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Abstract. In this paper we consider unbounded solutions of perturbed convolution
Volterra summation equations. The equations studied are asymptotically sublinear, in
the sense that the state-dependence in the summation is of smaller than linear order
for large absolute values of the state. When the perturbation term is unbounded, it is
elementary to show that solutions are also. The main results of the paper are mostly of
the following form: the solution has an additional unboundedness property U if and
only if the perturbation has property U. Examples of property U include monotone
growth, monotone growth with fluctuation, fluctuation on R without growth, existence
of time averages. We also study the connection between the times at which the pertur-
bation and solution reach their running maximum, and the connection between the size
of signed and unsigned running maxima of the solution and forcing term.
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1 Introduction

In this paper we determine conditions under which the solutions of a forced Volterra summa-
tion equation of the form

x(n + 1) = H(n + 1) +
n

∑
j=0

k(n− j) f (x(j)), n ≥ 0. (1.1)

have bounded and unbounded solutions. It is assumed that f (x) = o(x) as |x| → ∞ and k
is summable. These properties of f and k ensures the boundedness of the Volterra equation
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under moderate disturbances in the system: in fact, we show that x is unbounded if and
only if the external force H is. Once that has been done, the bulk of the paper is devoted to
exploring refinements of these unboundedness results. Generally speaking, we find that if H
has an additional unboundedness property U, then x inherits property U. In many cases, the
converse is also true.

In this sense, our results are related to the theory of admissibility for Volterra summation
equations (cf. Baker and Song [28, 29], Reynolds [26], Reynolds and Győri [19, 20], Győri,
Horváth [17, 18] and Awwad and Győri [16]) and Volterra integral equations (see e.g., [3, 6]
inspired by work of Perron [25] and Corduneanu [10]). In many of the discrete papers the
theme of research is often (but certainly not exclusively) to consider the following problem

x(n) = H(n) + (Vx)(n), n ≥ 0

where V is a linear Volterra operator and H is an Rp-valued sequence. The solution x is a
sequence in Rp. The form of V is

(Vg)(n) :=
n

∑
j=0

K(n, j)g(j) =: (K ? g)(n), n ≥ 0

for any g : Z+ → Rp, where K is fixed and K : Z+ ×Z+ → Rp×p. If the operator V (or
equivalently, the matrix K) has the appropriate properties, and H is a sequence with a nice
asymptotic property characterised by a sequence space N, x will lie in the space N. In such
situations, it will be the case that g 7→ K ? g takes N to N and we say that the mapping has an
admissibility property. Sometimes, it can even happen that properties of x may be enhanced.

Much effort has gone into investigating nice spaces N, such as bounded, convergent, pe-
riodic, or `q spaces of sequences. Instead, the results in this paper have a rather different
flavour, as the types of external force H are either highly irregular (for example stochastic) or
are unbounded or growing. One consequence of this is that it becomes reasonable to track
new types of property, such as the the size of the largest fluctuations to date (both positive,
negative, and in absolute terms), the times at which sequences H and x reach their maximum
value to date, growth rates and growth bounds, or indeed time averages of functions of the
sequences (which may be finite even though those sequences are unbounded). Therefore, in a
sense, our results are of greater applicability in economics or finance, rather than engineering,
because disturbances to the system are less likely to be regular or bounded in applications
in the former disciplines, while in engineering, we cannot expect good performance if distur-
bances are irregular or unbounded.

Incidentally, we note if f is linear, and H is in the class of stationary ARMA processes,
then x is a stationary process provided the equation without noise is stable. The statistical
behaviour of such linear models is well known, and therefore is expressly not the subject
of this work; however, path properties are less well understood, and in a parallel work we
explore the properties of (1.1) using the same framework as in the present paper. Once again,
we observe the pattern of this paper that the unboundedness property U of the external force
H transmits to the solution x, and indeed, owing to the linearity of the problem the connection
with the above-cited works on admissibility is more tangible: indeed, to a certain degree our
contribution in the linear case is merely to identify nice spaces, and then to check by direct
calculation, or by appeal to the general theory, that admissibility properties hold. In this
work and its linear counterpart, we have focused on the convolution equation with a view
towards applications and statistical inference: in this we merely adopt the time-honoured
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ceteris paribus perspective of the economist in trying to keep the structure of the model time-
independent (apart from possible external shocks), and the desire of the statistician to consider
models with time-invariant statistical properties. These constraints, which are purely driven
by applications, lead us to study the (asymptotically) autonomous convolution operator in
(1.1). However, nothing prevents the results in this paper, as well as the convolutional linear
case, being developed for non-convolution Volterra equations, nor indeed the extension of the
analysis to deal with the general p-dimensional case. Notwithstanding this, we feel that a
substantial challenge has already been met by analysing successfully the scalar case.

Some of our results require the sequence H to be stochastic, but not all do. However,
most of our results are inspired by a unspoken assumption that H could be stochastic, and
that interesting properties of random processes can be assumed about H. For this reason,
we sometimes talk about H as though it could be stochastic, and motivate our results by
appealing to intuition about stochastic processes: therefore we freely use terminology like
“shock”, “noise” and “stochastic process” when talking about H. In our precise mathematical
results, though, H can be irregular or unbounded, but deterministic (i.e., H could be a chaotic
sequence), and our arguments would still be valid. In this sense, our analysis asks how
the system modelled by the Volterra equation adjusts to shocks with certain characteristics,
irrespective of whether they are stochastic or not.

We first show that H is unbounded, the maxima of |H| and |x| grow at the same rate, so
that

lim
n→∞

max0≤j≤n |x(j)|
max1≤j≤n |H(j)| = 1,

This shows that shocks to the system, or growth from an external source, are not amplified
nor damped by the system. However, it does not yet show whether unbounded fluctuations
or growth in H give rise to fluctuations or growth in x, but merely that the absolute size of the
running maxima grow at the same rate. We also prove that the largest absolute fluctuations
in H to-date cause those in x. We do this by studying the the times tx

n and tH
n at which of

the largest absolute fluctuations in x and H up to time n occur, and show for example that
|x(tx

n)|/|H(tx
n)| → 1 and |H(tx

n)|/|H(tH
n )| → 1 as n → ∞. Our analysis to prove these results,

and almost all others, is embarrassingly elementary and hinges mostly on careful analysis
of the running maximum of sequences. Indeed, it is not unreasonable to state that almost
all the analysis involves little more than taking maxima on both sides of (1.1), or obvious
rearrangements of (1.1) and parts thereof.

It should be noted that the unboundedness of the sequences as described by these results
does not make an assumption about whether H grows or fluctuates. We show that essentially
monotone growth in the forcing term H produces monotone growth in x, and that x is asymp-
totic to H; if the growth in H is non-monotone, but a monotone trend about which H grows
can be identified, x inherits this property also. We also study what happens when H has
large positive or large negative fluctuations. The main result shows that the dominating large
fluctuations (positive or negative) in H produce large positive or large negative fluctuations in
x of the same order of magnitude as those in H. It is also shown that when the large positive
and negative fluctuations of H are of the same order of magnitude, then x has both large
positive and negative fluctuations, and these follow the asymptotic growth of the respective
fluctuations in H.

Our first main results about absolute fluctuations show that

max
1≤j≤n

|x(j)| ∼ max
1≤j≤n

|H(j)|, as n→ ∞,
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so in order to understand the growth in the partial maximum of x, it is necessary to deter-
mine the growth rate of maxj≤n |H(j)|. However, it is more straightforward, especially in
the case when H is an independent and identically distributed (iid) sequence, to try to find
a deterministic sequence a(n) which is increasing at the same rate as H in absolute value
terms. This is true because the Borel–Cantelli lemmas will only yield upper bounds for the
growth in the maximum, while they can give upper and lower bounds in the iid case when
the auxiliary sequence a is introduced. In order to be of greater use for stochastic systems,
we therefore prove that, for general sequences if lim supn→∞ |H(n)|/a(n) = ρ ∈ [0, ∞] then
lim supn→∞ |x(n)|/a(n) = ρ. This general result does not employ stochastic arguments.

The final results examine the boundedness of time averages of the same function ϕ of H
and x and how they are related even though the sequences H (and therefore x) are tacitly
assumed to be unbounded (it is trivially the case that time averages of any well-behaved
function of H and x will be finite if both sequences are bounded). In particular, we show the
equivalence of these “ϕ-moments” of H and x in the case where ϕ is an increasing and convex
function. This covers important examples such as the finiteness of time averages, variances,
skewness, and kurtosis for example (by taking ϕ(x) = xp for p = 1, 2, 3, 4). However, for
“thin tailed” distributions, such as Gaussian distributions, we can consider non-power convex
functions. The parameterised family ϕ(x) = eax2

for a > 0 is useful in the Gaussian case, for
instance.

2 Mathematical preliminaries

2.1 Notation and assumptions on data

We now give the equation we study and impose hypotheses on the data. Suppose

f ∈ C(R; R) (2.1)

with

lim
|x|→∞

f (x)
x

= 0, (2.2)

and that k = (k(n))n≥0 is a sequence with

k ∈ l1(N). (2.3)

We find it useful to define

|k|1 :=
∞

∑
j=0
|k(j)| < +∞. (2.4)

Let (H(n))n≥1 be a real sequence and let (x(n))n≥0 be another real sequence uniquely de-
fined by

x(n + 1) = H(n + 1) +
n

∑
j=0

k(n− j) f (x(j)), n ≥ 0, x(0) = ξ ∈ R. (2.5)

We introduce the notation

H∗(n) : = max
1≤j≤n

|H(j)|. (2.6)
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We also define

x∗(n) : = max
0≤j≤n

|x(j)|. (2.7)

The times to date at which these sequences reach their running maximums are also of interest,
are denoted by tx

n, tH
n ∈ 0, . . . , n, and defined by

|x(tx
n)| = max

0≤j≤n
|x(j)| (2.8)

|H(tH
n )| = max

1≤j≤n
|H(j)|. (2.9)

We are generally interested in the behaviour of the solution x of (2.5) when x becomes large
(in absolute value terms), as when this happens, the solution is undergoing a large fluctuation
of growth. We assume that f is nonlinear, and are therefore particularly interested in the
behaviour of f (x) for large |x|. We assume that the impact of the past is of smaller that linear
order for large x; the other extreme would be to consider when f (x)/x → ±∞ as x → ±∞,
which we do not do here. The assumption that f is sublinear in the sense of (2.2) achieves
this. One of the effects of this assumption (2.2) is that the equation (2.5) will be quite stable
with respect to moderate disturbances. This is attractive, because this is not always the case if
f is linear or obeys f (x)/x → ∞ as x → ∞.

2.2 Time indexing in the Volterra equation

Before listing and discussing the main results, we stop to comment on the time indexing used
in (2.5). Many authors choose to write

x(n + 1) = H(n) +
n

∑
j=0

k(n− j) f (x(j)), n ≥ 0 (2.10)

or even study the equation

x(n) = H(n) +
n

∑
j=0

k(n− j) f (x(j)), n ≥ 0 (2.11)

(especially in the case that f (x) = x, and impose a solvability condition in order to ensure the
existence of a solution of (2.11)). We prefer to express the equation in the form (2.5), however,
for a technical reason related to the situation when H is a stochastic process, and also from
the perspective of viewing (2.5) as modelling an economic system in which agents can observe
the state of the system x up to the current time n, but cannot know the future values of the
system {x(j) : j ≥ n + 1} with certainty, owing to the randomness in H.

The appropriate probabilistic formulation of (2.5) in the case that H is a stochastic pro-
cess is the following, and we will adopt this formulation. Let (Ω,F , (F (n))n≥0, P) be an
extended probability triple. We suppose that (F (n))n≥0 is a filtration (an increasing sequence
of σ-algebras) with F ⊃ F (n) for each n ≥ 0 and F (n+ 1) ⊃ F (n) for n ≥ 0. We suppose that
H(n) is F (n)-measurable for n ≥ 1; the process H is then said to be adapted to the filtration
(F (n))n≥0, or adapted for short.

Remembering that F (n) represents the information available about the system at time n,
and granted the assumption (2.1) that f is continuous and k is deterministic, then in equation
(2.5), x(n) is F (n)-measurable for each n ≥ 1, so x is adapted. Therefore, the value of
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x(n + 1) is not known with certainty at time n, but is at time n + 1, as soon as H(n + 1)
has been observed. In the formulation (2.10), however, if we still suppose that H(n) is F (n)-
measurable, then x(n + 1) is known with certainty at time n. A process with this property
is called previsible or predictable, and typically we would not wish to assume a priori in a
discrete-time economic model that a publicly visible state of the system (such as a stock price,
interest rate, or important economic indicator) could be predicted with certainty one time-step
ahead by agents possessing only publicly available information. Therefore, for such economic
models (2.5) is preferable to (2.10).

The equation (2.11) shares with (2.5) advantageous adaptedness properties, provided

for every y ∈ R there is x ∈ R such that x− k(0) f (x) = y. (2.12)

If (2.12) holds, then there exists an adapted process x satisfying (2.11). The process is unique
if there is a unique solution to the nonlinear equation in (2.12) for each y ∈ R. This is
certainly true for all |y| sufficiently large, under the sublinearity hypothesis (2.2). However, we
slightly prefer the formulation (2.5) from a modelling perspective, as the summation term can
represent the impact of agents on the system at time n + 1, based on actions they make using
any subset of publicly available information up to time n. In (2.11), the value of the system at
time n appears both in the summation term (which we view as including information causing
the future value of the output x) and as “output” itself at time n. While this does not violate
causality in the model, it does impose on the system the additional mathematical constraint
(2.12) as well as its economic interpretation. In the meta-model we describe, (2.12) amounts
to agents instantaneously solving nonlinear equations which may involve the actions of other
agents at the same instant. We can, and do, avoid such problems by studying (2.5) instead.

2.3 Motivation from economics

We do not have any particular economic model in mind in formulating this equation, but
merely try to capture interesting dynamical effects which seem to us to arise in economics,
although we mention three situations where equations of the type (2.5) may be germane. Our
general question is: if we have a system which, although small, is relatively robust (in being
able to handle moderate shocks), how does that system react to strong shocks or strong and
persistent external forces? Do the shocks persist, or fade rapidly? How does the system
adjust to persistent and possibly positive changes in the external environment? How does
the memory that the system has of its own past effect the transmission of the external forces
through the system over time? We are also interested in tracking quantities and time at
which the solution reaches its maximum to date: such times and quantities are thought be
investigators to be of psychological importance to agents.

With these questions in mind, the structure of (2.5) becomes more apparent. The state of
the (small) system at time n is x(n). The external force or shock at time n is H(n). Although
the form of (2.5) does not preclude that H(n + 1) can be a function of x at past states, it is
tacit in our formulation that H(n + 1) is independent of {x(j) : j ≤ n}. Therefore, while H
influences x, x does not influence H. In this sense, we view x as modelling a “small” system:
the external environment influences the system, but the influence of the system on the external
environment is small (and modelled as being absent).

Another interpretation of H is that it models the effect of “news” or hard-to-model external
effects on the system. This is a common feature in autoregressive time series models, for
instance: the system adjusts according to the previous values of the system, and is in addition,
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subjected to a stochastic shock which cannot be predicted with certainty based on the past
states of the system.

The Volterra term has the following interpretation: as usual for Volterra equations, we take
the view that all past terms have an effect on the system, but that terms in the distant past
have a vanishing impact (so k ∈ `1(N)). The sublinearity in f makes the system very robust
to moderate shocks, as demonstrated by Theorem 3.1 below. This is true without making any
assumption on the size of k: in contrast, in the linear case, restrictions on k would be necessary
in order for solutions to remain bounded for all bounded H. Of course, if the state is an asset
price or income, the system’s smallness and sublinearity in f is a disadvantage: it is unable to
grow unboundedly by its own means (or exhibit so-called endogeneous growth). We remark
in passing that if one desires endogeneous growth in the unperturbed system, this can be
achieved by considering the difference-summation equation

x(n + 1)− x(n) =
n

∑
j=0

k(n− j) f (x(j)), n ≥ 0, (2.13)

If we still assume that k ∈ `1(N), f is sublinear in the sense of (2.2), and f : (0, ∞) → (0, ∞)

and k is non-negative, then all solutions of (2.13) with positive initial condition grow to infinity
at a rate determined by f . A continuous analogue of (2.13) with these positivity assumptions
is considered in [8].

Some existing economic models take the form of (2.5) or are closely related to it. In
the classic dynamic linear multidimensional Leontief input–output model (see e.g, [23, 24]),
H is the final demand, and x the output, and the Volterra term is so-called intermediate
demand. The sublinearity assumption means that the (one-commodity) economy exhibits
diminishing marginal returns to scale. The presence of time lags signifies that production can
take many time steps to enter the final demand. Early examples of nonlinear input–output
models include [14, 27].

We can think of the model in terms of an inefficient market for an asset, where new signals
about the price arrive H(n + 1) which drive the price, but the agents use past information
about the price to determine their demand, and this also has an impact on the price. The
sublinearity in this instance suggests that the traders become conservative in their net demand,
relative to the price level, when the market is far from equilibrium. Our results suggest that
large shocks to the price transmit quickly to the system in that case, despite the fact that
the traders may use a lot of information about the past of the system. Models of this type
include [1, 2, 4, 9].

Our model also takes inspiration from the important class of (linear) autoregressive mod-
els. The class of ARMA(p, q) models (see e.g., [13]), for instance, have the form

x(n + 1) = H(n + 1) +
n

∑
j=n−p

k(n− j)x(j)

where H is a stationary process which has non-trivial autocorrelation at q ∈ Z+ time lags
(i.e., Cov(H(n), H(n + q)) 6= 0 for all n ≥ 0), and trivial autocorrelations for time lags greater
than q (i.e., Cov(H(n), H(n + k)) = 0 for all n ≥ 0 and k > q). In this case, the equation has
bounded memory of the previous p values of the state.

However so-called AR(∞) models are also considered, in which the entire history of the
process is important. One motivation to do this is to introduce so-called long range depen-
dence or long memory into the system. Classic papers finding evidence for slow decay in
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correlations in tree-ring data series, wheat market prices, stock market and foreign exchange
returns are Baillie [11] and Ding and Granger [15]). Mathematical models in economics based
on AR(∞) processes have been developed. For instance, Kirman and Teyssière [21,22] develop
a time series model which arises from a market composed trend following and value investors
which possesses long memory characteristics in the differenced log returns of price processes
associated with these models. Appleby and Krol [7] analyse the long memory properties of
a linear stochastic Volterra equation in both continuous and discrete time, with conditions
for both subexponential rates of decay and arbitrarily slow decay rates in the autocovariance
function being characterised in terms of the decay of the kernel of the Volterra equation. A
continuous-time infinite history financial market model is discussed in Anh et al. [1,2], which
generalises the classic Black-Scholes model, and exhibits long memory properties. All these
papers study equations closely related to the classic AR(∞) model:

x(n + 1) = H(n + 1) +
n

∑
j=−∞

k(n− j)x(j), n ∈ Z.

If one chooses to subsume the history of the process up to time n = 0 in the forcing term, and
further assume (for example) that {x(n) : n ≤ 0} is bounded, then the sequence

H̃(n + 1) := H(n + 1) +
−1

∑
j=−∞

k(n− j)x(j), n ≥ 0

is well-defined and we have

x(n + 1) = H̃(n + 1) +
n

∑
j=0

k(n− j)x(j), n ≥ 0,

which is in the form of (2.5) with f (x) = x. Furthermore, if the history of x is bounded,
H̃(n) − H(n) is bounded, so the unboundedness properties of the adjusted perturbation H̃
and the original perturbation H are the same.

We remark that stationarity in H in these linear models does not necessarily entail station-
arity in x: in the case of the ARMA(p, q) model for example, it relies on the `1-stability of the
resolvent

r(n + 1) =
n

∑
j=n−p

k(n− j)r(j), n ≥ 0; r(0) = 1; r(n) = 0 n < 0,

which is equivalent to all the zeros of the polynomial equation

zp+1 =
p

∑
l=0

k(l)zp−l

lying in {z ∈ C : |z| < 1}. Although we have not proven it in this paper, we conjecture that
stationarity in H in (2.5) implies asymptotic stationarity in x in (2.5). Such a result would be
in line with other results we observe here, namely that an unboundedness property U in H is
inherited by x.

3 Main results

In this section we list and discuss the main results of the paper. Proofs are largely postponed
to the end.
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3.1 Bounded and unbounded solutions

Our first main result shows that if H is a bounded sequence, then so is x, but that if H is
unbounded, x must be also.

Theorem 3.1. Suppose that f obeys (2.1) and (2.2), that k obeys (2.3) and that x is the solution of
(2.5). Define H∗ and x∗ as in (2.6) and (2.7).

(a) If limn→∞ H∗(n) ∈ [0, ∞), then limn→∞ x∗(n) ∈ [0, ∞).

(b) If limn→∞ H∗(n) = +∞, then limn→∞ x∗(n) = +∞.

3.2 Growth rates in the partial maximum

Theorem 3.1 shows that solutions of (2.5) are bounded if and only if H is bounded. We have
already noted (for growth arising from dynamic input–output models, or for unbounded
shocks that would result in a time series model if H were a stationary process) that for the
applications we have mentioned, it is more natural to consider unbounded H. In this case
limn→∞ H∗(n) = +∞ and therefore limn→∞ x∗(n) = +∞.

It is now a natural question to ask: if H∗(n) → ∞ as n → ∞, how rapidly will x∗(n) → ∞
as n → ∞? Our first result in this section shows that both maxima grow at the same rate.
We also study the relationship between the times at which |x| and |H| reach their running
maxima.

Theorem 3.2. Suppose f obeys (2.1) and (2.2) and k obeys (2.3). Suppose that x obeys (2.5) and that
H obeys limn→∞ H∗(n) = +∞.

(i) limn→+∞ max0≤j≤n |x(j)| = ∞ and

lim
n→+∞

max0≤j≤n |x(j)|
max1≤j≤n |H(j)| = 1.

(ii) Let tH be defined by (2.9), and tx defined by (2.8). Then

(a)

lim
n→+∞

∣∣x(tH
n )
∣∣

|H(tH
n )|

= 1, lim
n→+∞

|x(tx
n)|

|x(tH
n )|

= 1.

(b)

lim
n→+∞

|x(tx
n)|

|H(tx
n)|

= 1, lim
n→+∞

|H(tx
n)|

|H(tH
n )|

= 1.

In advance of proving Theorem 3.2, we now provide an interpretation of its conclusions.
If we suppose that H fluctuates such that

max
1≤j≤n

H(j)→ ∞ and min
1≤j≤n

H(j)→ −∞, as n→ ∞,

we see that part (i) implies that the order of magnitude of the large fluctuations in x is precisely
that of the large fluctuations in H.

The first limit in part (ii)(a) states that at the time to date (for large times) at which H
reaches its maximum, x is of the same order. Moreover, the second limit says that if one con-
siders the epoch {0, . . . , n}, the largest fluctuation of x is of the same order as the magnitude
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of x at the time of the largest fluctuation of H. In other words, a fluctuation of the order of the
biggest fluctuation in x is “caused” at the time of the largest fluctuation in H, so, the largest
fluctuations in H transmit rapidly into the largest fluctuations in x.

Turning to the first limit in part (b), we see that on the epoch {0, . . . , n}, if the largest
fluctuation in x is recorded, the level of H at that time is of the order of the largest fluctuation
in x. Furthermore, the level of H at that time is asymptotic to the largest fluctuation in H
over the epoch {0, . . . , n}. This means that if the largest fluctuation to date in the process x is
observed at a specific time, then this is caused by a large fluctuation in H at that time and this
fluctuation in H is of the order of the largest fluctuation in H recorded to date. To summarise
briefly, if we observe the largest fluctuation to date in x, it has essentially been caused by the
largest fluctuation in H to date, which occurred at that time.

3.3 Growth rates

Theorem 3.2 shows that if H is unbounded, then so is x, and their absolute maxima grow
at the same rate. However, what we do not know at this point is whether growth in H will
produce growth in x, and whether fluctuations in H will produce fluctuations in x. In this
section, we show that “regular” growth in H (in a sense that we make precise) gives rise to
regular growth in x, and indeed that such regular growth in x is possible only if H grows
regularly.

Theorem 3.3. Suppose f obeys (2.1) and (2.2), k obeys (2.3) and that x is the solution of (2.5).

(i) The following statements are equivalent:

(a) H(n) is asymptotic to an increasing sequence and H(n)→ ∞ as n→ ∞.

(b) x(n) is asymptotic to an increasing sequence and x(n)→ ∞ as→ ∞.

Moreover, both statements imply that limn→∞ x(n)/H(n) = 1.

(ii) The following statements are equivalent:

(a) H(n) is asymptotic to a decreasing sequence and H(n)→ −∞ as n→ ∞.

(b) x(n) is asymptotic to a decreasing sequence and x(n)→ −∞ as n→ ∞.

Moreover, both statements imply that limn→∞ x(n)/H(n) = 1.

Theorem 3.3 deals with monotone growth in H (and in x). If the growth is not monotone
in H, this is also reflected in x. To capture non-monotone growth in H, with a potentially
fluctuating component, let (a(n))n≥1 be an increasing positive sequence and introduce the
space of sequences Ba

Ba =

{
(H(n))n≥0 : lim sup

n→∞
|H(n)|/a(n) < +∞

}
.

It is clear that for every y in Ba there is a bounded sequence Λay (which is unique up to
asymptotic equality) such that

lim
n→∞

∣∣∣∣y(n)a(n)
− (Λay)(n)

∣∣∣∣ = 0. (3.1)

We are interested in the case when ΛaH(n) does not tend to a limit as n → ∞: if the limit is
trivial, then a does not describe the rate of growth of H very well and the situation is of less
interest; if the limit is non-trivial, we are in the situation covered by Theorem 3.3.
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Theorem 3.4. Suppose f obeys (2.1) and (2.2), k obeys (2.3) and that x is the solution of (2.5). Let
(a(n))n≥1 be an increasing and positive sequence such that a(n)→ ∞ as n→ ∞. Then the following
are equivalent

(a) H ∈ Ba, and ΛaH defined by (3.1) is asymptotically non-null;

(b) x ∈ Ba, and Λax defined by (3.1) is asymptotically non-null.

Moreover, both imply that we may take Λax = ΛaH.

The interpretation of the implication (a) implies (b) of Theorem 3.4 is clear: if the external
force grows at a rate a, modulo a non-trivial and non-constant bounded multiplicative factor
ΛaH, then the solution grows at the same rate a, multiplied by the factor ΛaH. Therefore,
regular growth in H (with fluctuations about a trend growth rate) are reflected in x, and the
character of the fluctuations about the trend is the same for the output x. Conversely, if we
observe growth modified by a multiplicative fluctuation in the output x, this must have been
caused by the same pattern of growth in the forcing term H.

Example 3.5. Let a > 0 and suppose that H(n) = eanπ(n), where π is N-periodic with
maxi=0,...,N−1 π(i) = π > 0 and mini=0,...,N−1 π(i) = π ∈ (0, π). Thus H exhibits exponential
growth with a periodic component, and as such is a crude model for growth with periodic
booms and recessions in the world economy. The small system, whose output is influenced
by H, is modelled by x. In the above notation, we can take a(n) = ean and ΛaH = π. Then by
Theorem 3.4

lim
n→∞

∣∣∣∣ x(n)ean − π(n)
∣∣∣∣ = 0,

so we see that x inherits the main properties of the growth path of H: in economic terms, the
booms and recessions in the outside system propagate rapidly into the small system.

3.4 Signed fluctuations and their magnitudes

We have just seen that Theorem 3.2, while useful, does not distinguish between growth or
fluctuations in solutions of (2.5). Theorem 3.3 demonstrates that regular growth in H gives
rise to regular growth in x at the same rate as H. The question at hand now is to refine, in a
similar manner, Theorem 3.2, in order to capture the large fluctuations in solutions of (2.5). It
is reasonable to suppose that such fluctuations in x must result from large fluctuations in H,
and in parallel with Theorem 3.3, it is also reasonable to try to connect the sizes of the large
fluctuations in x to those in H.

We have used the term fluctuation loosely above, but now we want to try to capture it
mathematically. We are assuming that H∗(n) → ∞ as n → ∞, but in order to describe a
fluctuation in H, we do not want to have H(n) → ∞ or H(n) → −∞ as n → ∞, or more
generally, we do not want the limit of H to exist. Roughly speaking, we could have two types
of fluctuation in H: the first type, which we emphasise here, is that H fluctuates without
bound to plus and minus infinity. The second is that H has an infinite limsup but finite liminf
(or negative infinite liminf and finite limsup).

Considering the first situation a little more, we should distinguish between the sizes of
large positive and large negative fluctuations in H. To this end, we introduce the monotone
sequences

H∗+(n) := max
1≤j≤n

H(j), H∗−(n) := − min
1≤j≤n

H(j) = max
1≤j≤n

(−H(j)). (3.2)
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We see that H∗+ records the magnitude of the large positive fluctuations, while H∗− records the
magnitude of the large negative fluctuations. Clearly the overall maximum of these magni-
tudes is just H∗, or H∗(n) = max(H∗+(n), H∗−(n)).

We expect that fluctuations in H will cause fluctuations in x, so we make make the corre-
sponding definitions for x as well. These are

x∗+(n) := max
0≤j≤n

x(j), x∗−(n) := − min
0≤j≤n

x(j) = max
0≤j≤n

(−x(j)), (3.3)

and x∗(n) = max (x∗+(n), x∗−(n)).
We are now in a position to state and prove our main result, Theorem 3.6 below. It is

useful to assume that there is λ ∈ [0, ∞] such that

λ := lim
n→∞

H∗−(n)
H∗+(n)

. (3.4)

The existence of this limit helps us to decide whether the large negative or large positive
fluctuations dominate.

If the large positive fluctuations in H dominate asymptotically the large negative fluctu-
ations (in the sense that λ ∈ [0, 1) in (3.4)) then x experiences a large positive fluctuation of
the same order as the large positive fluctuation in H, and this also captures growth rate of the
partial maximum of |x|; in other words, if x experiences a large negative fluctuation, it will be
dominated by the large positive fluctuation. This is the subject of part (i) in Theorem 3.6.

Symmetrically, if the large negative fluctuations in H dominate asymptotically the large
positive fluctuations (in the sense that λ ∈ (1, ∞] in (3.4)), then x experiences a large negative
fluctuation of the same order as the large negative fluctuation in H, and this also captures
growth rate of the partial maximum of |x|; in other words, if x experiences a large positive
fluctuation, it will be dominated by the large negative fluctuation. This is the subject of part
(ii) in Theorem 3.6.

Finally, if the growth rates of the the large positive and large negative fluctuations in H
are the same (in the sense that λ = 1 in (3.4)), then x experiences both large positive and large
negative fluctuations, the growth rate of both are the same, and moreover equal to the growth
rates of the fluctuations in H. This is the subject of part (iii) in Theorem 3.6.

Theorem 3.6. Suppose f obeys (2.1) and (2.2), k obeys (2.3) and that x is the solution of (2.5).
Suppose H∗(n) → ∞ as n → ∞, and that H and λ obey (3.4), and that H∗± and x∗± are defined by
(3.2) and (3.3).

(i) If λ ∈ [0, 1) then
lim
n→∞

x∗+(n) = +∞

and

lim
n→∞

x∗+(n)
H∗+(n)

= lim
n→∞

x∗(n)
H∗+(n)

= 1.

(ii) If λ ∈ (1, ∞] then
lim
n→∞

x∗−(n) = +∞

and

lim
n→∞

x∗−(n)
H∗−(n)

= lim
n→∞

x∗(n)
H∗−(n)

= 1.
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(iii) If λ = 1 then

lim
n→∞

x∗+(n) = +∞, lim
n→∞

x∗−(n) = +∞,

and

lim
n→∞

x∗+(n)
H∗+(n)

= lim
n→∞

x∗−(n)
H∗−(n)

= 1.

We note an asymmetry here in parts (i) and (ii) between assumptions on H and conclusions
concerning x. If λ ∈ (0, ∞), we have both H∗+(n) and H∗−(n) → ∞ as n → ∞. However, part
(i) only yields x∗+(n) → ∞ in the case when λ ∈ (0, 1), while part (ii) yields only x∗−(n) → ∞
in the case when λ ∈ (1, ∞). In other words, despite the fact that H experiences negative
fluctuations in part (i), we do not say anything about corresponding large negative fluctuations
in x, and in part (ii), large positive fluctuations in H do not give us any conclusions about the
presence of large positive fluctuations in x. Further analysis shows that this limitation can be
overcome: the results are summarised in the next theorem.

Roughly speaking, if the large positive and large negative fluctuations are of the same
order of magnitude, x experiences both large positive and large negative fluctuations, the
large positive fluctuations of x grow at exactly the rate of the positive fluctuations of H, and
the negative fluctuations grow at exactly the same rate as those of H. In the case that the
positive fluctuations of H dominate the negative fluctuations, the positive fluctuations of x
dominate its negative fluctuations. Finally, if the negative fluctuations of H dominate its
positive fluctuations, the negative fluctuations of x dominate its positive fluctuations.

Theorem 3.7. Suppose f obeys (2.1) and (2.2), k obeys (2.3) and that x is the solution of (2.5). Suppose
H∗(n) → ∞ as n → ∞, and that H and λ obey (3.4), and that H∗± and x∗± are defined by (3.2) and
(3.3).

(i) If λ ∈ (0, ∞), then

lim
n→∞

x∗+(n) = +∞, lim
n→∞

x∗−(n) = +∞

and

lim
n→∞

x∗+(n)
H∗+(n)

= 1, lim
n→∞

x∗−(n)
H∗−(n)

= 1.

(ii) If λ = 0, then

lim
n→∞

x∗+(n) = +∞,

and

lim
n→∞

x∗+(n)
H∗+(n)

= 1, lim
n→∞

x∗−(n)
H∗+(n)

= 0.

(iii) If λ = ∞, then

lim
n→∞

x∗−(n) = +∞,

and

lim
n→∞

x∗+(n)
H∗−(n)

= 0, lim
n→∞

x∗−(n)
H∗−(n)

= 1.
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3.5 Bounds on the fluctuations in terms of an auxiliary sequence

In applications, especially when H is a stochastic process, it may be possible to prove by
independent methods that there are increasing deterministic sequences which give precise
bounds on the fluctuations of H. In the important case where H is a sequence of independent
and identically distributed random variables, it is possible to prove, by means of the Borel–
Cantelli lemmas, that there exist sequences a+ and a−, which have very similar (but non-
identical) asymptotic behaviour such that

lim sup
n→∞

|H(n)|
a+(n)

= 0, lim sup
n→∞

|H(n)|
a−(n)

= +∞, a.s.

An example of a case where this holds is when each H(n) has the power law density g(x) ∼
cα|x|−α and α > 1. In this case one can take for instance a+(n) = n1/(α−1)+ε and a−(n) =

n1/(α−1)−ε for any ε > 0 sufficiently small. In some cases one can even show that a single
sequence determines the asymptotic behaviour, so it is possible to show that

lim sup
n→∞

|H(n)|
a(n)

= 1, a.s.

An example for which this is true is a zero mean Gaussian white noise sequence, in which
a(n) = σ

√
2 log n, where σ2 is the variance of the white noise process. We give details of the

calculations in the next subsection.
These examples show that the auxiliary sequence a may exactly estimate the fluctuations of

H, or systematically over- or underestimate it. Therefore, it makes sense to formulate a result
in which lim supn→∞ |H(n)|/a(n) can be zero, finite but non-zero, or infinite, and attempt
therefrom to determine the asymptotic behaviour of |x|. The following result shows, once
again, the close coupling of the asymptotic behaviour of H and x.

Theorem 3.8. Suppose f obeys (2.1) and (2.2), and k obeys (2.3). Let x be the solution x of (2.5).
Suppose that (a(n))n≥1 is an increasing sequence with a(n) → ∞ as n → ∞. Then the following are
equivalent:

(a) there exists ρ ∈ [0, ∞] such that lim supn→∞ |H(n)|/a(n) = ρ;

(b) there exists ρ ∈ [0, ∞] such that lim supn→∞ H∗(n)/a(n) = ρ;

(c) there exists ρ ∈ [0, ∞] such that lim supn→∞ |x(n)|/a(n) = ρ;

(d) there exists ρ ∈ [0, ∞] such that lim supn→∞ x∗(n)/a(n) = ρ.

In the case when ρ ∈ (0, ∞), large fluctuations of both H and x are described by the
increasing sequence ρa. If however, a sequence a does not exist (or cannot readily be found)
for which this holds, a very easy corollary of Theorem 3.8 gives upper and lower bounds on
the fluctuations of x in terms of those of H.

Theorem 3.9. Suppose f obeys (2.1) and (2.2), and k obeys (2.3). Suppose also that there exist
increasing sequences (a−(n))n≥1 and (a+(n))n≥1 with a±(n)→ ∞ as n→ ∞ such that

lim sup
n→∞

|H(n)|
a+(n)

= 0, lim sup
n→∞

|H(n)|
a−(n)

= +∞.

Then the solution x of (2.5) obeys

lim sup
n→∞

|x(n)|
a+(n)

= 0, lim sup
n→∞

|x(n)|
a−(n)

= +∞.
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Proof. Take a(n) = a+(n) and note that ρ = 0 in Theorem 3.8. Applying Theorem 3.8 gives the
first limit in the conclusion of the result. The second limit is obtained by taking a(n) = a−(n),
in which case ρ = +∞, and Theorem 3.8 can be applied again.

It is equally reasonable to formulate results for the size of the positive and negative fluc-
tuations in terms of auxiliary sequences. This result parallels Theorem 3.7. Rather than being
comprehensive at the expense of repetition, we have considered the case when the positive
fluctuations dominate the negative ones. Other results in this direction can be readily formu-
lated and proven as desired using the same methods of proof: this result can be thought of
as being representative. Applications of this result to Gaussian and heavy-tailed distributions
are given in the next subsection.

Theorem 3.10. Suppose f obeys (2.1) and (2.2), k obeys (2.3) and that x is the solution of (2.5).
Suppose also that there exist increasing sequences (a−(n))n≥1 and (a+(n))n≥1 with a±(n) → ∞ as
n→ ∞ such that

lim sup
n→∞

H(n)
a+(n)

=: ρ+ ∈ (0, ∞], lim inf
n→∞

H(n)
a−(n)

=: −ρ− ∈ (−∞, 0],

and

lim
n→∞

a−(n)
a+(n)

=: λ ∈ [0, ∞).

(i) If λ ∈ (0, ∞), then
lim sup

n→∞
x(n) = +∞, lim inf

n→∞
x(n) = −∞

and

lim sup
n→∞

x(n)
a+(n)

= ρ+, lim inf
n→∞

x(n)
a−(n)

= −ρ−.

(ii) If λ = 0, then
lim sup

n→∞
x(n) = +∞,

and

lim sup
n→∞

x(n)
a+(n)

= ρ+, lim inf
n→∞

x(n)
a+(n)

= 0.

We note that part (ii) does not allow us to conclude that lim infn→∞ x(n) = −∞ under
the condition that lim infn→∞ H(n) = −∞. It is an interesting exercise, which we have not
completed, to determine whether this holds for (2.5) under conditions (2.4), (2.1) and (2.2), or
whether more restrictions on f and k are needed.

3.6 Applications to stochastic processes

Let H(n) be a sequence of independent and identically distributed random variables each
with distribution function F. For simplicity suppose that the distribution is continuous and
supported on all of R (so that the random variables are unbounded and can take arbitrar-
ily large positive and negative values). What follows is all well-known, but we record our
conclusions to assist stating our results, which we do momentarily.

Since each H has distribution function F we have

P[|H(n)| > Ka(n)] = 1− F(Ka(n)) + F(−Ka(n)).
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Define

S(a, K) =
∞

∑
n=0
{1− F(Ka(n)) + F(−Ka(n))}.

Since the events {|H(n)| > Ka(n)} are independent, we have that from the Borel–Cantelli
Lemma that

P
[
|H(n)| > Ka(n) i.o.

]
=

{
0, if S(a, K) < +∞,

1, if S(a, K) = +∞.

Therefore, for all K > 0 such that S(a, K) < +∞ we have that there is an a.s. event Ω+
K such

that

lim sup
n→∞

|H(n)|
a(n)

≤ K, on Ω+
K .

On the other hand, for all K > 0 such that S(a, K) = +∞ we have that there is an a.s. event
Ω−K such that

lim sup
n→∞

|H(n)|
a(n)

≥ K, on Ω−K .

It can be seen therefore that it may be possible for a well-chosen sequence a and number K
sequence Ka(n) for which S(a, K) is either finite or infinite. This will then generate upper
and lower bounds on the growth of |H(n)|, and thereby, by then applying Theorem 3.8, allow
conclusions about the growth of the fluctuations of x to be deduced.

In the first example, we are able to find a sequence a for which Λa|H| ∈ (0, ∞).

Example 3.11. Suppose that H(n) is a sequence of independent normal random variables
with mean zero and variance σ2 > 0. Take a(n) =

√
2 log n. Then it is well-known for every

ε ∈ (0, σ) that we have
S(a, σ + ε) < +∞, S(a, σ− ε) = +∞.

Therefore, there are a.s. events Ω±ε such that

lim sup
n→∞

|H(n)|√
2 log n

≥ σ− ε, a.s. on Ω−ε

and

lim sup
n→∞

|H(n)|√
2 log n

≤ σ + ε, a.s. on Ω+
ε .

Now consider
Ω∗ =

⋂
ε∈Q∩(0,σ)

Ω+
ε ∩

⋂
ε∈Q∩(0,σ)

Ω−ε .

Then Ω∗ is an almost sure event and we have

lim sup
n→∞

|H(n)|√
2 log n

= σ, on Ω∗.

Hence we can apply Theorem 3.8 to (2.5) with a(n) =
√

2 log n to get that

lim sup
n→∞

|x(n)|√
2 log n

= σ, a.s.



Unboundedness properties in Volterra summation equations 17

A similar argument applies to signed fluctuations as well. We can use the Borel–Cantelli
lemmas to prove that

lim sup
n→∞

H(n)√
2 log n

= σ, lim inf
n→∞

H(n)√
2 log n

= −σ, a.s.

Therefore, by Theorem 3.10 we get

lim sup
n→∞

x(n)√
2 log n

= σ, lim inf
n→∞

x(n)√
2 log n

= −σ, a.s.

Next we consider the case of a symmetric heavy tailed distribution with power law decay
in the tails. In this case, we find sequences a+ and a− such that a− = o(a+) and

lim sup
n→∞

|H(n)|
a+(n)

= 0, lim sup
n→∞

|H(n)|
a−(n)

= +∞, a.s.

Even though a+ dominates a− asymptotically, a+ and a− will have very similar asymptotic
behaviour. It follows from Theorem 3.9 that

lim sup
n→∞

|x(n)|
a+(n)

= 0, lim sup
n→∞

|x(n)|
a−(n)

= +∞, a.s.

Example 3.12. Suppose that H(n) are independently and identically distributed random vari-
ables such that there is α > 0 and finite c1, c2 > 0 for which

F(x) ∼ c1|x|−α, x → −∞, 1− F(x) ∼ c2x−α, x → +∞.

Suppose that a+ and a− are sequences such that

∞

∑
n=0

a+(n)−α < +∞,
∞

∑
n=0

a−(n)−α = +∞. (3.5)

Then we see that S(K, a+) < +∞ for all K > 0 while S(K, a−) = +∞ for all K > 0. Therefore
we have for all K > 0

lim sup
n→∞

|H(n)|
a+(n)

≤ K, on Ω+
K .

Consider the event Ω+ = ∩K∈Q+Ω+
K . Then Ω+ is an almost sure event and we have

lim sup
n→∞

|H(n)|
a+(n)

= 0, on Ω+.

On the other hand, for all K > 0 we have that there is an a.s. event Ω−K such that

lim sup
n→∞

|H(n)|
a−(n)

≥ K, on Ω−K .

Consider the event Ω− = ∩K∈Z+Ω+
K . Then Ω− is an almost sure event and we have

lim sup
n→∞

|H(n)|
a−(n)

= +∞, on Ω−.



18 J. A. D. Appleby and D. D. Patterson

Finally, let Ω∗ = Ω+ ∩Ω−. It is an almost sure event and we have that

lim sup
n→∞

|H(n)|
a+(n)

= 0, lim sup
n→∞

|H(n)|
a−(n)

= ∞ on Ω∗.

Applying Theorem 3.9 we therefore see that (3.5) implies

lim sup
n→∞

|x(n)|
a+(n)

= 0, lim sup
n→∞

|x(n)|
a−(n)

= +∞, on Ω∗.

By similar arguments we can obtain bounds on the signed fluctuations as well. In fact (3.5)
implies

lim sup
n→∞

x(n)
a+(n)

= 0, lim sup
n→∞

x(n)
a−(n)

= +∞, a.s.

lim inf
n→∞

x(n)
a+(n)

= 0, lim inf
n→∞

x(n)
a−(n)

= −∞, a.s.

To show we can get a+ and a− close, notice that for every ε > 0 sufficiently small we can
take a±(n) to be a±ε(n) = n1/α±ε.

It is now standard to get limits independent of the small parameter ε, and we show now
how this can be done. First, from the existence of the sequences a±ε we may conclude from
that there are a.s. events Ω−ε and Ω+

ε such that

lim sup
n→∞

|x(n)|
n1/α−ε

= +∞, on Ω−ε

and

lim sup
n→∞

|x(n)|
n1/α+ε

= 0, on Ω+
ε .

Now we seek ε-independent limits. We conclude from the first limit that

lim sup
n→∞

log |x(n)|
log n

≥ 1
α
− ε, on Ω−ε

and from the second that

lim sup
n→∞

log |x(n)|
log n

≤ 1
α
+ ε, on Ω+

ε .

Finally, take
Ω∗ = ∩ε∈Q+Ω+

ε ∩ ∩ε∈Q+Ω−ε .

This is an a.s. event, and we have

lim sup
n→∞

log |x(n)|
log n

=
1
α

, on Ω∗.

Hence

lim sup
n→∞

log |x(n)|
log n

=
1
α

, a.s.

A similar analysis of the positive and negative fluctuations leads to

lim sup
n→∞

log x(n)
log n

=
1
α

, lim sup
n→∞

log(−x(n))
log n

=
1
α

, a.s.
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3.7 Time averages

The main theme of the results we have presented is that the properties of the forcing sequence
H are reflected in the solution x of equation (2.5). So far, we have concentrated on the bound-
edness or unboundedness of solutions, the size of fluctuations of solutions, the growth rate of
solutions, and the times at which the forcing sequence and solution reach record maxima. In
this final section we explore one further connection between H and x, which does not relate
to the pointwise size of H and x, but rather their average values. This is of particular interest in
the case that H is a stochastic sequence, because such sequences can be unbounded, but can
have finite time averages.

Very roughly, our most general result states that if ϕ is an increasing convex function, then
the finiteness of the ϕ-moments

lim sup
n→∞

1
n

n

∑
j=1

ϕ(|H(j)|) < +∞ and lim sup
n→∞

1
n

n

∑
j=1

ϕ(|x(j)|) < +∞

are equivalent, modulo some small adjustments inside the argument of ϕ. In the important
case that ϕ(x) = xp for p ≥ 1, these small adjustments are unnecessary, and we have that

lim sup
n→∞

1
n

n

∑
j=1
|H(j)|p < +∞ if and only if lim sup

n→∞

1
n

n

∑
j=1
|x(j)|p < +∞,

so that the p-th moment of x is finite if and only if the p-th moment of H is. The equivalence
of the finiteness of the ϕ-moments also holds in the more general case that ϕ is a regularly
varying function at infinity.

In order to make our discussion precise, we recall the definition of convexity of a real
function, and a discrete variant of an important inequality relating to convex functions, namely
Jensen’s inequality.

Definition 3.13. Let I be a convex set in R and let ϕ : I → R. Then ϕ is convex on I if and
only if

ϕ(tx1 + (1− t)x2) ≤ tϕ(x1) + (1− t)ϕ(x2) for all x1, x2 ∈ I and all t ∈ [0, 1].

Lemma 3.14 (Jensen’s Inequality). If 0 ≤ a1, a2, . . . , an are such that ∑n
i=1 ai = 1 and if ϕ is a

convex function, then

ϕ

(
n

∑
i=1

aixi

)
≤

n

∑
i=1

ai ϕ(xi).

We state next our main result: its proof is in the last section of the paper.

Theorem 3.15. Suppose f obeys (2.1) and (2.2), and k obeys (2.3). Let x be the solution of (2.5) and
ϕ : [0, ∞)→ [0, ∞) be an increasing convex function.

(i) If there exists η > 0 such that

lim sup
n→∞

1
n

n

∑
j=1

ϕ
(
(1 + η) |H(j)|

)
< +∞,

then

lim sup
n→∞

1
n

n

∑
j=0

ϕ
(
|x(j)|

)
< +∞.
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(ii) If there exists η > 0 such that

lim sup
n→∞

1
n

n

∑
j=0

ϕ
(
(1 + η) |x(j)|

)
< +∞,

then

lim sup
n→∞

1
n

n

∑
j=1

ϕ
(
|H(j)|

)
< +∞.

It can be seen that we have nearly shown the equivalence of the finiteness of

lim sup
n→∞

1
n

n

∑
j=1

ϕ
(
|H(j)|

)
and lim sup

n→∞

1
n

n

∑
j=1

ϕ
(
|x(j)|

)
.

However, when applying Jensen’s inequality to estimate the sums, it is necessary to impose a
slightly stronger summability hypothesis on H in order to get the finiteness of the ϕ-moment
of x. In the case when ϕ(x) = xp (or more generally when ϕ is a convex and regularly
varying function at infinity (see e.g. [12])) we can forego this slight restriction, and show that
the existence of the ϕ-moments of H and x are equivalent. This result is of particular interest
if H is a stationary stochastic process, for it shows that the only way in which x will have a
finite p-th moment is if H does also. This also enables us to make predictions about so-called
moment explosion: if, for some p,

lim sup
n→∞

1
n

n

∑
j=1
|H(j)|p = +∞,

then it is automatically true by the next result, that

lim sup
n→∞

1
n

n

∑
j=1
|x(j)|p = +∞.

Theorem 3.16. Suppose f obeys (2.1) and (2.2), and k obeys (2.3). Let x be the solution of (2.5) and
p ≥ 1. Then the following are equivalent:

(i)

lim sup
n→∞

1
n

n

∑
j=1
|H(j)|p < +∞;

(ii)

lim sup
n→∞

1
n

n

∑
j=1
|x(j)|p < +∞.

Proof. Let ϕ(x) = xp. Since p ≥ 1, ϕ is an increasing convex function from [0, ∞) to [0, ∞).
Suppose that (i) is true, i.e.,

lim sup
n→∞

1
n

n

∑
j=1
|H(j)|p < +∞.

Therefore, because ϕ((1 + η)x) = (1 + η)p ϕ(x) for every x ≥ 0 and η > 0, we have

lim sup
n→∞

1
n

n

∑
j=1

ϕ((1 + η) |H(j)|) = lim sup
n→∞

1
n

n

∑
j=1

(1 + η)p |H(j)|p

= (1 + η)p lim sup
n→∞

1
n

n

∑
j=1
|H(j)|p < +∞.
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Therefore, by part (i) of Theorem 3.15, it follows that

lim sup
n→∞

1
n

n

∑
j=1
|x(j)|p = lim sup

n→∞

1
n

n

∑
j=1

ϕ(|x(j)|) < +∞,

which is (ii). Conversely, suppose (ii) holds. Again, using ϕ((1 + η)x) = (1 + η)p ϕ(x) for
every x ≥ 0 and η > 0, we get

lim sup
n→∞

1
n

n

∑
j=1

ϕ((1 + η) |x(j)|) = lim sup
n→∞

1
n

n

∑
j=1

(1 + η)p |x(j)|p

= (1 + η)p lim sup
n→∞

1
n

n

∑
j=1
|x(j)|p < +∞.

Therefore, by part (ii) of Theorem 3.15, it follows that

lim sup
n→∞

1
n

n

∑
j=1
|H(j)|p = lim sup

n→∞

1
n

n

∑
j=1

ϕ(|H(j)|) < +∞,

which is (i). Hence we have shown that the statements (i) and (ii) are equivalent, as claimed.

3.8 Applications to stochastic processes

We suppose as earlier that H is a sequence of independent and identically distributed random
variables with distribution function F and support on R. Then ϕ(|H(n)|) has a finite mean if
and only if ∫

x∈R
ϕ(|x|) dF(x) < +∞.

If this is the case, by the strong law of large numbers, we have that

lim
n→∞

1
n

n

∑
j=1

ϕ(|H(j)|) =
∫

x∈R
ϕ(|x|) dF(x), a.s.

In fact, it is even true when ∫
x∈R

ϕ(|x|) dF(x) = +∞

that

lim
n→∞

1
n

n

∑
j=1

ϕ(|H(j)|) = +∞, a.s.

It is then a matter of checking whether we can introduce the small parameter η > 0 into the
argument of ϕ in order to apply Theorem 3.15. We show now, by re-examining the heavy-
tailed and Gaussian examples studied earlier, that this can be achieved with relative success
in a number of situations.

Example 3.17. In Example 3.12, we have that F(x) ∼ c1|x|−α as x → −∞ and 1− F(x) ∼ c2x−α

as x → ∞. Suppose that ϕ(x) = xp. Then p < α implies∫
x∈R

ϕ(|x|) dF(x) < +∞
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and therefore

lim
n→∞

1
n

n

∑
j=1
|H(j)|p =

∫
x∈R
|x|p dF(x), a.s.

In the case that p ≥ α

lim
n→∞

1
n

n

∑
j=1
|H(j)|p = +∞, a.s.

Hence by Theorem 3.15 and Theorem 3.16 we have a.s.

lim sup
n→∞

1
n

n

∑
j=1
|x(j)|p =

{
+∞, if p ≥ α,

∈ (0, ∞), if 1 ≤ p < α.

Example 3.18. In Example 3.11, we have that the density of the normal is given by

g(x) =
1

σ
√

2π
e−x2/(2σ2), x ∈ R.

Take ϕ(x) = eax2
for a > 0. Then ϕ′(x) = 2axϕ(x) and ϕ′′(x) = 2axϕ′(x) + 2aϕ(x) > 0. Hence

ϕ is increasing and convex. Moreover for any η > 0 we have∫
R

ϕ((1 + η)|x|)dF(x) =
1

σ
√

2π

∫
R

ex2(a(1+η)−1/(2σ2)) dx.

The integral is finite if a(1 + η) < 1/(2σ2) and infinite if a(1 + η) ≥ 1/(2σ2). Thus for
a < 1/(2σ2) we can choose η > 0 sufficiently small such that a(1 + η) < 1/(2σ2), and so by
the strong law

lim
n→∞

1
n

n

∑
j=1

ϕ((1 + η)|H(j)|) is finite a.s.

Therefore

lim sup
n→∞

1
n

n

∑
j=1

eax(j)2
is finite a.s. if a < 1/(2σ2).

On the other hand, suppose that a > 1/(2σ2) is fixed and that there is an event A of positive
probability such that

A =

{
ω : lim sup

n→∞

1
n

n

∑
j=1

eax(j)2
(ω) < +∞

}
.

There is η > 0 such that b := a/(1 + η) > 1/(2σ2). Define φ(x) = ebx2
. Then for ω ∈ A we

have lim supn→∞ n−1 ∑n
j=1 φ((1+ η)|x(j)|)(ω) < +∞. This implies by part (ii) of Theorem 3.15

that

lim sup
n→∞

1
n

n

∑
j=1

φ(|H(j)|)(ω) = lim sup
n→∞

1
n

n

∑
j=1

ebH(j)2
(ω) < +∞.

On the other hand, since b > 1/(2σ2), we have that∫
R

φ(|x|)dF(x) = +∞,

so it follows that

lim
n→∞

1
n

n

∑
j=1

φ(|H(j)|) = +∞, a.s.
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This contradicts the assumption that A is an event of positive probability. Therefore, we must
have P[A] = 0 and so

lim sup
n→∞

1
n

n

∑
j=1

eax(j)2
= +∞, a.s. if a > 1/(2σ2).

Summarising our conclusions we have that, a.s.

lim sup
n→∞

1
n

n

∑
j=1

eax(j)2
=

{
+∞, if a > 1/(2σ2),

∈ (0, ∞), if a < 1/(2σ2).

Our analysis is not sufficiently refined to conclude what the situation is if a = 1/(2σ2).

3.9 Further work

Scrutiny of the proofs that follow shows that the analysis presented here for (2.5) works with
trivial modification for the continuous-time integral equation

x(t) = H(t) +
∫ t

0
k(t− s) f (x(s)) ds, t ≥ 0. (3.6)

It is still assumed that f obeys (2.1) and (2.2). We assume now that k is in L1(0, ∞). For
continuous solutions, we ask that k and H are continuous, and to guarantee uniqueness of a
continuous solution of (3.6), we can assume that f is locally Lipschitz continuous. Then direct
analogues of all the main results apply.

We have not focussed on nonconvolution equations, but it is easy to see that the proofs
of all results (with the possible exception of Theorem 3.15) go through with cosmetic changes
for the Volterra summation equation

x(n + 1) = H(n + 1) +
n

∑
j=0

k(n, j) f (x(j)), n ≥ 0; x(0) = ξ, (3.7)

where k : Z+ ×Z+ → R is such that

sup
n≥0

n

∑
j=0
|k(n, j)| < +∞,

and f once again obeys (2.1) and (2.2). The corresponding nonconvolution integral equation

x(t) = H(t) +
∫ t

0
k(t, s) f (x(s)) ds, t ≥ 0,

can also be analysed successfully, once supt≥0

∫ t
0 |k(t, s)| ds < +∞.

We have remarked already that many interesting results of a similar character to those
presented here can be obtained for the linear Volterra summation equation

x(n + 1) = H(n + 1) +
n

∑
j=0

k(n− j)x(j), n ≥ 0; x(0) = ξ (3.8)

and the corresponding linear integral equation

x(t) = H(t) +
∫ t

0
k(t− s)x(s) ds, t ≥ 0.
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There are two chief differences in the nature of the results: first, the manner in which the
kernel k fades is important in the linear case, in stark contrast to the situation here. The
reader will have seen throughout how small a role k plays in the nature of the solution x,
whose properties are inherited rather directly from H: there is no “long memory” or hysteresis
effect present in (2.5), which can contrast markedly with the situation in (3.8) in the case when
k fades slowly. Second, the type of “nice” unbounded space we consider in the linear case
tends to be slightly more restrictive than that we consider here, mainly because the Volterra
term in (3.8) can be of the same order as x(n + 1) when the latter is large. On the other hand,
the corresponding Volterra term in (2.5) is of smaller order when x(n + 1) is large: this makes
the analysis considerably easier, and therefore weaker hypotheses on the data suffice to make
good progress in the sublinear case.

Analysis of systems in Rp requires more thought. From the perspective of applications,
it is of evident interest to study not only max0≤j≤n ‖x(j)‖ (where ‖ · ‖ is a norm on Rp), but
also the running maximum of the i-th component of the system max0≤j≤n |xi(j)| (i = 1, . . . , p).
Such an analysis likely requires a more delicate analysis of the maxima than the confines of
this paper allow.

4 Proof of Theorem 3.1

The proof is elementary, but several useful estimates are developed which we employ in later
proofs. Therefore, we give more intermediate details than are strictly necessary for present
purposes. The proof takes its inspiration in part from [5, Lemma 5.3].

Notice that the hypotheses (2.1) and (2.2) on f imply

For every ε > 0 there is F(ε) > 0 such that | f (x)| ≤ F(ε) + ε|x|, ∀x ∈ R. (4.1)

Taking absolute values across (2.5) and using the inequality (4.1) above, gives

|x(n + 1)| ≤ |H(n + 1)|+
n

∑
l=0
|k(l)| F(ε) + ε

n

∑
j=0
|k(n− j)| |x(j)|

≤ |H(n + 1)|+ |k|1 F(ε) + ε
n

∑
j=0
|k(n− j)| |x(j)|

≤ H∗(n + 1) + |k|1 F(ε) + ε
n

∑
j=0
|k(n− j)| x∗(n)

≤ H∗(n + 1) + |k|1 F(ε) + ε|k|1x∗(n). (4.2)

Next let N ≥ 0 and take the maximum over n = 0 to N on both sides of (4.2) to get

max
1≤j≤N+1

|x(j)| ≤ max
0≤n≤N

{H∗(n + 1)}+ |k|1 F(ε) + max
0≤n≤N

{ε |k|1 x∗(n)}

= H∗(N + 1) + |k|1 F(ε) + ε |k|1 max
0≤n≤N

x∗(n)

= H∗(N + 1) + |k|1 F(ε) + ε |k|1 x∗(N). (4.3)

Next observe that

x∗(N + 1) = max
{
|x(0)| , max

1≤j≤N+1
|x(j)|

}
≤ |x(0)|+ max

1≤j≤N+1
|x(j)| .
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Since x∗ is a non-decreasing sequence, we have from the last inequality and (4.3) that

x∗(N + 1) ≤ |x(0)|+ max
1≤j≤N+1

|x(j)|

≤ |k|1 F(ε) + |x(0)|+ H∗(N + 1) + ε |k|1 x∗(N)

≤ |k|1 F(ε) + |x(0)|+ H∗(N + 1) + ε |k|1 x∗(N + 1).

Now, let ε > 0 be so small that ε |k|1 < 1. Then for all N ≥ 0

(1− ε |k|1)x∗(N + 1) ≤ |x(0)|+ |k|1 F(ε) + H∗(N + 1).

By construction, 1− ε |k|1 > 0. Hence

0 ≤ x∗(n) ≤ 1
1− ε |k|1

(
|x(0)|+ |k|1 F(ε) + H∗(n)

)
, n ≥ 1. (4.4)

Assume now that H∗(n)→ H∞ < +∞ as n→ ∞. Then

lim sup
n→+∞

x∗(n) ≤ 1
1− ε |k|1

(
|x(0)|+ |k|1 F(ε) + H∞

)
< +∞.

Therefore x∗ is a positive sequence which is bounded above. Moreover, it is non-decreasing
and thus when n→ ∞, we have

x∗(n)→ x∞ ≤
1

1− ε |k|1

(
|x(0)|+ |k|1 F(ε) + H∞

)
.

Hence x is bounded, which proves part (a).
Now we turn to the proof of part (b) of the result, wherein we assume H∗(n) → ∞

as n → ∞. We suppose that x∗(n) → x∞ < +∞ as n → ∞ and see that this leads to a
contradiction. Define

S(n) :=
n

∑
j=0

k(n− j) f (x(j)) (4.5)

Proceeding as in the estimate of (4.2) in part (a), we get

|S(n)| ≤ |k|1 F(ε) + ε |k|1 x∗(n), n ≥ 0. (4.6)

Rearranging (2.5) gives H(n + 1) = x(n + 1)− S(n). Therefore by (4.6)

|H(n + 1)| ≤ |x(n + 1)|+ |k|1 F(ε) + ε |k|1 x∗(n)

≤ x∗(n + 1) + |k|1 F(ε) + ε |k|1 x∗(n + 1).

Hence
|H(n)| ≤ (1 + ε |k|1)x∗(n) + |k|1 F(ε), n ≥ 1. (4.7)

Moreover from this we get

H∗(n) ≤ (1 + ε |k|1)x∗(n) + |k|1 F(ε), n ≥ 1. (4.8)

We have assumed that x∗(n)→ x∞ < +∞ as n→ ∞, and therefore

lim sup
n→+∞

|H(n)| ≤ 1 + ε |k|1 x∞ + |k|1 F(ε) < +∞.

This means that |H| is bounded which in turn means that H∗(n) → H∞ < +∞ as n → ∞,
which gives the desired contradiction, completing the proof of part (b).
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5 Proof of Theorem 3.2

Suppose that ε ∈ (0, 1) is so small that ε|k|1 < 1, then there is F(ε) > 0 such that f obeys
(4.1). As in the proof of Theorem 3.1, we have the estimate (4.4). Therefore, as H∗(n) → ∞ as
n→ ∞, we get

lim sup
n→+∞

x∗(n)
H∗(n)

≤ 1
1− ε |k|1

.

Letting ε→ 0+ yields

lim sup
n→+∞

x∗(n)
H∗(n)

≤ 1. (5.1)

This gives the required upper estimate in part (i). To get the lower estimate (i.e., to obtain
a lower bound on lim infn→+∞ x∗(n)/H∗(n)), we start by recalling the estimate (4.8) which
rearranges to give

x∗(n) ≥ 1
1 + ε |k|1

H∗(n)− |k|1 F(ε)
1 + ε |k|1

.

Since H∗(n)→ ∞ as n→ ∞ by hypothesis, taking the limit inferior as n→ ∞ yields

lim inf
n→+∞

x∗(n)
H∗(n)

≥ 1
1 + ε |k|1

,

and now letting ε→ 0+ yields

lim inf
n→+∞

x∗(n)
H∗(n)

≥ 1.

Combining this with (5.1) gives part (i).
We next prove part (iii) of the result. By definition of x and S in (4.5), if tx

n ≥ 1, we have
x(tx

n) = H(tx
n) + S(tx

n − 1). Thus by (4.6), |x(tx
n)| ≤ |H(tx

n)|+ F(ε) |k|1 + ε |k|1 x∗(tx
n − 1). Now,

by the monotonicity of x∗ and the definition of tx
n we have

x∗(tx
n − 1) ≤ x∗(tx

n) = max
0≤j≤tx

n

|x(j)| = |x(tx
n)| ,

since tx
n ≤ n and |x(tx

n)| = max0≤j≤n |x(j)|. Therefore,

|x(tx
n)| ≤ |H(tx

n)|+ F(ε) |k|1 + ε |k|1 |x(t
x
n)|.

If H∗(n) → ∞ as n → ∞, we have max0≤j≤n |x(j)| → ∞ as n → ∞ and so |x(tx
n)| → ∞ as

n → ∞. The above inequality then implies that |H(tx
n)| → ∞ as n → ∞. Rearranging and

taking limits as before yields

lim sup
n→+∞

|x(tx
n)|

|H(tx
n)|
≤ 1. (5.2)

We now get a lower estimate for the limit. First, rearranging (2.5) at the time tx
n and taking the

triangle inequality and the estimate (4.1) gives

|H(tx
n)| ≤ |x(tx

n)|+ F(ε) |k|1 + ε
tx
n−1

∑
j=0
|k(tx

n − 1− j)| |x(j)|.

Now, for j = 0, . . . , tx
n − 1,

|x(j)| ≤ max
0≤j≤tx

n−1
|x(j)| ≤ max

0≤j≤tx
n

|x(j)| = |x(tx
n)| .
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Hence |H(tx
n)| ≤ |x(tx

n)| (1 + ε |k|1) + F(ε) |k|1. Rearranging this inequality and taking limits
gives

lim inf
n→+∞

|x(tx
n)|

|H(tx
n)|
≥ 1

1 + ε |k|1
.

Letting ε → 0+ and combining with (5.2) yields |x(tx
n)|/|H(tx

n)| → 1 as n → ∞, completing
the proof of the first limit in part (iii).

We now prove the second limit in part (iii), namely limn→+∞ |H(tx
n)| /

∣∣H(tH
n )
∣∣ = 1. Notice

that part (i) of this Theorem gives x∗(n)/H∗(n)→ 1 as n→ ∞. By definition, x∗(n) = |x(tx
n)|

and H∗(n) =
∣∣H(tH

n )
∣∣. It has just been shown that |x(tx

n)|/|H(tx
n)| → 1 as n → ∞. Therefore,

as n→ ∞,

|H(tx
n)|

|H(tH
n )|

=
|H(tx

n)|
|x(tx

n)|
· |x(t

x
n)|

H∗(n)
=
|H(tx

n)|
|x(tx

n)|
· x∗(n)

H∗(n)
→ 1.

This proves the second limit in part (iii).
Finally, we prove part (ii). By assumption, H∗(n) → ∞ as n → ∞. Since

∣∣H(tH
n )
∣∣ =

max1≤j≤tH
n
|H(j)| = H∗(tH

n ), we have

lim
n→+∞

x∗(tH
n )

|H(tH
n )|

= lim
n→∞

x∗(tH
n )

H∗(tH
n )

= 1, (5.3)

using part (i). Now, |x(tH
n )| ≤ max0≤j≤tH

n
|x(j)|, so we have

lim sup
n→+∞

|x(tH
n )|

|H(tH
n )|
≤ 1. (5.4)

From (4.6) we have |S(tH
n − 1)| ≤ |k|1F(ε) + ε |k|1 x∗(tH

n − 1) ≤ |k|1 F(ε) + ε |k|1 x∗(tH
n ). Since

x(tH
n ) = H(tH

n ) + S(tH
n − 1), we have

|H(tH
n )| ≤ |x(tH

n )|+ |S(tH
n − 1)| ≤ |x(tH

n )|+ |k|1 F(ε) + ε |k|1 x∗(tH
n ).

Therefore,
|x(tH

n )|
|H(tH

n )|
≥ 1− |k|1 F(ε)

|H(tH
n )|
− ε |k|1 x∗(tH

n )

|H(tH
n )|

,

and thus by (5.3), we have lim infn→+∞ |x(tH
n )|/|H(tH

n )| ≥ 1− ε |k|1. Letting ε → 0+ yields
lim infn→+∞ |x(tH

n )|/|H(tH
n )| ≥ 1 and therefore combining this with (5.4) yields the desired,

first limit limn→+∞
∣∣x(tH

n )
∣∣ /
∣∣H(tH

n )
∣∣ = 1 in part (ii). We now prove the second limit in part

(ii). We have from part (i) that x∗(n)/H∗(n)→ 1 as n→ ∞, and by the first part of (ii) we get
limn→∞

∣∣H(tH
n )
∣∣ /
∣∣x(tH

n )
∣∣ = 1. Therefore,

lim
n→∞

|x(tx
n)|

|x(tH
n )|

= lim
n→∞

x∗(n)
H∗(n)

· H∗(n)
|x(tH

n )|
= lim

n→∞

x∗(n)
H∗(n)

·
∣∣H(tH

n )
∣∣

|x(tH
n )|

= 1,

as claimed.

6 Proof of Theorems 3.3 and 3.4

6.1 A preparatory lemma

Before we prove our main result, we need the following preparatory lemma.
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Lemma 6.1. Let (a(n))n≥0 be a sequence such that

a∗(n) := max
0≤j≤n

|a(j)| → ∞ as n→ ∞

and suppose there is a sequence (ã(n))n≥1 such that (ã(n))n≥1 is increasing with ã(n)→ ∞ as n→ ∞
and a(n) ∼ ã(n) as n→ ∞. Then

lim
n→∞

a∗(n)
ã(n)

= 1.

Proof. Since a(n) ∼ ã(n), for every 0 < ε < 1, there exists N(ε) ∈ N such that 0 < 1− ε <

a(n)/ã(n) < 1 + ε for all n ≥ N(ε). Therefore, as ã(n) > 0 for all n ≥ N1 with N2(ε) =

max(N1, N(ε)), we have that a(n) > 0 for all n ≥ N2(ε). Let n ≥ N2(ε). Then

max
0≤j≤n

|a(j)| = max
(

max
0≤j≤N2(ε)−1

|a(j)| , max
N2(ε)≤j≤n

|a(j)|
)

≤ max
0≤j≤N2(ε)−1

|a(j)|+ max
N2(ε)≤j≤n

|a(j)|

= max
0≤j≤N2(ε)−1

|a(j)|+ max
N2≤j≤n

a(j)

≤ max
0≤j≤N2−1

|a(j)|+ max
N2≤j≤n

(1 + ε)ã(j)

= a∗(N2 − 1) + (1 + ε)ã(n),

where we have used the fact that a(j) > 0 for all j ≥ N2 to get the third line and the mono-
tonicity of ã at the end. Hence, for all n ≥ N2(ε), we have

a∗(n)
ã(n)

≤ a∗(N2 − 1)
ã(n)

+ (1 + ε)

and thus lim supn→∞ a∗(n)/ã(n) ≤ 1 + ε. Letting ε→ 0+, gives

lim sup
n→∞

a∗(n)
ã(n)

≤ 1. (6.1)

To complete the proof, we need a corresponding lower bound. Now, for j ≥ N we have
a(j) > (1− ε)ã(j). Hence for n ≥ N2,

max
N2≤j≤n

a(j) ≥ (1− ε) max
N2≤j≤n

ã(j) = (1− ε)ã(n).

Thus for n ≥ N2(ε),

a∗(n) = max
(

a∗(N2 − 1), max
N2≤j≤n

a(j)
)
≥ max

(
a∗(N2(ε)− 1), (1− ε)ã(n)

)
.

Since ã(n)→ ∞ as n→ ∞, there exists N3(ε) > 0 such that ã(n) > a∗(N2− 1)/(1− ε) for n ≥
N3(ε). Let N4 = max(N2, N3) and n ≥ N4. Then (1− ε)ã(n) > a∗(N2(ε)− 1) and so, a∗(n) ≥
max

(
a∗(N2− 1), (1− ε)ã(n)

)
= (1− ε)ã(n). Letting n→ ∞, we have lim infn→∞ a∗(n)/ã(n) ≥

1− ε and letting ε→ 0+ gives

lim inf
n→∞

a∗(n)
ã(n)

≥ 1. (6.2)

Combining (6.2) with (6.1) we get a∗(n)/ã(n)→ 1 as n→ ∞ as required.
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6.2 Proof of Theorem 3.3

We only prove part (i). Suppose statement (a) holds. Then the sequence H(n) is asymptotic
to another increasing sequence H̃(n), where H̃(n) → ∞ as n → ∞ . Then by Lemma 6.1,
H∗(n) ∼ H̃(n) ∼ H(n) as n → ∞. Since H(n) → ∞, H∗(n) → ∞ as n → ∞, so we have
x∗(n)/H∗(n) → 1 as n → ∞ and so we have x∗(n)/H(n) → 1 as n → ∞. Since H(n) → ∞ as
n→ ∞, we have from (4.6) the limit

lim sup
n→∞

|S(n)|
H(n)

≤ ε |k|1 lim sup
n→∞

x∗(n)
H(n)

= ε |k|1 .

Letting ε→ 0+ gives S(n)/H(n)→ 0 as n→ ∞. Next since H̃ is increasing, we have

lim sup
n→∞

H(n)
H(n + 1)

= lim sup
n→∞

H(n)
H̃(n)

· H̃(n)
H̃(n + 1)

· H̃(n + 1)
H(n + 1)

≤ 1.

Therefore we have

|S(n− 1)|
H(n)

=
|S(n− 1)|
H(n− 1)

· H(n− 1)
H(n)

→ 0 as n→ ∞.

Since x(n) = H(n) + S(n− 1), we get x(n)/H(n) → 1 as n → ∞ as required. Moreover as H
is asymptotic to H̃ we have x(n)/H̃(n) → 1 as n → ∞, so x is asymptotic to the increasing
sequence H̃. This proves statement (b).

Conversely, suppose x(n) → ∞ and x is asymptotic to an increasing sequence (x̃(n))n≥1.
Then by Lemma 6.1, it follows that x∗(n) ∼ x̃(n) and so, as n → ∞, we also have x∗(n) ∼
x(n). Therefore, since x∗(n) → ∞ as n → ∞, we have H∗(n) → ∞ as n → ∞. Hence
x∗(n)/H∗(n)→ 1 as n→ ∞. Since S obeys (4.6), we have |S(n)|/x∗(n)→ 0 as n→ ∞. Hence,
since x∗(n) ≤ x∗(n + 1) we have

|S(n− 1)|
x(n)

=
|S(n− 1)|
x∗(n− 1)

· x∗(n− 1)
x∗(n)

→ 0 as n→ ∞.

But since x(n) = H(n) + S(n − 1), we have H(n)/x(n) → 1 as n → ∞, which proves part
of the desired conclusion. Recall that x is asymptotic to the increasing sequence x̃, so H is
asymptotic to the increasing sequence x̃ which itself tends to infinity. Therefore H(n)→ ∞ as
n→ ∞. Hence H enjoys all the properties listed in statement (a).

6.3 Proof of Theorem 3.4

By hypothesis limn→∞ |H(n)/a(n) − (ΛaH)(n)| = 0 and lim supn→∞ |(ΛaH)(n)| ∈ (0, ∞).
Since a(n) → ∞ as n → ∞ we have H∗(n) → ∞ as n → ∞. Hence by part (a) of The-
orem 3.2, we have limn→∞ x∗(n)/H∗(n) = 1. By part (a) of Lemma 8.1, we also have that
(H∗(n)/a(n))n≥1 is a bounded sequence. Hence (x∗(n)/a(n))n≥1 is a bounded sequence. By
(4.6) we have for every ε > 0 that |S(n)| ≤ |k|1 F(ε) + ε |k|1 x∗(n). Therefore

lim sup
n→∞

|S(n)|
a(n)

≤ ε|k|1 lim sup
n→∞

x∗(n)
a(n)

. (6.3)

Since ε is arbitrary, we have S(n)/a(n) → 0 as n → ∞. Since a is an increasing sequence
S(n)/a(n + 1)→ 0 as n→ ∞. By the identity

x(n + 1)
a(n + 1)

− (ΛaH)(n + 1) =
H(n + 1)
a(n + 1)

− (ΛaH)(n + 1) +
S(n)

a(n + 1)
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it is clear that limn→∞ |x(n + 1)/a(n + 1)− (ΛaH)(n + 1)| = 0 so x is in Ba and we can take
Λax = ΛaH, completing the proof.

Conversely, suppose that x ∈ Ba and there exists a bounded sequence Λax such that
limn→∞ |x(n)/a(n) − (Λax)(n)| = 0. We also have that lim supn→∞ |(Λax)(n)| ∈ (0, ∞)

Then we have that lim supn→∞ |x(n)|/a(n) < +∞, and therefore by Lemma 8.1 we have that
lim supn→∞ x∗(n)/a(n) < +∞. Then (6.3) holds again for every ε > 0 and so S(n)/a(n) → 0
as n→ ∞. Since a is increasing S(n)/a(n + 1)→ 0 as n→ ∞. Finally, writing

H(n + 1)
a(n + 1)

− (Λax)(n + 1) =
x(n + 1)
a(n + 1)

− (Λax)(n + 1)− S(n)
a(n + 1)

,

it is clear that limn→∞ |H(n + 1)/a(n + 1)− (Λax)(n + 1)| = 0 so H is in Ba and we can take
ΛaH = Λax, completing the proof.

7 Proof of Theorems 3.6 and 3.7

7.1 Proof of Theorem 3.6

From (4.6) we have

S∗(n) := max
0≤j≤n

|S(j)| ≤ max
0≤j≤n

{
F(ε) |k|1 + ε |k|1 x∗(j)

}
= F(ε) |k|1 + ε |k|1 x∗(n).

Therefore S∗(n)/x∗(n)→ 0 as n→ ∞.
Our next task is to deduce a lower estimate for x∗+. For n ≥ 0, we get

H∗+(n + 1) = max
0≤j≤n

H(j + 1) ≤ max
0≤j≤n

{H(j + 1) + S(j) + |S(j)|}

≤ max
0≤j≤n

{H(j + 1) + S(j)}+ max
0≤j≤n

|S(j)|

= max
0≤j≤n

x(j + 1) + max
0≤j≤n

|S(j)| ≤ max
0≤j≤n+1

x(j) + S∗(n)

≤ x∗+(n + 1) + S∗(n + 1).

Therefore by definition,
x∗+(n) ≥ H∗+(n)− S∗(n), n ≥ 1. (7.1)

We next obtain a lower estimate for x∗−. Since −x(n + 1) + S(n) = −H(n + 1), we have

H∗−(n + 1) = max
0≤j≤n

(
− x(j + 1) + S(j)

)
≤ max

0≤j≤n

(
− x(j + 1) + |S(j)|

)
≤ max

0≤j≤n

(
− x(j + 1)

)
+ max

0≤j≤n
|S(j)| = max

1≤l≤n+1

(
− x(l)

)
+ S∗(n)

≤ max
0≤j≤n+1

(
− x(j)

)
+ S∗(n) ≤ x∗−(n + 1) + S∗(n) ≤ x∗−(n + 1) + S∗(n + 1).

Thus
x∗−(n) ≥ H∗−(n)− S∗(n), n ≥ 1. (7.2)

We now prove part (i). By Theorem 3.2, x∗(n)/H∗(n) → 1 as n → ∞. Since λ ∈ [0, 1),
x∗(n)/H∗+(n) → 1 as n → ∞. Clearly x∗+(n) ≤ x∗(n). Therefore lim supn→∞ x∗+(n)/H∗+(n) ≤
1. We now get a lower estimate. Since S∗(n)/x∗(n)→ 0, x∗(n)/H∗(n)→ 1, H∗+(n)/H∗(n)→
1 as n → ∞, we have S∗(n)/H∗+(n) → 0 as n → ∞. Therefore, by (7.1) we have the bound
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lim infn→∞ x∗+(n)/H∗+(n) ≥ 1. This implies that x∗+(n)/H∗+(n) → 1 as n → ∞ as claimed.
Thus limn→∞ x∗(n)/H∗+(n) = 1. This completes the proof of part (i). The proof of part (ii) is
symmetric and omitted.

We now prove part (iii). By Theorem 3.2, we have x∗(n)/H∗(n) → 1 as n → ∞. Since
H∗+(n) ∼ H∗−(n)as n → ∞, we have H∗(n) ∼ H∗+(n) ∼ H∗−(n) as n → ∞. Then we
have S∗(n)/H∗−(n) → 0 as n → ∞ because x∗(n)/H∗(n) → 1, S∗(n)/x∗(n) → 0 and
H∗(n)/H∗−(n)→ 1 as n→ ∞. Hence by (7.2) we get

lim inf
n→∞

x∗−(n)
H∗−(n)

≥ lim inf
n→∞

{
H∗−(n)
H∗−(n)

− S∗(n)
H∗−(n)

}
= 1.

On the other hand, as x∗−(n) ≤ x∗(n) we get

lim sup
n→∞

x∗−(n)
H∗−(n)

≤ lim sup
n→∞

{
x∗(n)
H∗(n)

· H∗(n)
H∗−(n)

}
= 1

and therefore limn→∞ x∗−(n)/H∗−(n) = 1. We now deal with the asymptotic behaviour of x∗+.
As n→ ∞, we have

S∗(n)
H∗+(n)

=
S∗(n)
H∗−(n)

· H∗−(n)
H∗+(n)

→ 0.

Therefore from (7.1) the inequality

lim inf
n→∞

x∗+(n)
H∗+(n)

≥ lim inf
n→∞

{
1− S∗(n)

H∗+(n)

}
= 1

results. Finally, since

lim sup
n→∞

x∗+(n)
H∗+(n)

≤ lim sup
n→∞

x∗(n)
H∗+(n)

= lim sup
n→∞

{
x∗(n)
H∗(n)

· H∗(n)
H∗−(n)

}
= 1,

we have limn→∞ x∗+(n)/H∗+(n) = 1, completing the proof of part (iii).

7.2 Proof of Theorem 3.7

We start by deducing an auxiliary upper estimate for a quantity related to x∗−. To do this we
start by writing for n ≥ 0

max
1≤l≤n+1

(−x(l)) = max
0≤j≤n

(−x(j + 1)) = max
0≤j≤n

{−H(j + 1)− S(j)}

≤ max
0≤j≤n

{−H(j + 1) + |S(j)|} ≤ max
0≤j≤n

(−H(j + 1)) + max
0≤j≤n

|S(j)|

= H∗−(n + 1) + S∗(n) ≤ H∗−(n + 1) + S∗(n + 1).

Therefore
max
1≤l≤n

(−x(l)) ≤ H∗−(n) + S∗(n), n ≥ 1. (7.3)

A corresponding auxiliary estimate for x∗+ is also needed. By arguing as above we obtain

max
1≤l≤n

x(l) ≤ H∗+(n) + S∗(n), n ≥ 1. (7.4)

We are now in a position to prove part (i). Start by considering the case that λ ∈ (0, 1).
Then H∗(n) ∼ H∗+(n) ∼ H∗−(n)/λ as n → ∞, and H∗−(n) → ∞ as n → ∞. By part (i) of
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Theorem 3.6 we have x∗+(n)/H∗+(n) → 1 as n → ∞. Next as x∗(n)/H∗(n) → 1 as n → ∞ and
S∗(n)/x∗(n)→ 0 as n→ ∞, we have as n→ ∞ that

S∗(n)
H∗−(n)

=
S∗(n)
x∗(n)

· x∗(n)
H∗(n)

· H∗(n)
H∗−(n)

→ 0 · 1 · 1
λ
= 0.

Thus by (7.2) we have lim infn→∞ x∗−(n)/H∗−(n) ≥ 1, which also implies that x∗−(n) → ∞ as
n→ ∞. Therefore there exists N1 ≥ 1 such that x∗−(n) > −x(0) for all n ≥ N1. Hence by (7.3),
we have for n ≥ N1

x∗−(n) = max(−x(0), max
1≤l≤n

(−x(l))) = max
1≤l≤n

(−x(l)) ≤ H∗−(n) + S∗(n).

Since S∗(n)/H∗−(n) → 0 as n → ∞ we get lim supn→∞ x∗−(n)/H∗−(n) ≤ 1. Therefore we have
limn→∞ x∗−(n)/H∗−(n) = 1. This proves part (i) in the case when λ ∈ (0, 1). Part (iii) of
Theorem 3.6 yields the result if λ = 1.

Next we consider the case where λ ∈ (1, ∞). Then H∗ ∼ H∗− ∼ λH∗+, and H∗+(n) → ∞ as
n → ∞. By part (ii) of Theorem 3.6 we have x∗−(n)/H∗−(n) → 1 as n → ∞. Furthermore, as
x∗(n)/H∗(n)→ 1 as n→ ∞ and S∗(n)/x∗(n)→ 0 as n→ ∞, we have as n→ ∞ that

S∗(n)
H∗+(n)

=
S∗(n)
x∗(n)

· x∗(n)
H∗(n)

· H∗(n)
H∗+(n)

→ 0 · 1 · 1
λ
= 0.

Thus by (7.1) we have lim infn→∞ x∗+(n)/H∗+(n) ≥ 1, which also implies that x∗+(n) → ∞ as
n → ∞. Therefore there exists N1 ≥ 1 such that x∗+(n) > x(0) for all n ≥ N1. Hence by (7.4),
we have for n ≥ N1

x∗+(n) = max
0≤j≤n

x(j) = max(x(0), max
1≤l≤n

x(l)) = max
1≤l≤n

x(l) ≤ H∗+(n) + S∗(n).

Since S∗(n)/H∗+(n) → 0 as n → ∞ we get lim supn→∞ x∗+(n)/H∗+(n) ≤ 1. Hence we have
limn→∞ x∗+(n)/H∗+(n) = 1. This proves part (i) in the case when λ ∈ (1, ∞), and therefore
completes the proof of part (i).

To prove part (ii), when λ = 0, note part (i) of Theorem 3.6 already gives x∗+(n)/H∗+(n)→ 1
as n→ ∞. Since H∗ ∼ H∗+ as n→ ∞ and S∗(n)/x∗(n)→ 0 as n→ ∞, we have as n→ ∞

S∗(n)
H∗+(n)

=
S∗(n)
x∗(n)

· x∗(n)
H∗(n)

· H∗(n)
H∗+(n)

→ 0 · 1 · 1 = 0.

From (7.3) we have −x(1) ≤ max1≤l≤n(−x(l)) ≤ H∗−(n) + S∗(n) for n ≥ 1. Therefore as
H∗+(n)→ ∞, H∗−(n)/H∗+(n)→ 0 and S∗(n)/H∗+(n)→ 0 as n→ ∞, we have

0 ≤ lim inf
n→∞

max1≤l≤n(−x(l))
H∗+(n)

≤ lim sup
n→∞

max1≤l≤n(−x(l))
H∗+(n)

≤ 0,

so limn→∞ max1≤l≤n(−x(l))/H∗+(n) = 0. Since x∗−(n) = max(−x(0), max1≤l≤n(−x(l))), and
H∗+(n)→ ∞ as n→ ∞, the above limit yields x∗−(n)/H∗+(n)→ 0 as n→ ∞, as needed.

To prove part (iii), when λ = ∞, note part (ii) of Theorem 3.6 gives x∗−(n)/H∗−(n) → 1 as
n→ ∞. Since H∗(n) ∼ H∗−(n) as n→ ∞ and S∗(n)/x∗(n)→ 0 as n→ ∞, we have as n→ ∞

S∗(n)
H∗−(n)

=
S∗(n)
x∗(n)

· x∗(n)
H∗(n)

· H∗(n)
H∗−(n)

→ 0 · 1 · 1 = 0.
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From (7.4) we have
x(1) ≤ max

1≤l≤n
x(l) ≤ H∗+(n) + S∗(n), n ≥ 1.

Therefore as H∗−(n)→ ∞, H∗+(n)/H∗−(n)→ 0 and S∗(n)/H∗−(n)→ 0 as n→ ∞, we have

0 ≤ lim inf
n→∞

max1≤l≤n x(l)
H∗−(n)

≤ lim sup
n→∞

max1≤l≤n x(l)
H∗−(n)

≤ 0,

so limn→∞ max1≤l≤n x(l)/H∗−(n) = 0. Since x∗+(n) = max(x(0), max1≤l≤n x(l)), and H∗−(n)→
∞ as n→ ∞, the above limit yields x∗+(n)/H∗−(n)→ 0 as n→ ∞, as needed.

8 Proof of Theorem 3.8

8.1 Preliminary result

We start by proving a preliminary result.

Lemma 8.1. If
(
a(n)

)
n≥1 is an increasing sequence with a(n)→ ∞ as n→ ∞, then

(a)

lim sup
n→∞

|H(n)|
a(n)

= 1 is equivalent to lim sup
n→∞

H∗(n)
a(n)

= 1;

(b)

lim sup
n→∞

|H(n)|
a(n)

= +∞ is equivalent to lim sup
n→∞

H∗(n)
a(n)

= +∞;

(c)

lim sup
n→∞

|H(n)|
a(n)

= 0 is equivalent to lim sup
n→∞

H∗(n)
a(n)

= 0.

Proof. We start with the proof of part (a), and begin by proving that the first statement implies
the second. By hypothesis |H(n)| < (1 + ε)a(n) for all n ≥ N1(ε). Let n ≥ N1 + 1. Then

max
1≤j≤n

|H(j)| = max
(

max
1≤j≤N1

|H(j)| , max
N1+1≤j≤n

|H(j)|
)

≤ max
(

max
1≤j≤N1

|H(j)| , max
N1+1≤j≤n

(1 + ε)a(j)
)

= max
(

max
1≤j≤N1

|H(j)| , (1 + ε)a(n)
)

.

Thus lim supn→∞ max1≤j≤n |H(j)|/a(n) ≤ 1 + ε. Letting ε→ 0 gives

lim sup
n→∞

max1≤j≤n |H(j)|
a(n)

≤ 1. (8.1)

Since max1≤j≤n |H(j)| ≥ |H(n)|, we have that

lim sup
n→∞

max1≤j≤n |H(j)|
a(n)

≥ lim sup
n→∞

|H(n)|
a(n)

= 1 (8.2)

by hypothesis. Combining (8.1) and (8.2) proves the first implication in part (a).
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To prove the reverse implication in part (a), we begin with the assumption that

lim sup
n→∞

max1≤j≤n |H(j)|
a(n)

= 1. (8.3)

Again, we have that max1≤j≤n |H(j)| ≥ |H(n)| and so

lim sup
n→∞

|H(n)|
a(n)

≤ lim sup
n→∞

H∗(n)
a(n)

= 1.

Therefore, there exists λ ∈ [0, 1] such that lim supn→∞ |H(n)|/a(n) = λ. Now suppose
λ ∈ (0, 1) and define aλ(n) := λa(n). Then lim supn→∞ |H(n)| /aλ(n) = 1. Applying the im-
plication from the first part of the lemma and noting that aλ(n) is increasing with aλ(n)→ ∞
as n→ ∞ gives lim supn→∞ H∗(n)/aλ(n) = 1 so lim supn→∞ H∗(n)/a(n) = λ. However, since
we have assumed λ ∈ (0, 1), this contradicts (8.3) and hence we can have λ = 0 or λ = 1.
Ruling out the case λ = 0 proves the statement.

If λ = 0, then for every ε ∈ (0, 1) there is N1(ε) such that |H(n)| < εa(n) for all n ≥ N1(ε).
Following the same argument as in the first part of the proof, this gives

max
1≤j≤n

|H(j)| ≤ max
(

εa(n), max
1≤j≤N1

|H(j)|
)

, n ≥ N1 + 1.

Thus letting n → ∞ now yields lim supn→∞ H∗(n)/a(n) ≤ ε and letting ε → 0+ gives
lim supn→∞ H∗(n)/a(n) = 0. This again results in a contradiction, since by assumption
lim supn→∞ H∗(n)/a(n) = 1. Hence λ = 1, concluding the proof of part (a).

To prove the forward implication in (b), note that |H(n)| ≤ max1≤j≤n |H(j)|. To prove the
reverse implication, suppose otherwise, i.e., that λ := lim supn→∞ |H(n)|/a(n) ∈ [0, ∞). Then
there is N > 0 such that for all n ≥ N, |H(n)| ≤ (λ + 1)a(n). Hence for n ≥ N we may use
the monotonicity of a to get

H∗(n) = max
(

max
1≤j≤N−1

|H(j)|, max
N≤j≤n

|H(j)|
)
≤ max

1≤j≤N−1
|H(j)|+ max

N≤j≤n
|H(j)|

= max
1≤j≤N−1

|H(j)|+ (λ + 1)a(n).

Since a(n) → ∞ as n → ∞, we have +∞ = lim supn→∞ H∗(n)/a(n) ≤ λ + 1 < +∞, a
contradiction.

To prove part (c), note that because |H(n)| ≤ H∗(n), the second statement in (c) proves the
first. Suppose the first statement is true. Then for every ε > 0 there is an N(ε) > 0 such that
|H(n)| < εa(n) for all n ≥ N(ε). Thus for n ≥ N(ε) we may use the monotonicity of a to get

H∗(n) = max
(

max
1≤j≤N(ε)−1

|H(j)|, max
N(ε)≤j≤n

|H(j)|
)

≤ max
1≤j≤N(ε)−1

|H(j)|+ max
N(ε)≤j≤n

|H(j)|

≤ max
1≤j≤N(ε)−1

|H(j)|+ εa(n).

Since a(n)→ ∞ as n→ ∞, we have lim supn→∞ H∗(n)/a(n) ≤ ε, and letting ε→ 0 completes
the proof.
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8.2 Proof of Theorem 3.8

We start with the proof that statement (a) implies statement (b) implies statement (c) implies
statement (d) implies statement (a) in the case that ρ ∈ (0, ∞). Define aρ(n) = ρa(n). Then
statement (a) implies lim supn→∞ |H(n)|/aρ(n) = 1. By part (a) of Lemma 8.1, it follows that
lim supn→∞ H∗(n)/aρ(n) = 1. This implies statement (b). Since x∗(n)/H∗(n) → 1 as n → ∞,
we have lim supn→∞ x∗(n)/aρ(n) = 1. This is statement (d). From part (a) of Lemma 8.1 it fol-
lows that this is equivalent to lim supn→∞ |x(n)|/aρ(n) = 1 which is equivalent to statement
(c). Since x∗(n)/H∗(n)→ 1 as n→ ∞, from statement (d) we have lim supn→∞ H∗(n)/aρ(n) =
1. By Lemma 8.1 this is equivalent to lim supn→∞ |H(n)|/aρ(n) = 1, which is precisely state-
ment (a).

Suppose now ρ = 0. Again we show that (a) implies (b) implies (c) implies (d) implies (a).
By part (c) of Lemma 8.1, (a) implies max1≤j≤n |H(j)| /a(n) → 0 as n → ∞, which is part (b).
Since x∗(n)/H∗(n) → 1 as n → ∞. Hence x∗(n)/a(n) → 0 as n → ∞, which is statement (d).
By part (c) of Lemma 8.1, this is equivalent to (c). From statement (d) and x∗(n)/H∗(n) → 1
as n→ ∞, we have lim supn→∞ H∗(n)/a(n) = 0. This is equivalent to statement (a) by part (c)
of Lemma 8.1.

Suppose lastly that ρ = ∞. Statement (a) implies statement (b) from part (b) of Lemma 8.1.
Since x∗(n)/H∗(n) → 1 as n → ∞, we have lim supn→∞ x∗(n)/a(n) = +∞. By Lemma 8.1
part (b), we have lim supn→∞ |x(n)|/a(n) = +∞, which is (c). Applying Lemma 8.1 part (b)
again gives statement (d). Finally, if (d) holds, since x∗(n)/H∗(n)→ 1 as n→ ∞ we have that

lim sup
n→∞

H∗(n)
a(n)

= lim sup
n→∞

H∗(n)
x∗(n)

· x∗(n)
a(n)

= +∞.

By part (b) of Lemma 8.1, this is equivalent to statement (a), as required.

8.3 Proof of Theorem 3.10

The proof of Theorem 3.10 requires a result almost parallel to Lemma 8.1. We start by proving
this auxiliary result.

Lemma 8.2. If
(
a(n)

)
n≥1 is an increasing sequence with a(n)→ ∞ as n→ ∞, then

(a)

lim sup
n→∞

H(n)
a(n)

= 1 is equivalent to lim sup
n→∞

max1≤j≤n H(j)
a(n)

= 1;

(b)

lim sup
n→∞

H(n)
a(n)

= 0 is equivalent to lim sup
n→∞

max1≤j≤n H(j)
a(n)

= 0.

Proof. We start with the proof of part (a), and prove the left to right implication first. By
hypothesis H(n) < (1 + ε)a(n) for all n ≥ N1(ε). Let n ≥ N1 + 1. Then

max
1≤j≤n

H(j) = max
(

max
1≤j≤N1

H(j), max
N1+1≤j≤n

H(j)
)

≤ max
(

max
1≤j≤N1

H(j), max
N1+1≤j≤n

(1 + ε)a(j)
)

= max
(

max
1≤j≤N1

H(j), (1 + ε)a(n)
)

.
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Thus lim supn→∞ max1≤j≤n H(j)/a(n) ≤ 1 + ε, and letting ε→ 0 gives

lim sup
n→∞

max1≤j≤n H(j)
a(n)

≤ 1. (8.4)

Since max1≤j≤n H(j) ≥ H(n), we have that

lim sup
n→∞

max1≤j≤n H(j)
a(n)

≥ lim sup
n→∞

H(n)
a(n)

= 1 (8.5)

by hypothesis. Combining (8.4) and (8.5) proves the forward implication.
To prove the reverse implication in part (a), we begin with the assumption that

lim sup
n→∞

max1≤j≤n H(j)
a(n)

= 1. (8.6)

Again, we have that max1≤j≤n H(j) ≥ H(n) and so

λ := lim sup
n→∞

H(n)
a(n)

≤ lim sup
n→∞

H∗+(n)
a(n)

= 1.

Also, by (8.6), there is an integer sequence τn ↑ ∞ such that max1≤j≤τn H(j) > (1− ε)a(τn)→
∞ as n → ∞. Thus max1≤j≤n H(j) → ∞, and so lim supn→∞ H(n) = +∞. Hence λ ≥ 0.
Therefore, λ ∈ [0, 1]. Now suppose λ ∈ (0, 1) and define aλ(n) := λa(n). Then we have
lim supn→∞ H(n)/aλ(n) = 1. Applying the implication from the first part of the lemma
and noting that aλ(n) is increasing with aλ(n) → ∞ as n → ∞, we arrive at the limit
lim supn→∞ max1≤j≤n H(j)/aλ(n) = 1. Therefore we have lim supn→∞ max1≤j≤n H(j)/a(n) =
λ. However, since we have assumed λ ∈ (0, 1), this contradicts (8.6) and hence we can have
λ = 0 or λ = 1. Ruling out the case λ = 0 proves the statement.

If λ = 0, then for every ε ∈ (0, 1) there is N1(ε) such that H(n) < εa(n) for all n ≥ N1(ε).
Following the same argument as in the first part of the proof, this gives

max
1≤j≤n

H(j) ≤ max
(

εa(n), max
1≤j≤N1

H(j)
)

, n ≥ N1 + 1.

Thus letting n → ∞ now yields lim supn→∞ max1≤j≤n H(j)/a(n) ≤ ε and letting ε → 0+

gives lim supn→∞ max1≤j≤n H(j)/a(n) ≤ 0. On the other hand, max1≤j≤n H(j) ≥ H(1) so
lim supn→∞ max1≤j≤n H(j)/a(n) ≥ 0. Therefore, we have lim supn→∞ max1≤j≤n H(j)/a(n) =

0. This is again a contradiction since by assumption lim supn→∞ max1≤j≤n H(j)/a(n) = 1.
Therefore λ = 1 which concludes the proof of part (a).

To prove part (b), note that because H(n) ≤ H∗+(n), the second statement in (b) proves the
first. Suppose the first is true. Then H(n) < εa(n) for all n ≥ N(ε). Thus for n ≥ N(ε) we
may use the monotonicity of a to get

H∗+(n) = max
(

max
1≤j≤N(ε)−1

H(j), max
N(ε)≤j≤n

H(j)
)
≤ max

(
max

1≤j≤N(ε)−1
H(j), εa(n)

)
Since a(n)→ ∞ as n→ ∞, we have lim supn→∞ H∗+(n)/a(n) ≤ ε, and letting ε→ 0 completes
the proof.

We are now in a position to prove Theorem 3.10.
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Proof of Theorem 3.10. Suppose λ ∈ (0, ∞). Therefore, with a(n) = a+(n)

lim sup
n→∞

|H(n)|
a(n)

= lim sup
n→∞

max(H(n),−H(n))
a+(n)

= max(ρ+, ρ−λ).

Therefore by Theorem 3.8

lim sup
n→∞

|x(n)|
a(n)

= max(ρ+, ρ−λ), lim sup
n→∞

x∗(n)
a(n)

= max(ρ+, ρ−λ).

Moreover, by Lemma 8.2

lim sup
n→∞

H∗+(n)
a+(n)

=: ρ+ ∈ (0, ∞],

so

lim sup
n→∞

H∗+(n)
a(n)

=: ρ+ ∈ (0, ∞].

As usual, we have for every ε > 0 that S∗(n) ≤ |k|1F(ε) + ε|k|1x∗(n) for n ≥ 1. Therefore,
we have that S∗(n)/a(n) → 0 as n → ∞, so S∗(n)/a+(n) → 0 as n → ∞ and as λ ∈ (0, ∞),
S∗(n)/a−(n) → 0 as n → ∞. Since x∗+(n) ≥ H∗+(n)− S∗(n) and max1≤j≤n x(j) ≤ H∗+(n) +
S∗(n), we have

lim sup
n→∞

x∗+(n)
a+(n)

≥ lim sup
n→∞

{
H∗+(n)
a+(n)

− S∗(n)
a+(n)

}
= lim sup

n→∞

H∗+(n)
a+(n)

= ρ+.

and

lim sup
n→∞

max1≤j≤n x(j)
a+(n)

≤ lim sup
n→∞

H∗+(n)
a+(n)

+ lim sup
n→∞

S∗(n)
a+(n)

= ρ+.

Since x∗+(n) = max(x(0), max1≤j≤n x(j)), and lim supn→∞ x∗+(n) = ∞ (so x∗+(n) → ∞ as n →
∞ by monotonicity), we have that x∗+(n) = max1≤j≤n x(j)) for all n sufficiently large. Hence
lim supn→∞ max1≤j≤n x(j)/a+(n) = ρ+. By Lemma 8.2, this gives lim supn→∞ x(n)/a+(n) =

ρ+ as required.
On the other hand, since x∗−(n) ≥ H∗−(n)− S∗(n) and max1≤j≤n(−x(j)) ≤ H∗−(n) + S∗(n),

lim sup
n→∞

x∗−(n)
a−(n)

≥ lim sup
n→∞

{
H∗−(n)
a−(n)

− S∗(n)
a−(n)

}
= lim sup

n→∞

H∗−(n)
a−(n)

= ρ−.

and

lim sup
n→∞

max1≤j≤n(−x(j))
a−(n)

≤ lim sup
n→∞

H∗−(n)
a−(n)

+ lim sup
n→∞

S∗(n)
a−(n)

= ρ−.

Since x∗−(n) = max(−x(0), max1≤j≤n(−x(j))), and lim supn→∞ x∗−(n) = ∞ (so x∗−(n) →
∞ as n → ∞ by monotonicity), we have that x∗−(n) = max1≤j≤n(−x(j))) for all n suffi-
ciently large. Hence lim supn→∞ max1≤j≤n−x(j)/a−(n) = ρ−. By Lemma 8.2, this also gives
lim supn→∞−x(n)/a+(n) = ρ+, as required.

Suppose λ = 0. Therefore, with a(n) = a+(n)

lim sup
n→∞

|H(n)|
a(n)

= lim sup
n→∞

max(H(n),−H(n))
a+(n)

= ρ+.

Thus by Theorem 3.8 lim supn→∞ |x(n)|/a(n) = ρ+ and lim supn→∞ x∗(n)/a(n) = ρ+. More-
over, by Lemma 8.2

lim sup
n→∞

H∗+(n)
a+(n)

=: ρ+ ∈ (0, ∞],
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so

lim sup
n→∞

H∗+(n)
a(n)

=: ρ+ ∈ (0, ∞],

Since for every ε > 0 that S∗(n) ≤ |k|1F(ε)+ ε|k|1x∗(n) for n ≥ 1, it follows that S∗(n)/a(n)→
0 as n → ∞, and so S∗(n)/a+(n) → 0 as n → ∞. Since x∗+(n) ≥ H∗+(n) − S∗(n) and
max1≤j≤n x(j) ≤ H∗+(n) + S∗(n), we have

lim sup
n→∞

x∗+(n)
a+(n)

≥ lim sup
n→∞

{
H∗+(n)
a+(n)

− S∗(n)
a+(n)

}
= lim sup

n→∞

H∗+(n)
a+(n)

= ρ+.

and

lim sup
n→∞

max1≤j≤n x(j)
a+(n)

≤ lim sup
n→∞

H∗+(n)
a+(n)

+ lim sup
n→∞

S∗(n)
a+(n)

= ρ+.

Since x∗+(n) = max(x(0), max1≤j≤n x(j)), and lim supn→∞ x∗+(n) = ∞ (so x∗+(n) → ∞ as n →
∞ by monotonicity), we have that x∗+(n) = max1≤j≤n x(j) for all n sufficiently large. Hence
lim supn→∞ max1≤j≤n x(j)/a+(n) = ρ+. By Lemma 8.2, this gives lim supn→∞ x(n)/a+(n) =

ρ+, as required.
On the other hand, because H∗−(n)/a+(n) → 0 as n → ∞, and x∗−(n) ≥ H∗−(n)− S∗(n)

and max1≤j≤n(−x(j)) ≤ H∗−(n) + S∗(n), we have

lim sup
n→∞

max1≤j≤n(−x(j))
a+(n)

≤ lim sup
n→∞

H∗−(n)
a+(n)

+ lim sup
n→∞

S∗(n)
a+(n)

= 0.

On the other hand for n ≥ 1, we have max1≤j≤n(−x(j)) ≥ −x(1), so

lim sup
n→∞

max1≤j≤n(−x(j))
a+(n)

≥ 0.

Hence limn→∞ max1≤j≤n(−x(j))/a+(n) = 0. Since x∗−(n) = max(−x(0), max1≤j≤n(−x(j))),
we either have that x∗−(n) tends to a finite limit and lim supn→∞ x∗−(n)/a−(n) = 0, or x∗−(n)→
∞ as n → ∞, in which case x∗−(n) = max1≤j≤n(−x(j))) for all n sufficiently large, and once
again we have lim supn→∞ x∗−(n)/a−(n) = 0, as we need. By Lemma 8.2, this also gives
lim supn→∞−x(n)/a+(n) = 0, as required.

9 Proof of Theorem 3.15

We have that | f (x)| ≤ F(ε) + ε|x| for all x ∈ R. Choose ε ∈ (0, 1) such that 2ε |k|1 < 1 and
ε = ε(η) is given by 2ε |k|1 = 1− 1

1+η , or equivalently

1 + η =
1

1− 2ε |k|1
. (9.1)

Since ∑∞
j=0 |k(j)| > 0 there exists N1 ∈N such that

n

∑
j=0
|k(j)| ≥ 1

2

∞

∑
j=0
|k(j)| , n ≥ N1. (9.2)

For fixed n ≥ N1, define kn : [0, . . . , n) ∈ [0, ∞) by

kn(j) =
|k(j)|

∑n
l=0 |k(l)|

, j = 0, . . . , n. (9.3)
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Then for all j ∈ 0, . . . , n, ∑n
j=0 kn(j) = 1 and kn(j) ≥ 0. Hence for any sequence x we have

n

∑
j=0
|k(j)| |x(n− j)| =

n

∑
j=0

kn(j) · |x(n− j)| ·
n

∑
l=0
|k(l)|

≤ |k|1
n

∑
j=0

kn(j) |x(n− j)| .

Let n ≥ N1, then using this estimate, (9.3) and (2.5) we have

|x(n + 1)| ≤ |H(n + 1)|+ F(ε) |k|1 + ε |k|1
n

∑
j=0

kn(j) |x(n− j)| . (9.4)

Define
t1 = 1− 2ε |k|1 , t2 = ε |k|1 (9.5)

which gives t1 = 1/(1+ η). Then t1, t2 ∈ (0, 1) and 1− t1− t2 = ε |k|1. Now, because kn(j) ≥ 0
and ∑n

j=0 kn(j) = 1, we have, by Jensen’s Inequality (Lemma 3.14) that

ϕ

( n

∑
j=0

kn(j) |x(n− j)|
)
≤

n

∑
j=0

kn(j)ϕ (|x(n− j)|) . (9.6)

Since ϕ is an increasing function we have, from (9.4) and (9.5), that

ϕ (|x(n + 1)|) ≤ ϕ

(
t1(1 + η) |H(n + 1)|+ t2

(
F(ε)

ε

)
+ (1− t1 − t2)

n

∑
j=0

(
kn(j) |x(n− j)|

))
=: an,

where we used (9.1) at the penultimate step. By the convexity of ϕ, and applying Jensen’s
Inequality (Lemma 3.14) twice, we have the following:

an = ϕ

(
t1(1 + η) |H(n + 1)|+ t2

(
F(ε)

ε

)
+ (1− t1 − t2)

n

∑
j=0

(
kn(j) |x(n− j)|

))

≤ t1ϕ
(
(1 + η) |H(n + 1)|

)
+ t2ϕ

(
F(ε)

ε

)
+ (1− t1 − t2)ϕ

(
n

∑
j=0

kn(j) |x(n− j)|
)

=
1

1 + η
ϕ
(
(1 + η) |H(n + 1)|

)
+ ε |k|1 ϕ

(
F(ε)

ε

)
+ ε |k|1

n

∑
j=0

kn(j)ϕ (|x(n− j)|)

by (9.6). Hence, for n ≥ N1

ϕ (|x(n + 1)|)

≤ 1
1 + η

ϕ
(
(1 + η) |H(n + 1)|

)
+ ε |k|1 ϕ

(
F(ε)

ε

)
+ ε |k|1

n

∑
j=0

kn(j)ϕ (|x(n− j)|)

=
1

1 + η
ϕ
(
(1 + η) |H(n + 1)|

)
+ ε |k|1 ϕ

(
F(ε)

ε

)
+ ε |k|1

n

∑
j=0

|k(j)|
∑n

l=0 |k(l)|
ϕ (|x(n− j)|) .

If n ≥ N1, then by (9.2) we have ∑n
j=0 |k(l)| ≥ 1

2 |k|1. Thus

ϕ (|x(n + 1)|) ≤
ϕ
(
(1 + η) |H(n + 1)|

)
1 + η

+ ε |k|1 ϕ

(
F(ε)

ε

)
+ 2ε

n

∑
j=0
|k(j)| ϕ (|x(n− j)|) .
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Now define ϕ∗x := max0≤j≤N1+1 ϕ (|x(j)|). Then

ϕ (|x(n + 1)|) ≤ ϕ∗x + C(η) +
1

1 + η
ϕ
(
(1 + η) |H(n + 1)|

)
+ 2ε(η)

n

∑
j=0
|k(n− j)| ϕ (|x(j)|) ,

where

C(η) = ε(η) |k|1 ϕ

(
F(ε(η))

ε(η)

)
< +∞.

For 0 ≤ n ≤ N1,

ϕ (|x(n + 1)|) ≤ max
0≤j≤N1

ϕ (|x(j + 1)|) ≤ max
0≤j≤N1

ϕ (|x(j)|) = ϕ∗x.

Thus for every n ≥ 0,

ϕ (|x(n + 1)|) ≤ ϕ∗x + C(η) +
1

1 + η
ϕ
(
(1 + η) |H(n + 1)|

)
+ 2ε(η)

n

∑
j=0
|k(n− j)| ϕ (|x(j)|) ,

and hence for all N ≥ 0

N

∑
n=0

ϕ (|x(n + 1)|) ≤
(

ϕ∗x + C(η)
)
(N + 1) +

1
1 + η

N

∑
n=0

ϕ
(
(1 + η) |H(n + 1)|

+ 2ε(η)
N

∑
n=0

n

∑
j=0
|k(n− j)| ϕ (|x(j)|) .

Now, keeping in mind that 0 ≤ j ≤ n ≤ N,

N

∑
n=0

n

∑
j=0
|k(n− j)| ϕ (|x(j)|) =

N

∑
j=0

( N

∑
n=j
|k(n− j)|

)
ϕ (|x(j)|) ≤ |k|1

N

∑
j=0

ϕ (|x(j)|) .

Thus for n ≥ 0 we have

n

∑
j=0

ϕ (|x(j + 1)|) ≤
(

ϕ∗x + C(η)
)
(n + 1) +

1
1 + η

n

∑
j=0

ϕ
(
(1 + η) |H(j + 1)|

)
+ 2ε(η) |k|1

n

∑
j=0

ϕ (|x(j)|) .

Therefore, defining Sn := ∑n
j=0 ϕ (|x(j)|), we have

n+1

∑
j=1

ϕ (|x(j)|) ≤
(

ϕ∗x + C(η)
)
(n + 1) +

1
1 + η

n+1

∑
j=1

ϕ
(
(1 + η) |H(j)|

)
+ 2ε(η) |k|1 Sn,

and so, as Sn ≤ Sn+1, we have

Sn+1 ≤ ϕ (|x(0)|) +
(

ϕ∗x + C(η)
)
(n + 1) +

1
1 + η

n+1

∑
j=1

ϕ
(
(1 + η) |H(j)|

)
+ 2ε(η) |k|1 Sn+1.

Since 1− 2ε(η) |k|1 > 0, we have, for all n ≥ 0

(
1− 2ε(η) |k|1

) n+1

∑
j=0

ϕ (|x(j)|) ≤ ϕ (|x(0)|) +
(

ϕ∗x + C(η)
)
(n + 1) +

1
1 + η

n+1

∑
j=1

ϕ
(
(1 + η) |H(j)|

)
.
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Hence, for n ≥ 1

n

∑
j=0

ϕ (|x(j)|) ≤ (1 + η)ϕ (|x(0)|) +
(

ϕ∗x + C(η)
)
n(1 + η) +

n

∑
j=1

ϕ
(
(1 + η) |H(j)|

)
and consequently,

lim sup
n→∞

1
n

n

∑
j=0

ϕ (|x(j)|) ≤
(

ϕ∗x + C(η)
)
(1 + η) + lim sup

n→∞

1
n

n

∑
j=1

ϕ
(
(1 + η) |H(j)|

)
< +∞.

By assumption, this proves part (i). To prove part (ii), let ε ∈ (0, 1) be such that 2ε |k|1 < 1
and ε obeys (9.1). Rearranging (2.5), taking the triangle inequality and using (4.1) gives

|H(n + 1)| ≤ |x(n + 1)|+ F(ε) |k|1 + ε
n

∑
j=0
|k(n− j)| |x(j)| .

Letting n ≥ N1 with N1 given by (9.2), and kn(j) defined by (9.3), we obtain

|H(n + 1)| ≤ |x(n + 1)|+ F(ε) |k|1 + ε |k|1
n

∑
j=0

kn(j) |x(j)| .

Now, define θ1 = ε |k|1, θ2 = 1− 2ε |k|1, so θ1, θ2 ∈ (0, 1) and 1− θ1 − θ2 = ε |k|1.
Since ϕ is an increasing function, by Jensen’s inequality (Lemma 3.14), we obtain

ϕ (|H(n + 1)|)

≤ ϕ

(
|x(n + 1)|+ F(ε) |k|1 + ε |k|1

n

∑
j=0

kn(j) |x(j)|
)

= ϕ

(
θ1

(
F(ε) |k|1

θ1

)
+ θ2(1 + η) |x(n + 1)|+ (1− θ1 − θ2)

n

∑
j=0

kn(j) |x(n− j)|
)

≤ θ1ϕ

(
F(ε) |k|1

θ1

)
+ θ2ϕ

(
(1 + η) |x(n + 1)|

)
+ (1− θ1 − θ2)ϕ

( n

∑
j=0

kn(j) |x(n− j)|
)

.

Applying Lemma 3.14 a second time gives

ϕ (|H(n + 1)|)

≤ θ1 ϕ

(
F(ε) |k|1

θ1

)
+ θ2ϕ

(
(1 + η) |x(n + 1)|

)
+ ε |k|1

n

∑
j=0

kn(j)ϕ
(
|x(n− j)|

)
= θ1 ϕ

(
F(ε) |k|1

θ1

)
+ θ2ϕ

(
(1 + η) |x(n + 1)|

)
+ ε |k|1

n

∑
j=0

(
|k(j)|

∑n
l=0 |k(l)|

ϕ
(
|x(n− j)|

))
.

For n ≥ N1, by (9.2) we have ∑n
j=0 |k(j)| ≥ 1

2 |k|1. Therefore, for n ≥ N1

ϕ (|H(n + 1)|) ≤ θ1ϕ

(
F(ε) |k|1

θ1

)
+ θ2ϕ

(
(1 + η) |x(n + 1)|

)
+ 2ε

n

∑
j=0
|k(j)| ϕ

(
|x(n− j)|

)
.

Define

D(η) := θ1 (ε(η)) ϕ

(
F(ε) |k|1
θ1ε(η)

)
= ε(η) |k|1 ϕ

(
F(ε(η))

ε(η)

)
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and ϕ∗H := max1≤j≤N1+1 ϕ (|H(n + 1)|). Then for 0 ≤ n ≤ N1, ϕ (|H(n + 1)|) ≤ ϕ∗H and for
n ≥ N1 we obtain

ϕ (|H(n + 1)|) ≤ ϕ∗H + D(η) +
1

1 + η
ϕ
(
(1 + η) |x(n + 1)|

)
+ 2ε(η)

n

∑
j=0
|k(j)| ϕ (|x(n− j)|) .

Hence for n ≥ 0

ϕ (|H(n + 1)|) ≤ ϕ∗H + D(η) +
1

1 + η
ϕ
(
(1 + η) |x(n + 1)|

)
+ 2ε(η)

n

∑
j=0
|k(j)| ϕ (|x(n− j)|) .

and thus for N ≥ 0, we have

N+1

∑
n=1

ϕ (|H(n)|)

=
N

∑
n=0

ϕ (|H(n + 1)|)

≤
(

ϕ∗H + D(η)
)
(N + 1) +

1
1 + η

N

∑
n=0

ϕ
(
(1 + η) |x(n + 1)|

)
+ 2ε(η)

N

∑
n=0

n

∑
j=0
|k(n− j)| ϕ(|x(j)|)

= (ϕ∗H + D(η))(N + 1) +
1

1 + η

N

∑
n=0

ϕ
(
(1 + η) |x(n + 1)|

)
+ 2ε(η)

N

∑
j=0

N

∑
n=j
|k(n− j)| ϕ(|x(j)|)

≤ (ϕ∗H + D(η)) (N + 1) +
1

1 + η

N

∑
n=0

ϕ
(
(1 + η) |x(n + 1)|

)
+ 2ε(η) |k|1

N

∑
j=0

ϕ(|x(j)|)

≤ (ϕ∗H + D(η)) (N + 1) +
1

1 + η

N+1

∑
n=1

ϕ
(
(1 + η) |x(n)|

)
+ 2ε(η) |k|1

N+1

∑
n=0

ϕ
(
(1 + η) |x(n)|

)
≤ (ϕ∗H + D(η)) (N + 1) +

1
1 + η

N+1

∑
n=1

ϕ
(
(1 + η) |x(n)|

)
+

(
1− 1

1 + η

) N+1

∑
n=0

ϕ
(
(1 + η) |x(n)|

)
.

since 2ε(η) |k|1 = 1− 1
1+η . Thus for n ≥ 1

n

∑
j=1

ϕ
(
|h(j)|

)
≤ (ϕ∗H + D(η)) n +

n

∑
j=0

ϕ
(
(1 + η) |x(j)|

)
.

This yields

lim sup
n→∞

1
n

n

∑
j=1

ϕ |h(j)| ≤ ϕ∗H + D(η) + lim sup
n→∞

1
n

n

∑
j=0

ϕ
(
(1 + η) |x(j)|

)
< +∞,

by hypothesis. This proves part (ii) of Theorem 3.15.
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