/ Electronic Journal of Qualitative Theory of Differential Equations
(J}L;ﬁjf 2016, No. 62, 1-24; doi: 10.14232/ejqtde.2016.1.62 http://www.math.u-szeged.hu/ejqtde/

Precise asymptotic behavior of regularly varying
solutions of second order
half-linear differential equations

Taka$i Kusano! and Jelena V. Manojlovié¢ ™2

'Hiroshima University, Department of Mathematics, Faculty of Science
Higashi-Hiroshima 739-8526, Japan
2University of Ni§, Faculty of Science and Mathematics, Department of Mathematics
Visegradska 33, 18000 Nis, Serbia

Received 17 December 2015, appeared 29 August 2016

Communicated by Zuzana Dosl4
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order half-linear differential equation

(I'["sgn x')" +q(t)|x|"sgn x = 0,

will be established explicitly, depending on the rate of decay toward zero of the function

Qc(t) =t* /tmq(s)ds —c

as t — oo, where ¢ < a%(a+1)7%"1,
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1 Introduction
The second order half-linear differential equation
([x|"sgn x")" + q(t) [x|"sgn x = 0, (A)

is considered under the assumption that
(@) « > 0is a constant, and (b) g: [a,00) — R, a > 0, is a continuous function.
Note that (A) can be expressed as

(")) +q(t)x* =0,
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in terms of the asterisk notation
u"™ = |ul’sgnu, ue€R, g>0.

In this paper we are concerned primarily with nontrivial solutions of (A) which exist in
a neighborhood of infinity, that is, in an interval of the form [ty, o), ty > a. Such a solution
is said to be oscillatory if it has a sequence of zeros clustering at infinity, and nonoscillatory
otherwise.

Although equation (A) with a # 1 is nonlinear, it has many qualitative properties in
common with the linear differential equation x” + g(t)x = 0. See Elbert [2] and Dosly and
Rehak [3]. For example, all nontrivial solutions of (A) are either oscillatory, in which case (A)
is called oscillatory, or else nonoscillatory, in which case (A) is called nonoscillatory. Also, it
is shown that (A) is nonoscillatory if and only if the generalized Riccati differential equation

W +alulv 4 q(t) =0, (B)

has a solution defined in some neighborhood of infinity.

In what follows our attention will be focused on the case where (A) is nonoscillatory. Since
if x(t) satisfies (A), so does —x(t), it is natural to restrict our consideration to (eventually)
positive solutions of (A).

The systematic study of equations of the form (A) by means of regularly varying functions
(in the sense of Karamata) was proposed by Jaro$, Kusano and Tanigawa [5], who proved the
following theorem.

Theorem A. Assume that q(t) is integrable (absolutely or conditionally). Let ¢ be a constant such
that

DCD(
c € (—oo,E(a)), where E(a)= @ (1.1)
Let Ay, Ay (A1 < Ay) denote the two real roots of the equation
AE —A+c=0. (1.2)
Equation (A) possesses a pair of regularly varying solutions x;(t), i = 1,2, such that
1 * .
x; € RV(AF), i=1,2, (1.3)
if and only if
lim t“/ q(s)ds = c. (1.4)
t—o0 t

Recently, Rehék [10] considering only special case of the equation (A) with nonpositive
differentiable coefficient q(t) established a condition which guarantees that all eventually pos-
itive increasing solutions are regularly varying.

Theorem B. Let g be negative differentiable function and

lim ¢'(t)|g(t)|* = C <O0. (1.5)

t—o0

Then, all positive eventually increasing solutions x(t) of (A) are such that lim;_, x(t) = oo and
1

belongs to RV (—ap; ' /C), where p1 is the positive real root of the equation

1
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Although the integral condition (1.4) is more general then (1.5), Theorem A guarantees the
existence of at least one positive increasing RV-solution, while Theorem B says that all positive
increasing solutions are regularly varying.

A natural question arises about the possibility of acquiring detailed information on the
asymptotic behavior at infinity of the solutions whose existence is assured by the above two
theorems. This problem has been partially examined in [7,11]. Namely, in [7] the equation
(A) has been considered in the framework of regular variation, but only the case ¢ = 0 in (1.4)
has been considered, providing some asymptotic formulas for normalized slowly varying
solutions of (A), while in [11] considering only special case of the equation (A) with nega-
tive differentiable coefficient g(t), a condition is established which ensures that the equation
(A) has exponentially increasing solutions and exponentially decreasing solutions, providing
some asymptotic estimates for such solutions.

Therefore, the objective of this paper is to extend and improve results obtained in [7,11], by
indicating assumptions that make it possible to determine the accurate asymptotic formulas
for regularly varying solutions (1.3) of (A). This can be accomplished by elaborating the proof
of Theorem A so as to gain insight into the interrelation between the asymptotic behavior of
solutions of (A) and the rate of decay toward zero of the function

(o]

Qc(t) =t* /t q(s)ds —c, ¢ < E(a), (1.6)

as t — oo. In Section 2 we present the elaborated proof of Theorem A, thereby adding useful
information to the exponential representations for regularly varying solutions (1.3) of (A)
constructed in the paper [5]. Using the results of Section 2, we then specify in Section 3 some
classes of equations of the form (A) having solutions (1.3) whose asymptotic behaviors are
governed by the precise formulas. Examples illustrating the main results are provided in
Section 4.

For the convenience of the reader the definition and some basic properties of regularly
varying functions are summarized in the Appendix at the end of the paper.

2 Existence of regularly varying solutions

Let ¢ be a constant satisfying (1.1) and let A;, i = 1,2, (A1 < A,) denote the real roots of the
equation (1.2). It is clear that

0< A <Ay if CE(O,E((X)); AM <0< Ay if CG(—O0,0)

and 0=A;<A,=1 ifc=0.

The purpose of this section is to prove variants of Theorem A ensuring the existence of regu-

1
larly varying solutions x; € RV(A;**), i = 1,2, for equation (A), and utilize them for pointing
out the cases where one can determine the asymptotic behavior of these solutions as t — oo.
As in [5], the cases where ¢ = 0 and ¢ # 0 are examined separately.

2.1 The case where ¢ = 0 in (1.2)

Let c = 0in (1.2), so that its real roots are A; = 0 and A, = 1. Our task is to construct regularly
varying solutions x;(t), i = 1,2, of (A) such that x; € SV =RV(0) and x, € RV(1) under certain
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conditions on g(t) stronger than

Quy:ﬂ/wﬂgw-+a E o oo @.1)
Jt

Our first result consists of the following two existence theorems indicative of how the
asymptotic behavior of the SV- and RV(1)-solutions of (A) is affected by the decay property of
Q(t) as t — oo.

Theorem 2.1. Suppose that there exists a continuous positive function ¢(t) on [a, oo) which decreases
to 0 as t — oo and satisfies

£t / q(s)ds| < ¢(t) forall large t.
t
Then, equation (A) possesses a slowly varying solution x1(t) which is expressed in the form
t i
n —ew [(MVE9) 4, e, 2)
T

for some T > a, with vy (t) satisfying
01(t) = 0(p(H)F4) as t— oo. (2.3)

Proof. We seek a solution x1(t) of (A) expressed in the form (2.2). For x1(t) to be a solution
of (A), it is necessary that u(t) = (v1(t) + Q(t))/t* satisfies the Riccati-type equation (B) for
t > T. Further, if v1(t) tends to 0 as t — oo, x1(f) would be slowly varying solution. An
elementary computation shows that equation (B) for u(t) is transformed into the following
differential equation for v (t):

(ﬁ)’ L alo+ Q[

e ta—H = 0' t> T/ (24)

the integrated version of which is

0 1+1
v1(t) = (xt"‘/t [01(5) —;gl(s)] e ds, t>T. (2.5)

With a help of fixed-point technique we show the existence of a solution of the integral equa-
tion (2.5).
Choose T > a so that

R

< for t>T. (2.6)

NI~

(1+;) o)

Let Co[T, ) denote the set of all continuous functions on [T, o) tending to 0 as t — oo.
Co[T, ) is a Banach space with the norm ||v|o = sup{|v(t)| : + > T}. Define the set V; C
Co[T, ) and the integral operator F; by

Vi={ve T, o):0<uv(t) <¢(t), t>T},

and

) 1+%
ﬂmo:aﬂ/|“”i£@’ ds, t>T.
t
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It is clear that V is a closed convex subset of Cy[T, c0). It can be shown that F; is a contraction
mapping on V. In fact, if v € V3, then, using the decreasing nature of ¢(t) and (2.6), we have

0< Fo(t) < at* / i wds <@p() <), t>T, (2.7)
t

implying that lim; .. F1v(t) = 0. It follows that Fiv € Vj, so that F maps V; into itself.
Moreover, if v, w € Vj, then, noting that

[0(£) + Q)% — fw(t) + Q(t) |1

< (143 @)} ()~ (o),
we obtain

5))x[o(s) — w(s)]

ga+1 ds

o (141
Fro(t) = Fra(t)] <at* | (1+3) (29
< (1 + i) 2¢(t)) |0 — ]l < %HU—wllo, P> T,

implying that || 7o — Fiw|lo < 3|lo — wl|o. This proves that F is a contraction mapping.
It follows that F; has a unique fixed point v1(¢) in Vj, which clearly satisfies the integral
equation (2.5), and hence the differential equation (2.4) on [T,o0). From (2.7) it follows that
v1(t) satisfies (2.3). Moreover, the function x;(t) defined by (2.2), with this v1(t), is a slowly
varying solution of equation (A). This completes the proof of Theorem 2.1. O

Theorem 2.2. Suppose that there exists a continuous slowly varying function P(t) on [a,oo) which
decreases to 0 as t — oo and satisfies

t* /too q(s)ds| < ¢(t) foralllarge t.
Then, equation (A) possesses a regulary varying solution x,(t) of index 1, which is expressed in the
form 1
x2(t) :exp{/Tt<1+02<21+Q(S)>“*ds}, t>T, (2.8)
for some T > a, with v, (t) satisfying
va(t) = O((t)) as t— oo. (2.9)

Proof. The desired solution x, € RV(1) is sought in the form (2.8). From the requirement that
u(t) = (1 +vo(t) + Q(t))/t* satisfy (B) we obtain the differential equation for v,(t)
1

toh +a(|l+v+ Q(t)|"Ts —v, — 1) =0,

which is transformed as
(tv2)" + w(ll o+ Q1) E — <1 + i)vz - 1) =0, t>T. (2.10)

It suffices to solve the special integrated version of (2.10)

oo(t) = 5 /T (s, o(s))ds,  t>T, @.11)
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under the condition v,(t) — 0 as t — oo, where
1
F(t,v):1+<1+(X>v—\1+v+Q(t)|1+i. (2.12)

For this purpose we need detailed information about F(t,v). Let Ty > a be such that y(t) < 1
for t > Ty, define D = {(t,v) : t > Ty, |v| < 1} and consider F(t,v) on the set D. It will be
convenient to decompose F(t,v) as follows:

F(t,v) = G(t,v) + H(t,v) + k(t), (2.13)

where

G(t,0) = (1+Q(1) "+ + (1 + i) (1+Q()Fo — [1+0+ Q)13

2=

Hito) = (143 )@= W+ QW)o, k() =1 1+ Q)

Using the mean value theorem, for some 6 € (0,1) the following inequalities hold:
1

-1

Ho) < (141) (1+9Q D" kel
0 (122) -]« (1) S o
G 1 1 1,
' g;v §(1+a)' 1+Q(H)" — (1+v+ Q)"
< (Hi) i(l+Q<t)+Gv\1|v|,
kol < (1+1) o] ow
Also,
(1+Q(1)" - (1+0+Q(1)*
lim G(t20)1<1+1>hm
v—=0 v 2 ) v—0 v
-1 <1 + 1) lim |1+ Q(#) w1
C 2u & ) v—0
1 1 a1
zz(x(l%—“) \1+Q(t) .
Since,
7<)1+9Q()‘ Z and 7<’1+Q )—H)v‘ % E> T,
we obtain that the following inequalities hold on D:
|G(t,v)\§i<l+i>sz, 'aGéiv) gi(ui)m\,
1 1 oH 1 1
Heol < (14, )alewipl, [T < (1e )aenl e

o) < (1+ 7 ) Al
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where A is a positive constant such that
11

3\* . 1—-1 .
A= 5 if a<1; A=2"= if a>1.

We note that there exists a constant y > 0 such that

/:EL’(S)ds < ty(t), /at \/@ds < 'yt\/%, t>a. (2.15)

This follows from the relations

/ut P(s)ds ~ tip(t), /at \/@ds ~ t\/%, t— oo,

which are implied by the Karamata integration theorem applied to slowly varying functions

p(t) and /9(t).

Choose T > Tj so that

WM\/% <1 t>T, (2.16)
where | € (0,1) is a constant. Let V, denote the set
v, = {v € ColT, ) : [o(t)] < \J9(), 12 T}, 217)
and define the integral operator F, : V, — Co[T, o) given by
Fao(t) =5 /T "E(s,0(s))ds, t>T. (2.18)

Using (2.13)—(2.18) and ¢(t) < /¢ (t), for t > T, we see that if v € V), then
t
|F2o(t)] < %/T(\G(va(s))l + [H(s, v(s))| + |k(s)|)ds

< D;/Tt [i <1 + %)Agb(s) + % (1 + %)Alp(s) ¥(s) + (1 + i)AlP(S)] ds

< %A /Tt (”‘+1‘1§“+2)¢(5)d5 < MXMA“W’U)
< D@L So e < o, 2T,

and that if v, w € V5, then

| F2o(t) — Faw(t)] < L:/;UG(S/U(S)) = G(s,w(s))| + |H(s,0(s)) — H(s, w(s)) ] ds

< ‘;‘/Tt [i@ + %)A\/@+ %(1 + i)Alp(s)} (0(s) — w(s)|ds

<20 FD) g o lo—wlo < lo—wll,  t2T,

4

which implies that || Fov — Fow||p < I||]v — w||o. This shows that JF; is a contraction on V,, and
so there exists a fixed point v, in V,, which satisfies the integral equation (2.11) and hence the
differential equation (2.10) for t > T. Then, the function x,(t) defined by (2.8) with this v, (t)
provides a solution of equation (A) on [T, c0). Since, lim;_,(v2(#) + Q(t)) = 0, we see that
xp € RV(1) as desired. O
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2.2 The case where ¢ 7# 0 in (1.2)

Let ¢ be a nonzero number in the interval (—oo, E(a)) (cf. (1.1)). Then, the real roots A;, i = 1,2,
of (1.2) satisty

O< A <Ay if ¢>0 and AM<0< A, if ¢<O,

and

14
A < ( <Ay, (2.19)

«
o+ 1)
regardless of the sign of c. Our aim is to find regularly varying solutions x;(t), i = 1,2, of (A)
such that

X € RV(A{T*) and x; € RV(Aé*)

under certain conditions on g(f) stronger than (1.4). Since A, > 0, the asterisk sign may be

Ly
deleted from Aj .
The extreme case where Q.(t) = 0 for all large t will be excluded from our consideration.
Clearly, this case occurs only for the particular equation

uc

(' |*sgn ') + o1

|x|*sgn x =0,

1
x*

t/\

which, as easily checked, has exact two trivial RV-solutions x;(t) = ,i=1,2.

The main results of this subsection are stated and proved as follows.

Theorem 2.3. Let ¢ be a nonzero constant in (—oo, E(x)). Suppose that there exists a continuous
positive function ¢(t) on [a, o0) which decreases to 0 as t — oo and satisfies

£t /Oo q(s)ds — c‘ < ¢(t) forall large t.
t

1y Lo .
Then, equation (A) possesses a regularly varying solution x; € RV(A] ") which is expressed in the
form

x1(t) = exp{/f(\1 +ous) + QC(S)y*ds}, t>T, (2.20)

T st

for some T > a, where vy (t) satisfies

vi(t) = O(p(t)) as t— oo. (2.21)

Proof. We construct a solution x; € RV(/\%*) of (A) having the representation (2.20). Substitut-
ing u(t) = (A1 +v1(t) + Qc(t))/t* in the equation (B), we obtain the differential equation for
v1(t)

o av Ao+ QB — A1

At = =0, t>T. (2.22)

Using the notation
Ly
p= (e +1A], (2.23)

we transform the above equation into

(t" %) +at T E (t,01) =0,  t>T, (2.24)
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where
1\, 1
Fi(t,0) = |Ar + 0+ Qe(t) M — <1 + “>Af v — AT (2.25)

By (2.19) and (2.23), we see that ;1 < a, so that it is natural to integrate (2.24) on [t, ) to
obtain the integral equation

v1(t) = zxt“_”l/ sMTLE (5,01(s))ds, t>T. (2.26)
t

We consider Fj(t,v) on the set

A1

Dl = {(t,v) ot Z Tl, "U| S 4},

where T; > a is chosen so that () < min{ V;—l‘, 1} for t > Ti, and express it as
Fl(t,’(')) = Gl(t,v) —|—H1(t,v) +k1(t), (227)

where

Gi(t,0) = A1 + 0+ Qe(H)]"H+ (1 + i) (M +Qe(1) "0 — A1 + Qel(1)[' %,

B[

1ﬁ@m):<1+i>hAy+QAﬂ) (2.28)

ki(F) = |A1+ Qe(B) e — A5,

1,
=AY,

By a similar procedure as in the proof of Theorem 2.2, using the mean value theorem the
following inequalities are proved to hold in D;:

1G(t0)] < i(ui)A]vz, Hi (t,0)] < i(l—l—i)Al]QC(t)Hv\, (2.29)
e L 'aHl(”) <i(1+3)mlemL e
dv o o v x x
(o) < (14 ) Ao, @31
where A is a positive constant such that
Ay = <3|;‘1|>‘}‘_1 if a<1, A= <M21|)'1_1 if oa>1. (2.32)

Let a constant / € (0,1) be given and let T > T; be large enough so that

(o +1)(a+2)

) Aot <1, t>T. (2.33)

Define the set V; and the integral operator 7 by

Vi = {v € C[T, ) : |v(t)| < y/¢(t), t > T},
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and

Fro(t) = zxt"‘”‘l/ sM*1F (s,0(s))ds, t>T,
t

respectively. One can show that F is a contraction mapping on V; as follows. If v € Vj, then
using (2.29), (2.31) and (2.33), we have

| Fro(t)] < at*i /too s’“""’l—(“ + 13650‘ +2) Aq¢(s)ds
<Lt D@t ) o) 234)

oo — 1)
J”:_";:Z oot < \Jor), t>T,

and if v, w € Vj, then using (2.30) and (2.33), we see that

|Fro(t) — Frw(t)]| < at® M /too <1 (1 + 1)z‘h $(s) + 1 (1 + 1>A1¢(s)>ds

1x+1
A/ ¢(t) ||[o —wllo < I||v —wlo, t>T,

from which it follows that H]—'lv - .7-"1w||0 < I||lv — w||o. Therefore, there exists a unique fixed
point v1 € Vj of F;, which clearly satisfies the integral equation (2.26) on [T, o). In view of
(2.34) v1(t) has the property (2.21) as t — oo. The function x;(t) defined by (2.20) with this

1 *
v1(t) then gives a solution of equation (A), which belongs to RV (A{ "), since v () + Q.(t) — 0
as t — oco. This completes the proof of Theorem 2.3. O

Theorem 2.4. Let ¢ be a nonzero constant in (—oo, E(x)). Suppose that there exists a continuous
slowly varying function P(t) on [a,o0) which tends to 0 as t — oo and satisfies

£t /ooq(s)ds —c| <y(t) foralllarge t.
t

Ly Lo .
Then, equation (A) possesses a regulary varying solution x, € RV (A4 ") which is expressed in the form

x(t) = exp{/Tt</\2+vz( 3) £ Qc(s )> ds} t>T, (2.35)

for some T > a, where v, (t) satisfies

s«

va(t) =O(p(t)) as t— oo. (2.36)

Proof. Note that the function x;(t) defined by (2.35) is a regularly varying solution of in-

1,
dex A5 of (A) if vy(f) tends to 0 as t — oo and has the property that the function u(t) =
(A2 +va(t) + Qc(t))/t* satisfies the equation (B) for all large t. The existence of such a v;(t)
is equivalent to the solvability of the differential equation

v avy | Ao+ Qe(t)[ e — A1 te
tTc - ttx+1 +ta taJrl 4

in the class of continuously differentiable functions tending to 0 as t — co. Exactly as in the
proof of Theorem 2.3 this equation is transformed into

(th27%0,) + t127* 1y (t,0y) = 0, (2.37)
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where

Ne|—

pa = (a +1)Az, (2.38)
and
141 1 1 1+%
E(t,v) = |Aa+ v+ Qc(t)] — 1+& Ay — A, L (2.39)

Here the variable of F,(t,v) is restricted to the domain

A
D, = {(t,v) H>T, v < |42|},

where T, > a is chosen so that ¢(t) < min{‘/z—z‘, 1} for t > Tp.
Noting that the constant y» in (2.38) satisfies p» > a because of (2.19), we form the follow-
ing integrated version of (2.37)

t
vy(t) = —zxt"z’“/ 5”2’“’15(5, v2(s))ds, t>T, (2.40)
T

and solve it in the space Cy[T, o) for some suitably chosen T > a. For this purpose use is
made of the fact that there exists a constant y > 0 such that

ot [t y(s)s < Ty,

2 —&

t
tzxfﬂz/a gha—a—1 /¢(S)d8§ ]42’)/—0& ¢(t),

This is an immediate consequence of the Karamata integration theorem applied to #2-%~1f ()
for any f € SV.

In order to solve the integral equation (2.40) it is convenient to use the decomposition of
F(t,v) corresponding precisely to (2.27)

Fz(t, ZJ) = Gz(t, U) + Hz(t,v) + kz(i‘), (2.42)

t>a. (2.41)

where Gy, Hy and k; stand, respectively, for G;, H; and k; in (2.28) with A; replaced with A,.
Naturally, as regards G, Hy and k, exactly the same type of estimates as (2.29)—(2.31) hold
true in D, provided A; in (2.32) is replaced by A,.

Let a constant / € (0,1) be given and choose T > T so that

(o +1)(x+2)
L A1/ P(t) <, t>T. 2.43
06(]/12 —06) 1Y lP( ) = = ( )
Consider the integral operator

t
Fro(t) = —oct”‘”*z/ s 1F, (s,0(s))ds, t>T,
T

and the set
Vo, = {v € Co[T, ) : |v(t)| < y/(t), t> T}.

Using the estimates corresponding to (2.29)-(2.31) in combination with (2.41) and (2.43), we
can show that if v € V5, then

t
|Fa0(t)] < at*r / smmwﬂgwm
T

< wfmw) <W/y),  t>T,
a(p2 —a)

Ary(s)ds
(2.44)
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and if v,w € V5, then

2 1
Fao(t) — Faw(t)] < att e /T grame 1 2E D) 46 Jos) — wis)|ds
oc+1 (x+2
S(a< \/ Vlo—wlo<Ilo—wl, =T,

implying that || Fov — Fow|lp < I||v — w||o. This confirms that F, is a contraction on V3, and
consequently F, has a fixed point v(t) € V, which solves the integral equation (2.40). The
property (2.36) of v, (t) follows from (2.44). The function x,(t) defined by (2.35) with this v(t)

gives the desired solution in RV (A ) of (A). This completes the proof of Theorem 2.4. O

3 Asymptotic behavior of regularly varying solutions

It is natural to ask whether one can accurately determine the asymptotic behavior at infinity
of the regularly varying solutions of equation (A) whose existence was established in the
above four theorems. An answer to this question is provided in this section by way of the
exponential representations for the solutions which, in some cases, make it possible to reveal
the effect of the functions Q(t) or Q.(t) upon the behavior of the solutions under study.

We begin by indicating the situation in which the asymptotic behavior of the SV- and
RV(1)-solutions of (A) described in Theorems 2.1 and 2.2 can be determined precisely.

Throughout the text “t > T” means that ¢ is sufficiently large, so that T need not to be the
same at each occurrence.

Theorem 3.1. Let ¢(t) be a positive continuous function on [a, o) which decreases to 0 as t — oo and

satisfies
1 2

/‘P ) 4t — o, /4’ )% 4t < oo, (3.1)

Suppose that the function Q(t) defined by (2.1) is eventually of one-signed and satisfies

Sé

Q(1)] = ¢(1) +O(p(1)*7),  t— co. (3.2)

Then, equation (A) possesses a nontrivial slowly varying solution x1(t) such that

x1(t) ~ cexp{sgn Q /ﬂt ('b(z)ads}, t — oo. (3.3)

for some constant ¢ > 0.

Proof. Since (3.2) implies the existence of a constant ¥ > 1 such that |Q(t)| < x¢(t) for all
large t, from Theorem 2.1 (with ¢(t) replaced by x¢(t)) it follows that (A) has an SV-solution
x1(t) represented with (2.2), where v;(t) is of the form (2.5) and satisfies (2.3). Suppose that
Q(t) is one-signed on [T, c0) for some T > a. Noting that (3.2) is rewritten as

Q(t) = Qp(t) + O(¢p()1Fx), fort>T,

where Q = sgn Q, using (2.3) we see that

(v1(t) +Q(1))

B[

1
o

EJ[N)

"= Qe (1+0(p(1)7)) = Qp(H)« + O(p(1)F),  t>T.  (34)
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Combining (2.2) and (3.4), we obtain for t > T
ot i t :
x1(t) :exp{Q/T 4)(2)ds}exp{/T O((Pgs))ds},

from which the precise asymptotic behavior (3.3) of x(t) follows due to the second condition
in (3.1). O

Theorem 3.2. Let ¢(t) be a continuously differentiable function on [a, o) which is slowly varying,
decreases to 0 as t — oo and satisfies

00 [ 2
!/¢9ﬁ:w, /1%)ﬂ<m (3.5)
Suppose that the function Q(t) defined by (2.1) is eventually one-signed and satisfies
Q)| = () +O(p()?),  t— oo, (3.6)

Then, equation (A) possesses a nontrivial regularly varying solution x(t) of index 1 such that

x2(t) ~ ctexp{—sgn Q /t l’bis)ds}, t — oo, (3.7)

for some constant ¢ > 0.

Proof. Because of (3.6) there is a constant x > 1 such that |Q(¢)| < «y(t) for all large ¢,
and so applying Theorem 2.2 (with y(t) replaced by xy(t)), we see that (A) has an RV(1)-
solution x,(t) expressed in the form (2.8), where v;(t) satisfies the decay condition (2.9) and
the integral equation (2.11), with F(¢,v) being given by (2.12). Suppose that Q(t) defined by
(2.1) is one-signed on [T, o) for some T > a.

For more information about the decay of v,(t) we are going to use the decomposition
(2.13) of F(t,v) and the estimates for G(t,v), H(t,v) and k(t) obtained in (2.14), which we
may assume holding on [T, ). First, note that (2.9) and (2.14) implies

G(to(t) =0(p(t)*),  H(to(t) =0(y(t)*),  t— oo, (38)

while denoting by Q = sgn Q and rewriting (3.6) as Q(t) = Qu(t) + O(w(t)?), t > T, we see
that

k() = — <1 T i) Q(t) +0(Q(tP) = — (1 + i) Op() +0(p(H?), t—o.  (39)
Using (3.8) and (3.9) in (2.11) and taking into account the relation

1 t
7 [oweDds = o), =T,
which follows from the Karamata integration theorem, we obtain
~1 rt
() = —(a+ DQ?/T P(s)ds +O(p(t)?), t>T.
This, combined with

J v = () ~T() + [y )lds, 12T,
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gives

02(t) = —(@+ 1) T p(t) +o<1> +o<1 /Tts|1//(s)|ds> FOW(H?), =T,
which implies that
oalt) + Q1) = ~aQy(1) + O( 7 ) +0(§ [[sly/®lds) +0(pwR),  r=T.

On the other hand it is clear that vy(t) + Q(t) = O(y(t)?) as t — 0. Bringing the above
observations together, we find

1

(1+0a(t) + Q1)+ =1+ —(02(1) + Q1) + O((va(t) + Q(1))?)
~ t (3.10)
1=y +0(7) +0( [ sly©las) +07), i1
We now combine (2.8) with (3.10) to obtain for t > T
t 5 [fg(s)
x(t) = mexpy —Q [ ——ds
! { /T ° } 3.11)

t 2 ]
$(s) 1 1 / /
xexp{/T [O( 5 ) O<32) +O<52 . rlp (r)\dr) ds ¢ .
Notice that O(y(t)?/t) is integrable on [T,c) by (3.5), while the integrability of
O(t72 [1s|¢/(s)|ds) follows from

[ 5 [riveas < [y = -y, =T

Therefore,

t 2 .
¥(s) 1 1 ,
eXp{/T[O< s )+O(57)+O(57/T711P(V)!d7) dss ~C>0, t— oo
implying from (3.11) the desired asymptotic formula (3.7) for x(t). O

Our next task is to establish the accurate asymptotic formulas for the regularly varying
solutions of (A) constructed in Theorems 2.3 and 2.4. The non-zero constant c satisfying (1.1),
the function Q(t) defined by (1.6), the real roots A;, i = 1,2, of (1.2) satisfying (2.19) and the
constants y;, i = 1,2, given by (2.23) and (2.38) will be used below.

Theorem 3.3. Let ¢(t) be a positive continuously differentiable function on [a, c0) which decreases to
0 as t — oo, has the property that t|¢' (t)| is decreasing and satisfies

) ) 2
/ qjit)dt — oo, / qb(:)dt < . (3.12)
Suppose that the function Q.(t) defined by (1.6) is eventually one-signed and satisfies
Q)] = p(5) + O(p(t)%), ¢ e, (313)

1 *
Then, equation (A) possesses a nontrivial regularly varying varying solution x1(t) of index A; " such
that :
1, 11 t
xq(t) ~ctM exp{Mll sgn QC/ (P(S)ds}, t — oo. (3.14)
o — U a S

for some constant ¢ > 0.
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Proof. Suppose that the function Q.(t) defined by (1.6) is one-signed on [T, o), for some T > a,
so that we may rewrite (3.13) as

Qc(t) = Qe p(t) + O(p(1)?),  t>T, (3.15)

where QVC = sgn Q.. Since (3.13) implies the existence of a constant x > 1 such that |Q.(t)| <

k¢p(t) for all large ¢, by Theorem 2.3 (with ¢(t) replaced by x¢(t)) there exists an RV ()\1% BE
solution x(t) of (A) which is expressed as (2.20), where v1(t) is a solution of the integral
equation (2.26) satisfying (2.21) with F; (¢, v) defined by (2.25). As in the proof of Theorem 2.3
we express Fi(f,v) as in (2.27) and utilize estimates presented in (2.29), which without lost of
generality is assumed to be valid on [T, o). By combining (2.29) with (3.15) we obtain

Gi(t,o(t)) = O(¢p(t)?),  Hi(t,u(t)) =O(¢(t)?), t— 0. (3.16)
Also, since Q.(t) — 0 and v1(t) — 0 as t — oo, for large enough t we have that
sgn (Qc(t) + A1) =sgn Ay = sgn (Qc(t) +v1(t) + Aq). (3.17)
Thus, 1 1
k() = [A <]1 + Q;(f) T 1) — |y ((1 + Qf))l“ - 1>,

implying using (2.23) and (3.15)

b)) = (14 A7 Qelt) + 0(Qe(1?) = B1Qup(0) +O(p(1?),  1>T.  @18)
Using (3.16) and (3.18) in (2.26) we obtain
v1(t) = at® 1 /too sh—a-l {%@ ¢(s) + O(¢(s)2)}ds
= Qe [T lg(s)ds £ Olg(1?),  t2T,
from which, via integration by parts, it follows that

o) = Qo) +oUm) T O, =T, (319

where -
I = # g () s
t
Combining (3.15) and (3.19) we obtain
!

01() + Qc(t) = Qegp(t) +O(J(1) +O(p(t)?), =T,

0(—]41

which due to (3.17) gives
1

(A1 +o1(5) + Qe(H)** = A" + /\1(21—}!1) Qeg(t) +O(J (1) +0(9(t)),  t=T.

*

Therefore, the representation formula (2.20) for x;(t) becomes

x1(t) = (;)A{{* exp{ |21_’i:@ /Tt (P(Ss)ds} exp{/Tt [O(](SS)> + O(¢(§)2>]ds}. (3.20)
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Since O(¢(t)?/t) is integrable on [T, ) by (3.12) as well as O(J(t)/t) because

UL et [ sty e
= M s~ 5|’ (s)]ds < )|, t>T,
T t 9/(3)lds < L ')

1 *
the desired asymptotic formula (3.14) for x; € RV ()\1E ) follows from (3.20). This completes
the proof of Theorem 3.3. O

Theorem 3.4. Let ¢(t) be a positive continuously differentiable slowly varying function on [a,oo)
which decreases to 0 as t — oo, has the property that t|y'(t)| is slowly varying and satisfies

) ) 2
/ "’Ef)dt — o, / ‘P(f)dt < oo, (3.21)
Suppose that the function Q.(t) defined by (1.6) is eventually one-signed and satisfies
Q)] =¢(t) +O((1)*),  t—co. (322)

1
Then, equation (A) possesses a nontrivial regularly varying solution x,(t) of index A5 such that

1 1 t
xo(t) ~ cth? exp{)‘2 sgn QC/ lp(s)ds}, t — oo. (3.23)
X — i a S

for some constant ¢ > 0.

Proof. Suppose that the function Q.(t) defined by (1.6) is one-signed on [T, c0) for some T > a.
By (3.22) there is a constant ¥ > 1 such that |Q.(t)| < xi(t) for all large t. Consequently,
1

Theorem 2.4 ensures that (A) has a solution x € RV(A3) of the form (2.35), where v, (t) satisfies
(2.36) and the integral equation (2.40) with F(t,v) defined by (2.39). As in the proof of
Theorem 2.4 we express F»(t,v) as in (2.42) where Gy, Hy and k; stand, respectively, for G,
H; and k; in (2.28) with A; replaced with A;. As regards G, and H; exactly the same type
of estimates as (2.29) hold for all large t provided A; is replaced by A,, which together with
(2.36) gives

Go(t,va(t) = O(p(t)?),  Ha(t,va2(t)) = O(p(1)?),  t— 0. (3.24)

Moreover, as regards
1

ka(t) = (Aa+ Qo) e — AT,
from (2.36) it follows that

() = (141 )50 + 00D = 2 Gy O, 12T, G2
where (jc = sgn Q.. Using (3.24) and (3.25) in (2.40), we obtain

() — Qe 12 [ (5124 1p(s) + O (s)?)) ds

= Qe /Tt s lp(s)ds + O(p(1)?),  E=T.
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Since

o | oty (oyds = LU D) @y* — /TtS”z‘“|¢’<s>|ds,

T Ho — Ho — & U — &

it follows that

va(t) = —myi (x@ P(t) + O ) +0(J (1) +O(y(t)?),  t=T, (3.26)

where

t
J(t) = 17 [ syl (s) s,

Our final step is to show that (3.26) is crucial in determining the asymptotic behavior of x,(t)
given by (3.23). Employing (3.26), we find that

(A2 02() + Q1) = Af + A (0(8) + Qul) + O((0(8) + Q1))
—
=M =L Q9 + O )+ O(J(1) + OW(E?), =T,

which, substituted for (2.35), shows that x;(t) is expressed as

19

xp(t) = (;)Az}l exp{—:f_(xsgn Qc /Tt 1’025)515}
X exp{/; [O(s“ml) + O(J(:)> —|—O<¢(SS)2>]EZS}.

The integrability of O(y(t)?/t) on [T, o) follows from assumption (3.21), while the integrabil-
ity of O(t*~#271) is obvious since & — pp < 0. Finally, the integrability of O(J(t)/t) on [T, o)
follows from the relation

(3.27)

JOL__te s [ greecrgly R
= 2 Ha—o ds < — "= )], t>T,
= S )lds < s ol ez

which is a consequence of the Karamata integration theorem. Therefore,
t 2
x—pr—1 ](S> ¢(5> ~
exp{/T[O(s )+o(s )+o( . )ds C>0, t—o,

1
implying from (3.27) the precise asymptotic formula (3.23) for x, € RV(AS). The proof of
Theorem 3.4 has thus been completed. O
4 Examples and concluding remarks

We now present some examples illustrating our main results and showing that our results
extend and improve results obtained in [7,11].
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Example 4.1. Consider the half-linear differential equation

I N, P _ o o 0% A B
(1 *sgn )+ () sf'sgn x =0, 1(0) = sty (14 ooy * o7 ) )

on [1,00), where 6 € (0, %), A and B are constants. Put

(t) — L
o) = (log t)x(1-0)"

An easy calculation shows that

0=~ (20Y <0 (£2)"™), forattage 151,

t[X

and so integrating the above from t to co and multiplying with t*, we see that
Q(t) = ¢(t) + O(p(t)'*+) forall large £ > 1, (4.1)

implying that Q(t) is eventually positive. Moreover, because of 8 € (0, 1), it holds that

~9(s): T /mwwi B
/ 5 ds = s(logs)l—eds = 0o, 5 ds = s(og s 210 ds < co.

Thus all the hypotheses of Theorem 3.1 are fulfilled for equation (E;), and so there exists a
nontrivial SV-solution x; () of (E;) having the precise asymptotic behavior

x1(t) ~ cexp{/lt (P(z);ds} =c exp{/lt s(loges)l—Gds} = cexp((logt)?), t— oo,

for some ¢ > 0.

Note that if in particular A = —6 and B = 1 — 6, (E;) has an exact SV-solution x(t) =
exp((logt)?).

It should be noticed that if a < 1, then (4.1) implies Q(t) = ¢(t) + O(¢(t)?) as t — oo.
Also, if 8 € (0,1 — 5-) condition (3.5) of Theorem 3.2 is satisfied with 9(t) = ¢(t). Thus,
Theorem 3.2 is applicable to (E;) and ensures the existence of its nontrivial RV(1)-solution
x(t) with the precise asymptotic behavior

[\

0
x2<t) ~ Cztexp<m (logt)lfﬂé(lfe))’ } — o0.

for some constant ¢; > 0.

Example 4.2. Consider the half-linear equation

T N/ a . _ o A B 7
(1¥1*sgn ) + 420 l'sgnx =0, 02(8) =~ o (1 1oy + oz ) (B

on [1,00), where A > 0, B > 0 and vy are constants. Putting (t) = 1/ logt, it is shown that

72(t) = (l[ﬁf)) +O<1’lt)£i)12) for all large t,
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from which we see that

Q) = —p() +O(p(t)*),  t— oo, (4.2)

and Q(t) is eventually negative. Since () satisfies

/OO lp(tt)dt - /OO tlifgt - /oo lp(tt)zdt: /°° t<1:;f>2 =

applying Theorem 3.2 to equation (E;), we conclude that (E;) possesses a nontrivial RV(1)-
solution x;(t) with the precise asymptotic behavior

t t
xp(t) ~ ctexp{/ ll]is)ds} = ctexp{/ slisgsds} = ctlogt, t — oo.
1 1

Note that if in particular A =1, B = 0 and v = a — 1, then (E;) has an exact RV(1)-solution
x(t) = tlogt.

We remark that if « € (1,2), then (4.2) implies Q(t) = —y(t) + O(lp(t)l+%) as t — oo.
Since () satisfies

_2
o

/Oo l”(?}“dt - /OO (log:)i dt = oo, /OO l”f)idt — /Oo (log:> dt < oo,

it follows from Theorem 3.1 (with ¢(t) = (t)) that (E;) admits a nontrivial SV-solution x1(t)

such that
o

11—«

x1(t) ~ 1 exp( (log t)aa;l>, t — oo.
for some constant ¢; > 0.

Example 4.3. Consider the half-linear equation

N3y 3 _ _ 6 1 2 3 A
(()7) +ast)x” =0, 93(t) = t4 (1+logt> <1+210gt+ (logt)2>' (Ea)

on [1,00), where A is a constant. As is easily checked, g3(t) satisfies

3 [ _ 7 1
t/t g3(s)ds +2 = logt+o (log )2

for all large ¢, which implies that the hypotheses of Theorems 3.3 and 3.4 are fulfilled with the
choice

7

n =3, c= -2, 4)(t) = lP(t) = @/

while Q(t) is eventually negative. We need to find the two real roots of the equation A3 —
A —2 = 0. Its smaller root is Ay = —1, while the approximate value of the larger root is

1,
Ay =~ 3.67857. Since A = —1 and p; = —4, by Theorem 3.3 equation (E3) possesses a
nontrivial RV(-1)-solution x; () with the asymptotic behavior

1 bods o
x1(t) ~ c1t” " exp —/1 STogs :tlogt' t — oo,

for some constant ¢; > 0. If in particular A = 1, then (E3) has an exact RV(-1)-solution
x(t) =1/tlogt.
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1
From Theorem 3.4, noting that y, = 4A;, it follows that equation (E3) also possesses a

1
nontrivial RV (A )-solution x;(f) such that

2
1 A*§ t 1
x2(t) ~ ¢ A1 exp{—2/ lp(s)ds} ~ czt)L23 (logt)™, t — oo,
3—u2J1 s
1 2 _
for some constant ¢; > 0, where A] ~ 1.54369 and 1, = 7(4A; — 313) !~ 0.925269.

Example 4.4. Consider the half-linear equation

(I%'|2sgn x') + qa(t)|x|2sgn x = 0, (E4)

5 _3 9 a 9 A
_ 2,3 >
94(t) 27t 2<1+410gt> <1+2010gt+ (10gt)2>' t21,

where A is a constant. A simple calculation shows that g4 () satisfies

o0 10 1 1
/t q4(s)d5_27__410gt+o((logt)2>' oo

and this confirms that the hypotheses of Theorems 3.3 and 3.4 are fulfilled with the choice

N—=

N=

t

i=3  e=g GO =90 = o
2 =g =Y ~ 4logt’

and Qc(t) is eventually negative. The equation |[A|> — A + 3¢ = 0 has two real roots A; =

1
@ < % = A2. Noting that A3 T= % and & — pp = —%, one can assert from Theorem 3.4 that
there exists a nontrivial RV(3)-solution x;(t) with the asymptotic behavior

t
xp(t) ~ cztg exp{4/ ll]<ssws} = Czt% logt, t — oo,
1

for some constant c; > 0. If A = 0, then (E;) has an exact RV(%)—solution x(t) = ts log t.
On the other hand, by application of Theorem 3.3 there exists a nontrivial regularly varying
solution x; (t) of index A? enjoying the asymptotic behavior

x1(t) ~ eithi(logt)”,  t— oo,
for some constant ¢; > 0, where

2 7-2V6 M 4+6
1— .

9 T o@ao) 8

Concluding remarks
(1) In this paper the equation (A) in which g(t) satisfies condition (1.4) with ¢ = E(«), i.e.,

. N [e] _ (Xﬂé
lim ¢ /t q(s)ds = R 4.3)

t—o0

has been excluded. It should be noted that equation (A) may be oscillatory or nonoscillatory
depending on the choice of g(t) satisfying (4.3) (see e.g. the paper [8]). Such equations are
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often said to be in the border case. Since in this case the equation [A|"*+ — A + E(a) = 0 has
the only one real root (;47)", the regularity index of regularly varying solutions of (A), if
exists, must be equal to ;5. In [5] a sufficient condition is presented for equation (A) in the
border case possesses a trivial regularly varying solution of index 7. It would be of interest
to answer the question: Is it possible to find conditions under which equation (A) in the
border case possesses nontrivial RV(;%7)-solutions and to determine their precise asymptotic

behavior as t — o0?

(2) In the paper [6] an attempt is made to generalize the results for (A) obtained in [5] to
the half-linear differential equations of the form

(p(t)]x'|*sgn x")" + q(t)|x|*sgn x = 0, (4.4)

where & > 0 is a constant and p(t) > 0, q(t) are continuous functions on [a,c0). Naturally
the qualitative properties of positive solutions of (4.4) depend heavily on the coefficient p(t).
In order to precisely describe the effect of the function p(t) upon the behavior of positive
solutions of (4.4) the authors of [6] used the class of generalized Karamata functions, introduced
in [4], as the framework for the asymptotic analysis of (4.4), and demonstrate how to build
in the new framework the existence theory of generalized Karamata solutions for (4.4) which
extends the results on regularly varying solutions of (A) developed in [5]. It is expected
that one can possibly indicate a class of equations of the form (4.4) possessing generalized
Karamata solutions whose asymptotic behaviors at infinity are determined accurately and
explicitly.

Appendix: Regularly varying functions

Definition 4.5. A measurable function f : [0,00) — (0,00) is called regularly varying of index
p € Rif

lim f(M) = AP forall A >0.

t—o0 f(t)

The set of all regularly varying functions of index p is denoted by RV(p). The symbol SV
is often used to denote RV(0), in which case members of SV are called slowly varying functions.
Since any function f(t) € RV(p) is expressed as f(t) = t°g(t) with g(t) € SV, the class SV of
slowly varying functions is of fundamental importance in the theory of regular variation.

Definition 4.6. If f € RV(p) has the property that
0

m ——= = const > 0,
t—oo P

then it is called a trivial regularly varying function of index p and is denoted by f € tr-RV(p).
Otherwise f(f) is called a nontrivial regularly varying solution of index p and is denoted by f €
ntr-RV(p).

One of the most important properties of regularly varying functions is the following rep-
resentation theorem.

Proposition 4.7. f(t) € RV(p) if and only if f(t) is represented in the form

£t = C(t)exp{/t: (S(S)ds}, E> to, (A1)

S
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for some ty > 0 and for some measurable functions c(t) and 6(t) such that
tlgglo c(t) =co € (0,00) and tlg(r}o 5(t) = p.

If in particular c(t) = ¢p in (A.1), then f(t) is said to be a normalized regularly varying
function of index p.

Typical examples of slowly varying functions are: all functions tending to some positive
constants as t — oo,

N

N
H(logn t)“n’ D‘n € R/ and exp{l—[(logn t)‘Bn }I ﬁn € (011)1
n=1

n=1
where log, t denotes the n-th iteration of the logarithm. It is known that the functions

L(t) =2+sin(log,t), n>2, and M(t) = exp{(log t)? cos (log t)e}, RS (0, ;),

are slowly varying. They are oscillating in the sense that

limsup L(t) =3 and li¥ninfL(t) =1,
—00

t—o0

and
limsup M(t) = o0 and li{ninfM(t) = 0.
—00

t—o0
It should be noted that 2 + sint and 2 + sin(log t) are not slowly varying.
The following result illustrates operations which preserve slowly variation.

Proposition 4.8. Let L(t), L1(t) and Ly(t) be slowly varying. Then, L(t)* for any « € R, L1 (t) +
Lo(t), L1 (t)La(t) and Li(Lp(t)) (if Ly(t) — o) are slowly varying.

The operations given in the above proposition preserve regular variation in the following
sense.

Proposition 4.9. Let f(t), f1(t) and f,(t) be reqularly varying of indices p, p1 and py, respectively.
Then, for any « € R f(t)* is reqularly varying of index ap, f1(t) + f2(t) is regularly varying of index

max{p1, 2}, fi1(t)f2(t) is regqularly varying of index p1 + p2 and f1(f2(t)) is reqularly varying of
index p102 provided lim;_,« fo(t) = .

A slowly varying function may grow to infinity or decay to 0 as t — co. But its order of
growth or decay is severely limited as is shown in the following

Proposition 4.10. Let L € SV. Then, for any € > 0,

lim t°L(t) = oo, tlim t°L(t) = 0.
— 00

t—o0

It can be shown that any regularly varying function of non-zero index is asymptotic to a
monotone regularly varying function of the same index.

Proposition 4.11. Let f € RV(p).
(i) If p > 0, then

sup{f(s) :to <s <t} ~ f(t), inf{f(s) :s >t} ~ f(¢), t— oo.
(ii) If p < 0, then
sup{f(s) :s >t} ~ f(t), inf{f(s):tg <s <t} ~ f(t), t — oo.
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The following result called Karamata’s integration theorem is of highest importance in
handling slowly and regularly varying functions analytically.

Proposition 4.12. Let L(t) € SV. Then,
(i) ifa > —1,

£ 1
/a SLEs ~ L, to oo

(ii) if a < —1,

[o¢] 1
“L(s)ds ~ ———t*TIL(t),  t— oo
/t s*L(s)ds 1 (1) o

(iii) if & = —1,

L) Ly
I(f) = / S €SV and Jim 1o =0,
m(t) = / —L(S)ds €SV, and lim L) = 0.
tS t—voo (1)

Here in defining m(t) it is assumed that L(t)/t is integrable on a neighborhood of infinity.

For the almost complete exposition of theory of regular variation and its applications the
reader is referred to the treatise of Bingham et al. [1]. See also Seneta [12]. A comprehensive
survey of results up to the year 2000 on the asymptotic analysis of second order ordinary dif-
ferential equations by means of regular variation can be found in the monograph of Mari¢ [9].
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