.e. π/2 ≥ λMmc, a contradiction with the choice of M. Hence ‖y‖ < R as claimed.
By Lemma A, T has a fixed point y with r < ‖y‖ < R. By Corollary 2.2, y > 0 on [0, 2π].

(ii) Let k be a positive constant such that f (z) ≥ −k for all z ≥ 0. By Lemma 2.6, there
exist zi, z̃i ∈ AC1[0, 2π] satisfying

z′′i + a(t)zi =

{
g(t) t ∈ Ii,

0, t 6∈ Ii
zi(0) = zi(2π), z′i(0) = z′i(2π),

and

z̃′′i + a(t)z̃i =

{
0, t ∈ Ii,

kg(t), t 6∈ Ii,
z̃i(0) = z̃i(2π), z̃′i(0) = z̃′i(2π),

for i ∈ {1, 2, 3, 4}. Note that zi > 0 on [0, 2π] for all i by Corollary 2.2. Choose r > 0 so that

fm0r,∞ min
1≤i≤4,t∈[0,2π]

zi(t) > max
1≤i≤4

‖z̃i‖, (3.1)

where m0 is given by Corollary 2.4. Let λ > 0 be such that

λ max{ f 0,r‖z‖, 2k‖z‖(m + 1)m−1} < r. (3.2)

We shall verify that
(a) Let y ∈ X satisfy y = θTy for some θ ∈ (0, 1]. Then ‖y‖ 6= r.
Suppose to the contrary that ‖y‖ = r. Then

−λ f 0,rg(t) ≤ y′′ + a(t)y ≤ λ f 0,rg(t) a.e. on (0, 2π),

from which it follows that
|y(t)| ≤ λ f 0,rz(t),

for t ∈ [0, 2π], where z is defined in (2.10). Hence

r = ‖y‖ ≤ λ f 0,r‖z‖,

a contradiction with (3.2), which proves (a).
(b) There exists a constant Rλ > r such that any solution y ∈ X of y = Ty + ξ for some ξ ≥ 0

satisfies ‖y‖ 6= Rλ.
Let y ∈ X satisfy y = Ty + ξ for some ξ ≥ 0. Since limz→∞

fz,∞
z = ∞, there exists a constant

Rλ > r be such that

λ

(
fm0Rλ,∞ min

1≤i≤4,t∈[0,2π]
zi(t)− max

1≤i≤4
‖z̃i‖

)
> Rλ. (3.3)

Suppose ‖y‖ = Rλ. Since ‖y‖ ≥ 2λk‖z‖(m + 1)m−1 and

y′′ + a(t)y ≥ λg(t) f (|y|) ≥ −λkg(t) a.e. on [0, 2π],

it follows from Corollary 2.4 that y ≥ −λkz on [0, 2π] and y(t) ≥ m0‖y‖ for t ∈ Ii for some
i ∈ {1, 2, 3, 4}. Hence

y′′ + a(t)y ≥ λg(t) f (|y|) ≥ λg(t) f|y|,∞

≥ λ

(
fm0‖y‖,∞

{
g(t), t ∈ Ii,

0, t /∈ Ii,
−
{

0, t ∈ Ii

kg(t), t /∈ Ii

)
a.e. on (0, 2π).
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By Corollary 2.2,
y ≥ λ( fm0‖y‖,∞zi − z̃i) on [0, 2π], (3.4)

which implies by (3.3) that

Rλ = ‖y‖ ≥ λ

(
fm0Rλ,∞ min

1≤i≤4,t∈[0,2π]
zi(t)− max

1≤i≤4
‖z̃i‖

)
> Rλ,

a contradiction. Hence ‖y‖ 6= Rλ, which proves (b).
By Lemma A, T has a fixed point yλ ∈ X with r < ‖yλ‖ < R. Since (3.4) holds, we obtain

from (3.1) that

yλ ≥ λ

(
fm0r,∞ min

1≤i≤4,t∈[0,2π]
zi(t)− max

1≤i≤4
‖z̃i‖

)
> 0 on [0, 2π].

It remains to show that ‖yλ‖ → ∞ as λ→ 0+. Since

y′′λ + a(t)yλ = λg(t) f (yλ) ≤ λg(t) f 0,‖yλ‖ a.e. on (0, 2π),

it follows that
yλ ≤ λ f 0,‖yλ‖z on [0, 2π],

which implies
f 0,‖yλ‖

‖yλ‖
≥ 1

λ‖z‖ .

Since ‖yλ‖ > r, it follows that ‖yλ‖ → ∞ as λ → 0+, which completes the proof of Theo-
rem 1.1.
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