

On a superlinear periodic boundary value problem with vanishing Green's function

Dang Dinh Hai^{$⊠$}

Department of Mathematics and Statistics, Mississippi State University Mississippi State, MS 39762, USA

> Received 31 March 2016, appeared 24 July 2016 Communicated by Jeff R. L. Webb

Abstract. We prove the existence of positive solutions for the boundary value problem

$$
\begin{cases}\ny'' + a(t)y = \lambda g(t)f(y), & 0 \le t \le 2\pi, \\
y(0) = y(2\pi), & y'(0) = y'(2\pi),\n\end{cases}
$$

where λ is a positive parameter, f is superlinear at ∞ and could change sign, and the associated Green's function may have zeros.

Keywords: superlinear, periodic, vanishing Green's function.

2010 Mathematics Subject Classification: 34B15, 34B27.

1 Introduction

In this paper, we consider the existence of nonnegative solutions for the periodic boundary value problem

$$
\begin{cases}\ny'' + a(t)y = \lambda g(t)f(y), & 0 \le t \le 2\pi, \\
y(0) = y(2\pi), & y'(0) = y'(2\pi),\n\end{cases}
$$
\n(1.1)

where the associated Green's function is nonnegative and *f* is allowed to change sign. When $a(t) = m^2$, where *m* is a positive constant and $m \neq 1, 2, \ldots$, the Green's function for [\(1.1\)](#page-0-1) is given by

$$
G(t,s) = \frac{\sin(m|t-s|) + \sin m(2\pi - (|t-s|))}{2m(1 - \cos 2m\pi)}, \quad s, t \in [0, 2\pi].
$$

Note that $G(t,s) > 0$ on $[0, 2\pi] \times [0, 2\pi]$ iff $m < 1/2$ and $G(t,s) \ge 0 = G(s,s)$ on $[0, 2\pi] \times$ $[0, 2\pi]$ if $m = 1/2$. For a general nonnegative time-dependent $a \in L^p(0, 2\pi)$, $1 \leq p \leq \infty$, Torres [\[14\]](#page-11-0) showed that the Green's function for (1.1) is positive (resp. nonnegative) provided that $a >$

[⊠] Email: Dang@Math.Msstate.Edu

0 on a set of positive measure, $\|a\|_p < K(2p^*)$ (resp. $\|a\|_p \le K(2p^*))$, where $p^* = p/(p-1)$ and

$$
K(q) = \begin{cases} \frac{1}{q(2\pi)^{1/q}} \left(\frac{2}{2+q}\right)^{1-2/q} \left(\frac{\Gamma(\frac{1}{q})}{\Gamma(\frac{1}{2}+\frac{1}{q})}\right)^2 & \text{if } 1 \le q < \infty, \\ \frac{1}{2\pi} & \text{if } q = \infty. \end{cases}
$$

In particular, when $a \in L^{\infty}(0, 2\pi)$, the Green's function is positive if $||a||_{\infty} < 1/4$ and nonnegative if $\|a\|_{\infty} \leq 1/4$, which have been obtained in [\[12\]](#page-11-1) when *a* is a constant. These conditions were extended to sign-changing *a*(*t*) with nonnegative average in [5]. Existence results for positive solutions of [\(1.1\)](#page-0-1) when the associated Green's function is positive have been obtained in [\[2,](#page-10-0) [4,](#page-10-1) [7,](#page-11-2) [8,](#page-11-3) [11,](#page-11-4) [13,](#page-11-5) [14,](#page-11-0) [18\]](#page-11-6) using Krasnosel'skii's fixed point theorem on the cone

$$
K = \left\{ u \in C[0, 2\pi] : u(t) \geq \frac{A}{B} ||u||_{\infty} \ \forall t \right\},\
$$

where *A* and *B* denote the minimum and maximum values of $G(t,s)$ on $[0,2\pi] \times [0,2\pi]$ respectively. When $A = 0$, this cone becomes the cone of nonnegative functions and is not effective in obtaining the desired estimates. The case when the Green's function *G*(*t*,*s*) is nonnegative but $\beta = \min_{0 \le s \le 2\pi} \int_0^{2\pi} G(t, s) dt$ is positive was studied by Graef et al. in [\[6\]](#page-11-7). Specifically, assume *g* is continuous with $g(t) > 0$ $\forall t \in [0, 2\pi]$, they proved that [\(1.1\)](#page-0-1) has a nonnegative solution for all $\lambda > 0$ when *f* is continuous, nonnegative with $f_0 = \infty$, $f_\infty = 0$ (sublinear), or when $f_0 = 0$, $f_{\infty} = \infty$ (superlinear) and f is convex. Here $f_0 = \lim_{u \to 0^+} \frac{f(u)}{u}$ $\frac{u(u)}{u}$, $f_{\infty} = \lim_{u \to \infty} \frac{f(u)}{u}$ $\frac{u}{u}$. The method used in [\[6\]](#page-11-7) is Krasnosel'skii's fixed point theorem on the cone

$$
K = \left\{ u \in C[0, 2\pi] : u \ge 0 \text{ on } [0, 2\pi] \text{ and } \int_0^{2\pi} u(t) dt \ge \frac{\beta}{B} ||u||_{\infty} \right\}.
$$

The results in [\[6\]](#page-11-7) were improved by Webb [\[16\]](#page-11-8), in which *g* is allowed to be 0 at some points and the existence of nonnegative nontrivial solutions were obtained when $f \geq 0$ and either $f_{\infty} < \mu_{1,\lambda} < f_0$ (sublinear) or $f_0 < \mu_{1,\lambda}$, $\frac{f(R)}{R}$ $\frac{R}{R}$ is large enough and *f* is convex on $[0, T_\lambda]$ for a specific $T_{\lambda} > 0$ (superlinear), where $\mu_{1,\lambda}$ denote the principal characteristic value of the linear operator

$$
L_{\lambda}u = \lambda \int_0^{2\pi} G(t,s)g(s)u(s)ds
$$

on $C[0, 2\pi]$. The approach in [\[16\]](#page-11-8) depends on fixed point theory on the modified cone

$$
\tilde{K} = \left\{ u \in C[0, 2\pi] : u \ge 0 \text{ on } [0, 2\pi] \text{ and } \int_0^{2\pi} g(t)u(t)dt \ge B_0||u||_{\infty} \right\},\
$$

where B_0 is a suitable positive constant. For results on the system

$$
\begin{cases}\ny_i'' + a_i(t)y = \lambda g_i(t)f_i(y), & 0 \le t \le 2\pi, \\
y_i(0) = y_i(2\pi), & y_i'(0) = y_i'(2\pi), & i = 1, \dots, n,\n\end{cases}
$$

see [\[9\]](#page-11-9), where both the sublinear and superlinear cases were discussed. Note that convexity is needed for one of the *fⁱ* in the superlinear case. Related results in the sublinear case when the Green's function is nonnegative can be found in [\[4\]](#page-10-1). We refer to [\[10\]](#page-11-10) for results in the case when the Green's function may change sign. In this paper, motivated by the results in [\[6,](#page-11-7)[16\]](#page-11-8), we shall establish the existence of positive solutions to [\(1.1\)](#page-0-1) when the Green's function is nonnegative, and *f* is superlinear at ∞ without assuming convexity of *f*. We also allow

the case when *f* can change sign. Note that nonnegative and convexity assumptions of *f* are essential for some of the proofs in [\[6,](#page-11-7) [16\]](#page-11-8). Our approach depends on a Krasnosel'skii type fixed point theorem in a Banach space.

We shall make the following assumptions:

(A1) $f : [0, \infty) \to \mathbb{R}$ is continuous;

- (A2) $a : [0, 2\pi] \rightarrow [0, \infty)$ is continuous, $a(t) \leq 1/4$ for all *t*, and $a \not\equiv 0$;
- (A3) $g \in L^1(0, 2\pi)$, $g \ge 0$ and $g \not\equiv 0$ on any subinterval of $(0, 2\pi)$.

Our main result is the following.

Theorem 1.1. *Let (A1)–(A3) hold. Then*

- *(i) if* $f_0 = 0$, $f_\infty = \infty$, and $f \ge 0$ *then* [\(1.1\)](#page-0-1) *has a positive solution for all* $\lambda > 0$ *;*
- *(ii) if* $f_{\infty} = \infty$, then there exists a constant $\lambda^* > 0$ such that [\(1.1\)](#page-0-1) has a positive solution y_{λ} for $\lambda < \lambda^*$. Furthermore $||y_\lambda||_\infty \to \infty$ as $\lambda \to 0^+$.

Example 1.2. Let *c* be a nonnegative constant, *g* satisfy (A3), and *a* satisfy (A2). Let $f(y) =$ $y^{\alpha} \cos^2 \left(\frac{1}{y}\right) - c$ for $y > 0$, $f(0) = -c$, where $\alpha > 1$. Then Theorem [1.1](#page-2-0) (i) gives the existence of a positive solution to [\(1.1\)](#page-0-1) for $c = 0$ and $\lambda > 0$, while if $c > 0$, Theorem [1.1](#page-2-0) (ii) gives the existence of a large positive solution to [\(1.1\)](#page-0-1) for $\lambda > 0$ small. Note that when $\alpha > 1$, f is not convex on $[0, T)$ for any $T > 0$ since it is easy to see that $f\left(\frac{y}{2}\right) \nleq \frac{1}{2}(f(y) + f(0))$ when $y = \left(\frac{\pi}{2} + 2n\pi\right)^{-1}$, $n \in \mathbb{N}$. Hence the results in [\[6,](#page-11-7)[16\]](#page-11-8) cannot be applied here.

2 Preliminary results

Let $AC^1[0, 2\pi] = \{u \in C^1[0, 2\pi] : u' \text{ is absolutely continuous on } [0, 2\pi] \}$. We first recall the following fixed point result of Krasnosel'skii type in a Banach space (see e.g. [\[1,](#page-10-2) Theorem 12.3]).

Lemma A. Let *X* be a Banach space and $T : X \rightarrow X$ be a compact operator. Suppose there exist *h* ∈ *X*, *h* \neq 0and positive constants *r*, *R* with *r* \neq *R* such that

- (a) If $y \in X$ satisfies $y = \theta Ty$ for some $\theta \in (0, 1]$, then $||y|| \neq r$;
- (b) If $y \in X$ satisfies $y = Ty + \xi h$ for some $\xi \ge 0$, then $||y|| \ne R$.

Then *T* has a fixed point $y \in X$ with $\min(r, R) < ||y|| < \max(r, R)$.

Lemma 2.1. *Let* $\alpha, \beta \in \mathbb{R}$ *with* $\alpha < \beta$ *and let* $y \in AC^1[\alpha, \beta]$ *be a nonnegative solution of*

$$
y'' + \frac{1}{4}y \ge 0 \quad a.e. \text{ on } (\alpha, \beta). \tag{2.1}
$$

Suppose one of the following conditions holds

- (*i*) $y'(\alpha) = y(\beta) = 0$ or $y(\alpha) = y'(\beta) = 0$ and $\beta \alpha < \pi$, *(ii) y*(*α*) = *y*(*β*) = 0 *and β* − *α* < 2*π,*
- *(iii)* $y(\alpha) = y(\beta) = 0$, $y'(\alpha) = y'(\beta)$, and $\beta \alpha = 2\pi$.

Then $y \equiv 0$ *on* $[\alpha, \beta]$ *.*

Proof. (i) Suppose $y'(\alpha) = y(\beta) = 0$. Multiplying [\(2.1\)](#page-2-1) by sin $\left(\frac{\pi(\beta-t)}{2(\beta-\alpha)}\right)$ and integrating on $[\alpha, \beta]$, we obtain

$$
0 \geq \left(\frac{1}{4} - \left(\frac{\pi}{2(\beta - \alpha)}\right)^2\right) \int_{\alpha}^{\beta} y(t) \sin\left(\frac{\pi(\beta - t)}{2(\beta - \alpha)}\right) dt \geq 0,
$$

which implies $y \equiv 0$ on $[\alpha, \beta]$. On the other hand, if $y(\alpha) = y'(\beta) = 0$ then the function $\tilde{y}(t) = y(\beta + \alpha - t)$ satisfies $\tilde{y}'(\alpha) = \tilde{y}(\beta) = 0$ and [\(2.1\)](#page-2-1). Hence $\tilde{y} \equiv 0$ i.e. $y \equiv 0$ on $[\alpha, \beta]$, which completes the proof.

(ii) Multiplying [\(2.1\)](#page-2-1) by $\sin\left(\frac{\pi(\beta-t)}{\beta-\alpha}\right)$ and integrating on $[\alpha, \beta]$, we obtain

$$
0 \ge \left(\frac{1}{4} - \left(\frac{\pi}{\beta - \alpha}\right)^2\right) \int_{\alpha}^{\beta} y(t) \sin\left(\frac{\pi(\beta - t)}{\beta - \alpha}\right) dt \ge 0,
$$

which implies $y \equiv 0$ on $[\alpha, \beta]$.

(iii) Let $\tau \in [\alpha, \beta]$ and $h(t) = y''(t) + \frac{1}{4}y(t)$.

Multiplying the equation

$$
y'' + \frac{1}{4}y = h(t)
$$
 (2.2)

by $\sin\left(\frac{\tau-t}{2}\right)$ and integrating on $[\alpha, \tau]$ gives

$$
\frac{1}{2}y(\tau) - y'(\alpha)\sin\left(\frac{\tau - \alpha}{2}\right) = \int_{\alpha}^{\tau} h(t)\sin\left(\frac{\tau - t}{2}\right)dt.
$$
 (2.3)

Next, multiplying [\(2.2\)](#page-3-0) by $\sin\left(\frac{t-\tau}{2}\right)$ and integrating on $[\tau,\beta]$ gives

$$
\frac{1}{2}y(\tau) + y'(\beta)\sin\left(\frac{\beta-\tau}{2}\right) = \int_{\tau}^{\beta} h(t)\sin\left(\frac{t-\tau}{2}\right)dt.
$$
 (2.4)

Adding [\(2.3\)](#page-3-1), [\(2.4\)](#page-3-2) and using $y'(\alpha) = y'(\beta)$ together with $\beta = \alpha + 2\pi$, we obtain

$$
y(\tau) = \int_{\alpha}^{\tau} h(t) \sin\left(\frac{\tau - t}{2}\right) dt + \int_{\tau}^{\beta} h(t) \sin\left(\frac{t - \tau}{2}\right) dt. \tag{2.5}
$$

Since $y(\alpha) = 0$ and $h(t) \sin(\frac{t-\alpha}{2}) \ge 0$ on (α, β) , it follows that $h(t) \sin(\frac{t-\alpha}{2}) = 0$ for a.e. *t* ∈ (*α*, *β*). Hence *h* ≡ 0 and therefore [\(2.5\)](#page-3-3) implies *y*(*τ*) = 0 for all *τ* ∈ [*α*, *β*], which completes the proof. \Box

As a consequence of Lemma [2.1,](#page-2-2) we have the following result, which was obtained in [\[15\]](#page-11-11) (see also [\[12\]](#page-11-1) when *a* is a constant). However, our proof is new and simple. We refer to [\[17\]](#page-11-12) for related results when $a \in L^1(S, \mathbb{R})$, where S is the circle of length 1.

Corollary 2.2. *Let* $y \in AC^1[0, 2\pi]$ *satisfy*

$$
\begin{cases}\ny'' + a(t)y \ge 0 & a.e. \text{ on } [0, 2\pi], \\
y(0) = y(2\pi), & y'(0) = y'(2\pi).\n\end{cases}
$$
\n(2.6)

Then either $y > 0$ *on* $[0, 2\pi]$ *or* $y \equiv 0$ *on* $[0, 2\pi]$ *. In particular, if* y_i *,* $i = 1, 2$ *, satisfy*

$$
\begin{cases}\ny_1'' + a(t)y_1 \ge y_2'' + a(t)y_2 & a.e. \text{ on } [0, 2\pi], \\
y_i(0 = y_i(2\pi), \quad y_i'(0) = y_i'(2\pi), \quad i = 1, 2,\n\end{cases}
$$

then $y_1 \ge y_2$ *on* [0, 2π]*.*

Proof. Extend *y* to be a 2π -periodic function on **R**. Then $y \in C^1(\mathbb{R})$ and y' is absolutely continuous on **R**. Suppose $y(\tau) > 0$ for some $\tau \in [0, 2\pi]$. We claim that $y > 0$ on $[0, 2\pi]$. Suppose to the contrary that $y(\tau_0) \leq 0$ for some $\tau_0 \in [0, 2\pi]$. Since $y(\tau_0) = y(\tau_0 \pm 2\pi)$, there exists an interval $(α, β)$ containing *τ* such that $y > 0$ on $(α, β)$, $y(α) = y(β) = 0$, 0 < $\beta - \alpha \leq 2\pi$, and [\(2.1\)](#page-2-1) holds, which contradicts Lemma [2.1\(](#page-2-2)ii) and (iii). Hence $\gamma > 0$ on $[0, 2\pi]$ as claimed. On the other hand, if $y \le 0$ on $[0, 2\pi]$ then $y'' \ge 0$ a.e. on $[0, 2\pi]$. Let $y(\tau_1) = \max_{t \in [0,2\pi]} y(t)$. Then $y'(\tau_1) = 0$, and hence $y(t) = y(\tau_1)$ for all $t \in [0,2\pi]$. Hence [\(2.6\)](#page-3-4) immediately gives $y \ge 0$ on [0, 2 π]. Consequently $y \equiv 0$, which completes the proof of the first part. The second part follows by using the first part with $y = y_1 - y_2$. \Box

Let $I_1 = \left[\frac{\pi}{2}, \frac{3\pi}{4}\right], I_2 = \left[\pi, \frac{5\pi}{4}\right], I_3 = \left[\frac{3\pi}{2}, \frac{7\pi}{4}\right], I_4 = \left[\frac{5\pi}{4}, \frac{3\pi}{2}\right]$ and $I_1 = \left[0\frac{\pi}{2}\right], I_2 = \left[\frac{\pi}{2}, \pi\right],$ $J_3 = [\pi, \frac{3\pi}{2}]$, $J_4 = [\frac{3\pi}{2}, 2\pi]$. The next result plays an important role in the proof of the main results.

Lemma 2.3. *There exists a positive constant m such that all solutions* $y \in AC^1[0, 2\pi]$ *of [\(2.6\)](#page-3-4) satisfy*

 $y(t) > m||y||$

for $t \in I_i$ *for some* $i \in \{1, 2, 3, 4\}.$

Proof. Let $y \in AC^1[0, 2\pi]$ be a solution of [\(2.6\)](#page-3-4). Then $y \ge 0$ on $[0, 2\pi]$ by Corollary [2.2.](#page-3-5) Let $||y|| = y(\tau)$ for some $\tau \in [0, 2\pi]$. Then $y'(\tau) = 0$. Let z_{τ} satisfy

$$
\begin{cases} z''_{\tau} + a(t)z_{\tau} = 0 & \text{on } [0, 2\pi], \\ z_{\tau}(\tau) = 1, & z'_{\tau}(\tau) = 0. \end{cases}
$$
 (2.7)

Note that the existence of a unique solution $z_{\tau} \in C^2[0, 2\pi]$ follows from the basic theory for linear differential equations (see e.g. [\[3,](#page-10-3) Theorem 3.7.1]). We shall verify that z_{τ} is bounded in $C^2[0,2\pi]$ by a constant independent of $\tau \in [0,2\pi]$. Indeed, by integrating the equation in [\(2.7\)](#page-4-0), we get

$$
z_{\tau}(t) = 1 - \int_{\tau}^{t} (t - s) a(s) z_{\tau}(s) ds
$$

for $t \in [0, 2\pi]$, which, together with (A2), implies

$$
|z_{\tau}(t)| \leq 1 + \frac{\pi}{2} \int_{\tau}^{t} |z_{\tau}(s)| ds \text{ for } t \geq \tau,
$$

and

$$
|z_{\tau}(t)| \leq 1 + \frac{\pi}{2} \int_{t}^{\tau} |z_{\tau}(s)| ds \text{ for } t \leq \tau.
$$

Hence Gronwall's inequality gives

$$
|z_{\tau}(t)| \le e^{(\pi/2)|t-\tau|} \le e^{\pi^2}
$$
\n(2.8)

for $t \in [0, 2\pi]$. Since $z_{\tau}'(t) = -\int_{\tau}^{t} a(s) z_{\tau}(s) ds$ and $z_{\tau}'' = -a(t) z_{\tau}$ on $[0, 2\pi]$, it follows from [\(2.8\)](#page-4-1) that z_{τ} is bounded in $C^2[0, 2\pi]$ by a constant independent of $\tau \in [0, 2\pi]$.

Claim 1: *There exists a constant* $m > 0$ *such that* $z_{\tau}(t) \geq m$ *for all* $\tau \in J_i$ *and* $t \in I_i$, $i \in \{1, 2, 3, 4\}$. Suppose to the contrary that there exists $i \in \{1, 2, 3, 4\}$ and sequences $(\tau_n) \subset J_i$, $(t_n) \subset$

*I*_{*i*}, $(z_n) \subset C^2[0, 2\pi]$ such that $z_n(t_n) \leq \frac{1}{n}$ for all *n* and

$$
\begin{cases} z''_n + a(t)z_n = 0 & \text{on } [0, 2\pi], \\ z_n(\tau_n) = 1, & z'_n(\tau_n) = 0. \end{cases}
$$

Since (z_n) is bounded in $C^2[0, 2\pi]$ by the above discussion, and (τ_n) , (t_n) are bounded in *Ji* , *Iⁱ* respectively, by passing to a subsequence if necessary, we can assume that there exist $\tau_i\in J_i$, $t_i\in I_i$, and $z\in C^1[0,2\pi]$ such that $\tau_n\to\tau_i$, $t_n\to t_i$, and $z_n\to z$ in $C^1[0,2\pi]$. Note that $t_n \geq \tau_n$ for $i < 4$ and $n \in \mathbb{N}$, and so $t_i \geq \tau_i$ for $i < 4$. Since

$$
z_n(t) = 1 - \int_{\tau_n}^t (t-s)a(s)z_n(s)ds,
$$

by passing to the limit as $n \to \infty$, we obtain

$$
z(t) = 1 - \int_{\tau_i}^t (t - s) a(s) z(s) ds,
$$

i.e. *z* satisfies

$$
\begin{cases} z'' + a(t)z = 0 & \text{on } [0, 2\pi], \\ z(\tau_i) = 1, & z'(\tau_i) = 0. \end{cases}
$$

Since $z(t_i) = \lim_{n \to \infty} z_n(t_n) \leq 0$, we obtain for $i < 4$ that $t_i > \tau_i$ (since $t_i \neq \tau_i$), and there exists $\tilde{t}_i\in(\tau_i,t_i]$ such that $z>0$ on (τ_i,\tilde{t}_i) and $z(\tilde{t}_i)=0$. Since $\tilde{t}_i-\tau_i\leq\frac{3\pi}{4}$, Lemma [2.1](#page-2-2) (i) gives $z=0$ on (τ_i, \tilde{t}_i) , a contradiction. On the other hand, if $i = 4$ then $t_4 < \tau_4$ and there exists $\tilde{t}_4 \in [t_4, \tau_4)$ such that $z > 0$ on (\tilde{t}_4, τ_4) and $z(\tilde{t}_4) = 0$. Since $\tau_4 - \tilde{t}_4 \leq \frac{3\pi}{4}$, we obtain a contradiction with Lemma [2.1](#page-2-2) (i). This proves the claim.

Let $u = y - ||y||z_\tau$. Then *u* satisfies

$$
\begin{cases}\nu'' + a(t)u \ge 0 & \text{a.e. on } [0, 2\pi], \\
u(\tau) = 0, \quad u'(\tau) = 0.\n\end{cases}
$$

Claim 2: $u \ge 0$ on $[0, 2\pi]$.

Indeed, suppose $u(\tilde{\tau}) < 0$ for some $\tilde{\tau} \in [0, 2\pi]$ with $\tilde{\tau} < \tau$. Then there exists $\tilde{\tau}_0 \in (\tilde{\tau}, \tau]$ such that $u < 0$ on $(\tilde{\tau}, \tilde{\tau}_0)$ and $u(\tilde{\tau}_0) = 0$. Hence

$$
u'' \ge -a(t)u \ge 0 \quad \text{a.e. on } (\tilde{\tau}, \tilde{\tau}_0]. \tag{2.9}
$$

If $u'(\tilde{\tau}_0) \leq 0$, then [\(2.9\)](#page-5-0) implies $u' \leq 0$ on $(\tilde{\tau}, \tilde{\tau}_0]$ and so $u(t) \geq u(\tilde{\tau}_0) = 0$ on $(\tilde{\tau}, \tilde{\tau}_0]$, a contradiction. On the other hand, if $u'(\tilde{\tau}_0) > 0$ then there exists $\tilde{\tau}_1 \in (\tilde{\tau}_0, \tau]$ such that $u > 0$ on $(\tilde{\tau}_0, \tilde{\tau}_1)$ and $u(\tilde{\tau}_1) = 0$. Since $\tilde{\tau}_1 - \tilde{\tau}_0 < 2\pi$, Lemma [2.1](#page-2-2) (ii) implies $u \equiv 0$ on $(\tilde{\tau}_0, \tilde{\tau}_1)$, a contradiction. Similarly, we reach a contradiction in the case $\tilde{\tau} > \tau$, which proves claim 2.

Since $\tau \in \cup_{i=1}^4 J_i$, it follows from claims 1 and 2 that there exists $i \in \{1, 2, 3, 4\}$ such that

$$
y(t) \geq \|y\|z_{\tau}(t) \geq m\|y\|
$$

for all $t \in I_i$, which completes the proof of Lemma [2.3.](#page-4-2)

By Lemma [2.6](#page-7-0) below, there exists $z \in AC^1[0, 2\pi]$ satisfying

$$
\begin{cases} z'' + a(t)z = g(t) & \text{a.e. on } [0, 2\pi], \\ z(0) = z(2\pi), & z'(0) = z'(2\pi). \end{cases}
$$
\n(2.10)

Since $g \not\equiv 0$, Corollary [2.2](#page-3-5) gives $z > 0$ on [0, 2 π].

 \Box

Corollary 2.4. Let k be a positive constant and $y \in AC^1[0, 2\pi]$ satisfy

$$
\begin{cases}\ny'' + a(t)y \ge -\lambda k g(t) & a.e. \text{ on } [0, 2\pi], \\
y(0) = y(2\pi), \quad y'(0) = y'(2\pi).\n\end{cases}
$$
\n(2.11)

Then

(i)
$$
y \ge -\lambda kz
$$
 on $[0, 2\pi]$
\n(ii) If $||y|| \ge 2\lambda k ||z|| (m + 1) m^{-1}$ then
\n $y(t) \ge m_0 ||y||$ (2.12)

for $t \in I_i$ *for some* $i \in \{1, 2, 3, 4\}$ *, where* $m_0 = m/2$ *and* m *is given by Lemma [2.3.](#page-4-2)*

Proof. Let $u = y + \lambda kz$. Then *u* satisfies

$$
u'' + a(t)u \ge 0
$$
 a.e. on [0,2 π],

from which Corollary [2.2](#page-3-5) and Lemma [2.3](#page-4-2) give $u > 0$ on [0, 2 π] and

$$
y(t) + \lambda kz(t) = u(t) \ge ||u||m = ||y + \lambda kz||m
$$

for $t \in I_i$ for some $i \in \{1, 2, 3, 4\}$. Thus $y \ge -\lambda kz$ on $[0, 2\pi]$ and

$$
y(t) \ge ||y||m - \lambda k||z||(m+1),
$$

from which [\(2.12\)](#page-6-0) follows if $||y|| \ge 2\lambda k ||z|| (m + 1)m^{-1}$.

Lemma 2.5. *Let* $U, V \in C^2[0, 2\pi]$ *be the solutions of*

$$
\begin{cases}\nU'' + a(t)U = 0 & \text{on } [0, 2\pi], \\
U(0) = 1, & U'(0) = 0,\n\end{cases}
$$

and

$$
\begin{cases} V'' + a(t)V = 0 & \text{on } [0, 2\pi], \\ V(0) = 0, & V'(0) = 1. \end{cases}
$$

Then $U(2\pi)$, $V'(2\pi) < 1$.

Proof. Suppose $U(2\pi) \geq 1$. If there exists $\tau \in (0, 2\pi)$ such that $U(\tau) < 0$ then, since *U*(0) > 0, there exists an interval [$α, β$] ⊂ (0,2π) such that *U* < 0 on ($α, β$) and *U*($α$) = $U(\beta) = 0$. Since $a(t) \leq 1/4$, it follows from Lemma [2.1](#page-2-2)(ii) with $y = -U$ that $U = 0$ on (α, β) , a contradiction. On the other hand, if $U \ge 0$ on $(0, 2\pi)$ then $U'' \le 0$ on $(0, 2\pi)$ i.e. *U*^{\prime} is nonincreasing on [0,2*π*]. Hence *U*^{\prime} \leq 0 on [0,2*π*], which implies *U*(2*π*) \leq *U*(0) = 1. Thus $U(2\pi) = 1 = U(0)$ and since *U* is nonincreasing, we deduce that $U = 1$ on [0,2 π]. Consequently, the equation in *U* gives $a(t) = 0$ for all $t \in [0, 2\pi]$, a contradiction. Hence $U(2\pi) < 1$. Next, we show that $V'(2\pi) < 1$. Since $V(0) = 0$ and $V'(0) > 0$, it follows that *V*(*t*) > 0 for *t* > 0 near 0. Hence if *V*(τ ₀) < 0 for some τ ₀ ∈ (0, 2 π) then there exists β ∈ (0, τ ₀) such that $V > 0$ on $(0, \beta)$ and $V(\beta) = 0 = V(0)$, a contradiction with Lemma [2.1](#page-2-2) (ii). Hence $V \geq 0$ on $(0, 2\pi)$, which implies $V'' \leq 0$ on $(0, 2\pi)$. Consequently, $V'(2\pi) \leq V'(0) = 1$. If $V'(2\pi) = 1$ then $V' = 1$ on $[0, 2\pi]$, which implies $V(t) = t$ for $t \in [0, 2\pi]$. Using the equation in *V*, we see that $a(t) = 0$ for all $t \in [0, 2\pi]$, a contradiction. Hence $V'(2\pi) < 1$, which completes the proof.

 \Box

Lemma 2.6. *Let* $h \in L^1(0, 2\pi)$ *. Then the problem*

$$
\begin{cases}\ny'' + a(t)y = h(t) & a.e. \text{ on } [0, 2\pi], \\
y(0) = y(2\pi), \quad y'(0) = y'(2\pi)\n\end{cases}
$$
\n(2.13)

has a unique solution y ∈ *AC*¹ [0, 2*π*], *which is given by*

$$
y(t) = \int_0^{2\pi} G(t, s)h(s)ds,
$$
 (2.14)

where

$$
G(t,s) = c_1 V(t) V(s) - c_2 U(t) U(s) + \begin{cases} c_3 U(s) V(t) - c_4 U(t) V(s), & 0 \le s \le t \le 2\pi, \\ c_3 U(t) V(s) - c_4 U(s) V(t), & 0 \le t \le s \le 2\pi, \end{cases}
$$

 $c_1 = \frac{U'(2\pi)}{D}$ $\frac{(2\pi)}{D}$, $c_2 = \frac{V(2\pi)}{D}$ $\frac{(2\pi)}{D}$, $c_3 = \frac{U(2\pi)-1}{D}$ $\frac{(\pi)-1}{D}$, $c_4 = \frac{V'(2\pi)-1}{D}$ $\frac{2\pi}{D}$, $D = U(2\pi) + V'(2\pi) - 2$, and U, *V* are *defined in Lemma [2.5.](#page-6-1)*

Proof. By Corollary [2.2,](#page-3-5) the only solution of

$$
\begin{cases}\ny'' + a(t)y = 0 & \text{a.e. on } [0, 2\pi], \\
y(0) = y(2\pi), & y'(0) = y'(2\pi), \n\end{cases}
$$

is the trivial one. Hence Fredholm's alternative theorem implies that the inhomogeneous problem [\(2.13\)](#page-7-1) has a unique solution, which is given by [\(2.14\)](#page-7-2) (see [\[2,](#page-10-0) Theorem 2.4]). Note that $G(t, s)$ is defined since $D < 0$ in view of Lemma [2.5.](#page-6-1) From [\(2.14\)](#page-7-2), a calculation shows that

$$
y'(t) = c_1 \left(\int_0^{2\pi} V(s)h(s)ds \right) V'(t) - c_2 \left(\int_0^{2\pi} U(s)h(s)ds \right) U'(t) + c_3 \left(\int_0^t U(s)h(s)ds \right) V'(t) - c_4 \left(\int_0^t V(s)h(s)ds \right) U'(t) + c_3 \left(\int_t^{2\pi} V(s)h(s)ds \right) U'(t) - c_4 \left(\int_t^{2\pi} U(s)h(s)ds \right) V'(t),
$$

from which we see that $y \in AC^1[0, 2\pi]$ and satisfies [\(2.13\)](#page-7-1).

 \Box

3 Proof of the main results

Let *X* be the Banach space $C[0, 2\pi]$ equipped with the norm $||u|| = \sup_{t \in [0, 2\pi]} |u(t)|$. For $u \in X$, define

$$
Tu(t) = \lambda \int_0^{2\pi} G(t,s)g(s)f(|u(s)|)ds
$$

for $t \in [0, 2\pi]$, where $G(t, s)$ is the Green's function of $y'' + a(t)y$ with the periodic boundary conditions in [\(1.1\)](#page-0-1) given by Lemma [2.6.](#page-7-0) Then $y = Tu \in AC^1[0,1]$ satisfies

$$
\begin{cases}\ny'' + a(t)y = \lambda g(t)f(|u|) & \text{a.e. on } [0, 2\pi], \\
y(0) = y(2\pi), & y'(0) = y'(2\pi).\n\end{cases}
$$

It is easy to see that $T : X \to X$ is continuous and since *T* maps bounded sets in *X* into bounded sets in $C^1[0,2\pi]$, T is a compact operator. For the rest of the paper, we shall use the following notations:

$$
f^{0,z} = \sup_{0 \le t \le z} |f(t)| \quad \text{and} \quad f_{z,\infty} = \inf_{t \ge z} f(t) \quad \text{for } z \ge 0.
$$

Note that $f^{0,z}$ and $f_{z,\infty}$ are nondecreasing on $[0,\infty)$.

Proof of Theorem [1.1.](#page-2-0) (i) By Corollary [2.2,](#page-3-5) $Tu \ge 0$ for all u . Let $0 < \varepsilon < \frac{1}{\lambda \|z\|}$, where *z* is defined by [\(2.10\)](#page-5-1). Since $f_0 = 0$, there exists a constant $r > 0$ such that

$$
f(z) < \varepsilon z \quad \text{for } z \in (0, r].
$$

We shall verify that the conditions of Lemma A with $h \equiv 1$ are satisfied.

(a) Let $y \in X$ satisfy $y = \theta Ty$ for some $\theta \in (0, 1]$. Then $||y|| \neq r$.

Indeed, suppose to the contrary that $||y|| = r$. Then

$$
y'' + a(t)y = \lambda \theta g(t)f(|y|) \leq \lambda \varepsilon g(t) \|y\| \quad \text{a.e. on } [0, 2\pi],
$$

from which Corollary [2.2](#page-3-5) implies

$$
y \leq \lambda \varepsilon z ||y|| \quad \text{on } [0, 2\pi].
$$

Hence $\lambda \varepsilon ||z|| \geq 1$, a contradiction with the choice of ε .

(b) Let $y \in X$ satisfy $y = Ty + \xi$ for some $\xi \ge 0$. Then $||y|| < R$ for $R >> 1$. Note that *y* satisfies

$$
y'' + a(t)y = a(t)\xi + \lambda g(t)f(|y|)
$$
 a.e. on [0,2 π].

Let *M* be a constant such that $\lambda Mmc > \pi/2$, where $c = \min_{1 \leq i \leq 4} \int_{I_i} g(t) dt$ and *m* is given by Lemma [2.3.](#page-4-2) Since $f_{\infty} = \infty$, there exists a constant *A* > 0 such that

 $f(z) > Mz$ for $z \geq A$.

We claim that $||y|| < R$ for $R > A/m$. Indeed, suppose $||y|| \ge R > A/m$. By Lemma [2.3,](#page-4-2) there exists $i \in \{1, 2, 3, 4\}$ such that

$$
y(t) \ge ||y||m \ge Rm > A
$$

for $t \in I_i$, which implies

$$
f(y(t)) > My(t) \geq Mm||y||
$$

for $t \in I_i$. Thus

$$
y'' + a(t)y \ge \begin{cases} \lambda Mm||y||g(t), & t \in I_i, \\ 0 & t \notin I_i \end{cases}
$$
 a.e. on [0,2 π],

and upon integrating on $[0, 2\pi]$, we get

$$
\int_0^{2\pi} a(t)y(t)dt \ge \lambda Mm||y|| \int_{I_i} g(t)dt \ge \lambda Mmc||y||.
$$

Since $a \leq 1/4$ on [0, 2π], this implies

$$
\frac{\pi}{2}||y|| \geq \lambda Mmc||y||,
$$

i.e. $\pi/2 \ge \lambda Mmc$, a contradiction with the choice of *M*. Hence $||y|| < R$ as claimed.

By Lemma [A,](#page-2-3) *T* has a fixed point *y* with $r < ||y|| < R$. By Corollary [2.2,](#page-3-5) $y > 0$ on [0, 2 π].

(ii) Let *k* be a positive constant such that $f(z) \geq -k$ for all $z \geq 0$. By Lemma [2.6,](#page-7-0) there $\text{exist } z_i, \tilde{z}_i \in AC^1[0, 2\pi] \text{ satisfying}$

$$
z''_i + a(t)z_i = \begin{cases} g(t) & t \in I_i, \\ 0, & t \notin I_i \end{cases} z_i(0) = z_i(2\pi), z'_i(0) = z'_i(2\pi),
$$

and

$$
\tilde{z}_i'' + a(t)\tilde{z}_i = \begin{cases} 0, & t \in I_i, \\ k g(t), & t \notin I_i, \end{cases} \tilde{z}_i(0) = \tilde{z}_i(2\pi), \ \tilde{z}_i'(0) = \tilde{z}_i'(2\pi),
$$

for $i \in \{1, 2, 3, 4\}$. Note that $z_i > 0$ on $[0, 2\pi]$ for all *i* by Corollary [2.2.](#page-3-5) Choose $r > 0$ so that

$$
f_{m_0r,\infty} \min_{1 \le i \le 4, t \in [0,2\pi]} z_i(t) > \max_{1 \le i \le 4} ||\tilde{z}_i||, \tag{3.1}
$$

where m_0 is given by Corollary [2.4.](#page-6-2) Let $\lambda > 0$ be such that

$$
\lambda \max\{f^{0,r} \|z\|, 2k \|z\| (m+1)m^{-1}\} < r. \tag{3.2}
$$

We shall verify that

(a) Let $y \in X$ satisfy $y = \theta Ty$ for some $\theta \in (0, 1]$. Then $||y|| \neq r$.

Suppose to the contrary that $||y|| = r$. Then

$$
-\lambda f^{0,r}g(t) \le y'' + a(t)y \le \lambda f^{0,r}g(t) \quad \text{a.e. on } (0, 2\pi),
$$

from which it follows that

$$
|y(t)| \leq \lambda f^{0,r} z(t),
$$

for $t \in [0, 2\pi]$, where *z* is defined in [\(2.10\)](#page-5-1). Hence

$$
r=\|y\|\leq \lambda f^{0,r}\|z\|,
$$

a contradiction with [\(3.2\)](#page-9-0), which proves (a).

(b) *There exists a constant* $R_\lambda > r$ *such that any solution* $y \in X$ *of* $y = Ty + \xi$ *for some* $\xi \ge 0$ *satisfies* $||y|| \neq R_\lambda$.

Let $y \in X$ satisfy $y = Ty + \xi$ for some $\xi \ge 0$. Since $\lim_{z\to\infty} \frac{f_{z,\infty}}{z} = \infty$, there exists a constant $R_\lambda > r$ be such that

$$
\lambda \left(f_{m_0 R_\lambda, \infty} \min_{1 \leq i \leq 4, t \in [0, 2\pi]} z_i(t) - \max_{1 \leq i \leq 4} ||\tilde{z}_i|| \right) > R_\lambda.
$$
 (3.3)

Suppose $||y|| = R_\lambda$. Since $||y|| \ge 2\lambda k ||z|| (m + 1)m^{-1}$ and

$$
y'' + a(t)y \ge \lambda g(t)f(|y|) \ge -\lambda k g(t) \quad \text{a.e. on } [0, 2\pi],
$$

it follows from Corollary [2.4](#page-6-2) that $y \ge -\lambda kz$ on $[0, 2\pi]$ and $y(t) \ge m_0 \|y\|$ for $t \in I_i$ for some $i \in \{1, 2, 3, 4\}$. Hence

$$
y'' + a(t)y \ge \lambda g(t)f(|y|) \ge \lambda g(t)f_{|y|,\infty}
$$

\n
$$
\ge \lambda \left(f_{m_0||y||,\infty} \begin{cases} g(t), & t \in I_i, \\ 0, & t \notin I_i, \end{cases} - \begin{cases} 0, & t \in I_i \\ kg(t), & t \notin I_i \end{cases} \right) \text{ a.e. on } (0,2\pi).
$$

By Corollary [2.2,](#page-3-5)

$$
y \geq \lambda(f_{m_0\|y\|,\infty}z_i - \tilde{z}_i) \quad \text{on } [0,2\pi], \tag{3.4}
$$

which implies by [\(3.3\)](#page-9-1) that

$$
R_{\lambda} = \|y\| \geq \lambda \left(f_{m_0 R_{\lambda}, \infty} \min_{1 \leq i \leq 4, t \in [0, 2\pi]} z_i(t) - \max_{1 \leq i \leq 4} ||\tilde{z}_i|| \right) > R_{\lambda},
$$

a contradiction. Hence $\|y\| \neq R_\lambda$, which proves (b).

By Lemma [A,](#page-2-3) *T* has a fixed point $y_{\lambda} \in X$ with $r < ||y_{\lambda}|| < R$. Since [\(3.4\)](#page-10-4) holds, we obtain from [\(3.1\)](#page-9-2) that

$$
y_{\lambda} \geq \lambda \left(f_{m_0 r, \infty} \min_{1 \leq i \leq 4, t \in [0, 2\pi]} z_i(t) - \max_{1 \leq i \leq 4} \|\tilde{z}_i\| \right) > 0 \quad \text{on } [0, 2\pi].
$$

It remains to show that $||y_\lambda|| \to \infty$ as $\lambda \to 0^+$. Since

$$
y''_{\lambda} + a(t)y_{\lambda} = \lambda g(t)f(y_{\lambda}) \leq \lambda g(t)f^{0,||y_{\lambda}||}
$$
 a.e. on $(0, 2\pi)$,

it follows that

$$
y_{\lambda} \leq \lambda f^{0, \|y_{\lambda}\|_{Z}} \quad \text{on } [0, 2\pi],
$$

which implies

$$
\frac{f^{0,\|y_\lambda\|}}{\|y_\lambda\|} \geq \frac{1}{\lambda \|z\|}.
$$

Since $\|y_\lambda\| > r$, it follows that $\|y_\lambda\| \to \infty$ as $\lambda \to 0^+$, which completes the proof of Theorem [1.1.](#page-2-0) \Box

Acknowledgement

The author thanks the referee for carefully reading the manuscript and providing helpful suggestions.

References

- [1] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, *SIAM Rev.* **18**(1976), No. 4, 620–709. [MR0415432](http://www.ams.org/mathscinet-getitem?mr=0415432)
- [2] F. M. Atici, G. S. Guseinov, On the existence of positive solutions for nonlinear differential equations with periodic conditions, *J. Comput. Appl. Math*. **132**(2001), 341–356. [MR1840633](http://www.ams.org/mathscinet-getitem?mr=1840633)
- [3] L. R. BORELLI, C. S. COLEMAN, *Differential equations. A modeling perspective*, John Wiley & Sons, Inc., New York, 1998. [MR1488416](http://www.ams.org/mathscinet-getitem?mr=1488416)
- [4] A. CABADA, J. Á. CID, Existence and multiplicity of solutions for a periodic Hill's equation with parametric dependence and singularities, *Abstr. Appl. Anal.* **2011**, Art. ID 545264, 19 pp. [MR2793780](http://www.ams.org/mathscinet-getitem?mr=2793780)
- [5] A. CABADA, J. Á. CID, M. Tvr.Dý, A generalized anti-maximum principle for the periodic one-dimensional *p*-Laplacian with sign-changing potential. *Nonlinear Anal.* **72**(2010), No. 7–8, 3436–3446. [MR2587376](http://www.ams.org/mathscinet-getitem?mr=2587376)
- [6] J. R. GRAEF, L. KONG, H. WANG, A periodic boundary value problem with vanishing Green's functions, *Appl. Math. Lett*. **21**(2008), 176–180. [MR2426975](http://www.ams.org/mathscinet-getitem?mr=2426975)
- [7] D. JIANG, J. CHU, M. ZHANG, Multiplicity of positive solutions to superlinear repulsive singular equations, *J. Differential Equations* **211**(2005), 283–302. [MR2125544](http://www.ams.org/mathscinet-getitem?mr=2125544)
- [8] D. JIANG, J. CHU, O'REGAN, R. AGARWAL, Multiple positive solutions to superlinear periodic boundary value problems with repulsive singular forces, *J. Math. Anal. Appl.* **28**(2003), 563–576. [MR2008849](http://www.ams.org/mathscinet-getitem?mr=2008849)
- [9] H. X. LI, Y. W. ZHANG, A second order periodic boundary value problem with a parameter and vanishing Green's functions, *Publ. Math. Debrecen* **85**(2014), 273–283. [MR3291830](http://www.ams.org/mathscinet-getitem?mr=3291830)
- [10] R. Ma, Nonlinear periodic boundary value problems with sign-changing Green's function, *Nonlinear Anal.* **74**(2011), 1714–1720. [MR2764373](http://www.ams.org/mathscinet-getitem?mr=2764373)
- [11] R. Ma, C. Gao, C. Ruipeng, Existence of positive solutions of nonlinear second-order periodic boundary value problems, *Bound. Value. Probl.* **2010**, Art. ID 626054, 18 pp. [MR2745087](http://www.ams.org/mathscinet-getitem?mr=2745087)
- [12] P. OMARI, M. TROMBETTA, Remarks on the lower and upper solution method for second and third–order periodic boundary value problems, *Appl. Math. Comp.* **50**(1992), 1–21. [MR1164490](http://www.ams.org/mathscinet-getitem?mr=1164490)
- [13] D. O'REGAN, H. WANG, Positive periodic solutions of systems of second order ordinary differential equations, *Positivity* **10**(2006), 285–298. [MR2237502](http://www.ams.org/mathscinet-getitem?mr=2237502)
- [14] P. Torres, Existence of one-signed periodic solutions of some second-order differential equations via a Krasnosel'skii fixed point theorem, *J. Differential Equations* **190**(2003), 643–662. [MR1970045](http://www.ams.org/mathscinet-getitem?mr=1970045)
- [15] P. Torres, M. ZHANG, A monotone iterative scheme for a nonlinear second order equation based on a generalized anti-maximum principle, *Math. Nachr.* **251**(2003), 101–107. [MR1960807](http://www.ams.org/mathscinet-getitem?mr=1960807)
- [16] J. R. L. WEBB, Boundary value problems with vanishing Green's function, *Comm. Appl. Anal.* **13**(2009), 587–595. [MR2583591](http://www.ams.org/mathscinet-getitem?mr=2583591)
- [17] M. ZHANG, Optimal conditions for maximum and antimaximum principles of the periodic solution problem, *Bound. Value Probl.* **2010**, Art. ID 410986, 26 pp. [MR2659774](http://www.ams.org/mathscinet-getitem?mr=2659774)
- [18] Z. ZHANG, J. WANG, On existence and multiplicity of positive solutions to periodic boundary value problems for singular second order differential equations, *J. Math. Anal. Appl.* **281**(2003), 99–107. [MR1980077](http://www.ams.org/mathscinet-getitem?mr=1980077)