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Abstract. The linear delay differential equation

x′(t) = p(t)x(t− r)

is considered, where r > 0 and the coefficient p : [t0, ∞) → R is a continuous function
such that p(t) → 0 as t → ∞. In a recent paper [M. Pituk, G. Röst, Bound. Value Probl.
2014:114] an asymptotic description of the solutions has been given in terms of a special
solution of the associated formal adjoint equation and the initial data. In this paper, we
give a representation of the special solution of the formal adjoint equation. Under some
additional conditions, the representation theorem yields explicit asymptotic formulas
for the solutions as t→ ∞.
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1 Introduction

Consider the delay differential equation

x′(t) = p(t)x(t− r), (1.1)

where r > 0 and p : [t0, ∞)→ R is a continuous function. The initial value problem associated
with (1.1) has the form

x(t) = φ(t), t1 − r ≤ t ≤ t1, (1.2)

where t1 ≥ t0 and φ : [t1 − r, t1] → R is a continuous function. Recently, under the smallness
condion ∫ t+r

t
|p(s)| ds→ 0 as t→ ∞, (1.3)

BCorresponding author. Email: gyori@almos.uni-pannon.hu

http://www.math.u-szeged.hu/ejqtde/
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we have given an asymptotic description of the solution of the initial value problem (1.1)
and (1.2) in terms of a special solution of the formal adjoint equation

y′(t) = −p(t + r)y(t + r). (1.4)

We have shown the following theorem (see Theorems 3.1–3.3 in [10]).

Theorem 1.1. Suppose (1.3) holds. Then up to a constant multiple the adjoint equation (1.4) has a
unique solution y on [t0, ∞) which is positive for all large t and satisfies

lim sup
t→∞

y(t + r)
y(t)

< ∞. (1.5)

Furthermore, if x is the solution of the initial value problem (1.1) and (1.2), then

x(t) =
1

y(t)
(

c + o(1)
)
, t→ ∞, (1.6)

where c is a constant given by

c = φ(t1)y(t1) +
∫ t1

t1−r
p(s + r)φ(s)y(s + r) ds. (1.7)

In the sequel, the solution y of the adjoint equation described in Theorem 1.1 will be called
a special solution of Eq. (1.4).

A close look at the proof of Theorem 3.1 in [10] shows that the special solution of the
adjoint equation y has the following additional properties: if t1 ≥ t0 is chosen such that∫ t+r

t
p−(s) ds <

1
e

, t ≥ t1, (1.8)

where p− is the negative part of p defined by p−(t) = max{ 0,−p(t) } for t ≥ t0, then

y(t) > 0, t ≥ t1, (1.9)

and
y(t + r)

y(t)
≤ e, t ≥ t1. (1.10)

Note that in view of the inequality 0 ≤ p− ≤ |p| assumption (1.3) implies that condition (1.8)
is satisfied for all sufficiently large t1.

We emphasize that (1.6) gives a genuine asymptotic representation of the solutions of
Eq. (1.1) in the sense that there exists a solution x of (1.1) for which the constant c in (1.6) is
nonzero. Indeed, if t1 is chosen such that (1.8) is satisfied, then for the solution x of (1.1) with
initial data (1.2) defined by

φ(t) =
1

y(t + r)
, t1 − r ≤ t ≤ t1,

we have (by (1.7)),

c =
y(t1)

y(t1 + r)
+
∫ t1

t1−r
p(s + r) ds ≥ y(t1)

y(t1 + r)
−
∫ t1

t1−r
p−(s + r) ds

≥ 1
e
−
∫ t1

t1−r
p−(s + r) ds =

1
e
−
∫ t1+r

t1

p−(u) du > 0,
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the second and the last inequality being a consequence of (1.10) and (1.8), respectively.
Our previous study [10] was motivated by the Dickman–de Bruijn equation (see [1, 2, 5])

x′(t) = − x(t− 1)
t

(1.11)

for which the special solution of the associated adjoint equation

y′(t) =
y(t + 1)

t + 1
(1.12)

can be given explicitly by y(t) = t for t ≥ 1. Thus, in this case (1.6) leads to the explicit
asymptotic representation

x(t) =
1
t
(

c + o(1)
)
, t→ ∞. (1.13)

For similar qualitative results, see [3, 4, 6–8] and the references therein.
In contrast with the Dickman–de Bruijn equation (1.11), in most cases we do not know an

explicit formula for the special solution of the adjoint equation (1.4). Therefore the purpose
of the present paper is to describe the special solution of the adjoint equation (1.4) in terms
of the coefficient p and the delay r. In Section 2, we prove a new representation theorem for
the special solution of the adjoint equation (1.4) (see Theorem 2.1 below). In Section 3, in The-
orem 3.1, we show that under some additional conditions the representation theorem yields
explicit asymptotic formulas for the solutions of the linear delay differential equation (1.1).

2 Representation of the special solution of the adjoint equation

To simplify the calculations instead of (1.3) we will assume the slightly stronger condition

p(t)→ 0 as t→ ∞. (2.1)

This implies that if t1 ≥ t0 is sufficiently large, then

q = sup
t≥t1

|p(t)| < 1
re

. (2.2)

Clearly, condition (2.2) implies (1.8). Therefore, under condition (2.2), the special solution y of
the adjoint equation has properties (1.9) and (1.10).

In order to formulate our main representation theorem, we need to introduce some auxil-
iary functions. Define

α1(t, s) = −p(s + r) for s ≥ t ≥ t0, (2.3)

and
αk+1(t, s) = −p(s + r)

∫ s+r

t
αk(t, u) du for s ≥ t ≥ t0 (2.4)

for k = 1, 2, 3, . . .

Theorem 2.1. Suppose that (2.1) holds. If t1 ≥ t0 is chosen such that (2.2) is satisfied, then the unique
special solution y of the adjoint equation (1.4) with property y(t1) = 1 is given by

y(t) = exp
(∫ t

t1

σ(s) ds
)

, t ≥ t1, (2.5)
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where σ : [t1, ∞)→ R is defined by

σ(t) =
∞

∑
k=1

αk(t, t), t ≥ t1, (2.6)

the function series on the righ-hand side being uniformly convergent on [t1, ∞).

Before we give a proof of Theorem 2.1, we establish some auxiliary results. Suppose (2.1)
and (2.2) hold. As noted above, if y is a special solution of Eq. (1.4), then conditions (1.9)
and (1.10) are satisfied. Define

β1(t, s) = −p(s + r)
y(s + r)

y(t)
for s ≥ t ≥ t1, (2.7)

and
βk+1(t, s) = −p(s + r)

∫ s+r

t
βk(t, u) du for s ≥ t ≥ t1 (2.8)

and k = 1, 2, 3, . . .
In the following lemmas, we prove some useful identities involving the functions {αk}∞

k=1
and {βk}∞

k=1 defined by (2.3), (2.4), (2.7) and (2.8), respectively.

Lemma 2.2. Supppose (2.1) and (2.2) hold. If y is a special solution of Eq. (1.4), then for every positive
integer k,

αk(t, s) + βk+1(t, s) = βk(t, s) whenever s ≥ t ≥ t1. (2.9)

Proof. We will prove (2.9) by induction on k. We have for s ≥ t ≥ t1,

α1(t, s) + β2(t, s) = −p(s + r)− p(s + r)
∫ s+r

t
β1(t, u) du

= −p(s + r) + p(s + r)
∫ s+r

t
p(u + r)

y(u + r)
y(t)

du

= −p(s + r) +
p(s + r)

y(t)

∫ s+r

t
p(u + r)y(u + r) du

= −p(s + r)− p(s + r)
y(t)

∫ s+r

t
y′(u) du

= −p(s + r)− p(s + r)
y(t)

(y(s + r)− y(t)) = β1(t, s).

Thus, (2.9) holds for k = 1. Now assume that (2.9) holds for some positive integer k. Then

αk+1(t, s) + βk+2(t, s) = −p(s + r)
∫ s+r

t
αk(t, u) du− p(s + r)

∫ s+r

t
βk+1(t, u) du

= −p(s + r)
∫ s+r

t
[αk(t, u) + βk+1(t, u)] du

= −p(s + r)
∫ s+r

t
βk(t, u) du = βk+1(t, s)

for s ≥ t ≥ t1. This proves that (2.9) holds for all k = 1, 2, 3, . . .

Lemma 2.3. Supppose (2.1) and (2.2) hold. If y is a special solution of Eq. (1.4), then for every positive
integer n, we have

y′(t) =
( n

∑
k=1

αk(t, t) + βn+1(t, t)
)

y(t), t ≥ t1. (2.10)
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Proof. We will prove (2.10) by induction on n. We have for t ≥ t1,

y′(t) = −p(t + r)y(t + r) = −p(t + r)y(t)− p(t + r)
(
y(t + r)− y(t)

)
= −p(t + r)y(t)− p(t + r)

∫ t+r

t
y′(u) du

= −p(t + r)y(t) + p(t + r)
∫ t+r

t
p(u + r)y(u + r) du

=

(
−p(t + r) + p(t + r)

∫ t+r

t
p(u + r)

y(u + r)
y(t)

du
)

y(t)

=

(
−p(t + r)− p(t + r)

∫ t+r

t
β1(t, u) du

)
y(t)

=
(
α1(t, t) + β2(t, t)

)
y(t).

Thus, (2.10) holds for n = 1. Now suppose that (2.10) holds for some positive integer n. Then
for t ≥ t1,

y′(t) =
( n

∑
k=1

αk(t, t) + βn+1(t, t)
)

y(t)

=

(n+1

∑
k=1

αk(t, t) + βn+2(t, t)−
(
αn+1(t, t) + βn+2(t, t)− βn+1(t, t)

))
y(t)

=

(n+1

∑
k=1

αk(t, t) + βn+2(t, t)
)

y(t),

the last equality being a consequence of conclusion (2.9) of Lemma 2.2. This proves that (2.10)
holds for all n.

Now we are in a position to give a proof of Theorem 2.1.

Proof. We will show that the series (2.6) converges uniformly on [t1, ∞). First we prove by
induction that for every positive integer k,

|αk(t, s)| ≤ qk

(k− 1)!
(s− t + (k− 1)r)k−1 whenever s ≥ t ≥ t1, (2.11)

where q is defined by (2.2). By virtue of (2.2) and (2.3), we have

|α1(t, s)| = |p(s + r)| ≤ q whenever s ≥ t ≥ t1.

Thus, (2.11) holds for k = 1. Now suppose that (2.11) holds for some positive integer k. Then
for s ≥ t ≥ t1,

|αk+1(t, s)| = |p(s + r)|
∣∣∣∣∫ s+r

t
αk(t, u) du

∣∣∣∣ ≤ q
∫ s+r

t
|αk(t, u)| du

≤ q
∫ s+r

t

qk

(k− 1)!
(u− t + (k− 1)r)k−1 du

= qk+1
[
(u− t + (k− 1)r)k

k!

]s+r

t
≤ qk+1

k!
(s− t + kr)k.
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This proves that (2.11) holds for all k. From (2.11), we find that for every positive integer k,

|αk(t, t)| ≤ q(qr)k−1 (k− 1)k−1

(k− 1)!
, t ≥ t1.

From this and the inequality

(k− 1)k−1

(k− 1)!
≤

∞

∑
j=0

(k− 1)j

j!
= ek−1, (2.12)

we obtain for every positive integer k,

|αk(t, t)| ≤ q(qre)k−1, t ≥ t1.

Since qre < 1, this implies the uniform convergence of the function series (2.6) on [t1, ∞).
Next we show that βn(t, t) → 0 uniformly on [t1, ∞) as n → ∞. It is easy to show that if

qre < 1, then the equation
λ = qeλr

has a unique root λ0 in (0, qe). Moreover, for every λ ∈ (λ0, 1/r), we have

qeλr

λ
< 1. (2.13)

Choose
λ ∈ (qe, 1/r) (2.14)

so that (2.13) holds. We will show by induction that for every positive integer k,

|βk(t, s)| ≤ qk

λk−1 exp(λ(s− t + kr)) whenever s ≥ t ≥ t1. (2.15)

First observe that by virtue of (1.9), (1.10) and (2.2), we have for t ≥ t1,

y′(t) = −p(t + r)
y(t + r)

y(t)
y(t) ≤ qey(t).

Hence
y′(t)
y(t)

≤ qe, t ≥ t1.

Integrating the last inequality from t to s + r, we find for s ≥ t ≥ t1,

ln
y(s + r)

y(t)
≤ qe(s + r− t).

Hence

y(s + r)
y(t)

≤ exp(qe(s + r− t)) ≤ exp(λ(s + r− t)) whenever s ≥ t ≥ t1,

where the last inequality is a consequence of (2.14). From this, (2.2) and (2.7), we find for
s ≥ t ≥ t1,

|β1(t, s)| ≤ q exp(λ(s + r− t)).
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Thus, (2.15) holds for k = 1. Now suppose that (2.15) holds for some positive integer k. Then
for s ≥ t ≥ t1,

|βk+1(t, s)| = |p(s + r)|
∣∣∣∣∫ s+r

t
βk(t, u) du

∣∣∣∣ ≤ q
∫ s+r

t
|βk(t, u)| du

≤ q
∫ s+r

t

qk

λk−1 exp(λ(u− t + kr)) du = qk+1
[

exp(λ(u− t + kr)
λk

]s+r

t

≤ qk+1

λk exp(λ(s− t + (k + 1)r)).

This proves that (2.15) holds for all k. From (2.15), we obtain for every positive integer n,

|βn(t, t)| ≤ λ

(
qeλr

λ

)n

, t ≥ t1.

In view of (2.13), the last inequality implies that βn(t, t) → 0 uniformly on [t1, ∞) as n → ∞.
Finally letting n→ ∞ in conclusion (2.10) of Lemma 2.3, we obtain that the special solution y
of Eq. (1.4) satisfies the ordinary differential equation

y′(t) = σ(t)y(t), t ≥ t1,

where σ is defined by (2.6). Since y(t1) = 1, this implies that y has the form (2.5) and the
proof of Theorem 2.1 is complete.

3 Explicit asymptotic formulas

From Theorems 1.1 and 2.1, we can deduce explicit asymptotic formulas for the solutions of
Eq. (1.1).

Theorem 3.1. Suppose that there exists a positive monotone decreasing function a : [t0, ∞)→ (0, ∞)

such that
|p(t)| ≤ a(t), t ≥ t0, (3.1)

and ∫ ∞

t0

an+1(t) dt < ∞ for some positive integer n. (3.2)

Then for every solution x of Eq. (1.1) there exists a constant γ such that

x(t) = exp
(
−
∫ t

t0

σn(s) ds
)
(γ + o(1)), t→ ∞, (3.3)

where σn is the nth partial sum of the function series (2.6),

σn(t) =
n

∑
k=1

αk(t, t), t ≥ t0. (3.4)

Moreover, the asymptotic formula (3.3) is genuine in the sense that there exists a solution x of (1.1) for
which the constant γ in (3.3) is nonzero.
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Proof. First we prove by induction that under the hypotheses of the theorem for all positive
integer k,

|αk(t, s)| ≤ ak(t + r)
(s− t + (k− 1)r)k−1

(k− 1)!
whenever s ≥ t ≥ t0. (3.5)

By virtue of (2.3) and (3.1), we have for s ≥ t ≥ t0,

|α1(t, s)| = |p(s + r)| ≤ a(s + r) ≤ a(t + r),

where the last inequality is a consequence of the monotonicity of a. Thus, (3.5) holds for k = 1.
Now suppose that (3.5) holds for some positive integer k. Then we have for s ≥ t ≥ t1,

|αk+1(t, s)| = |p(s + r)|
∣∣∣∣∫ s+r

t
αk(t, u) du

∣∣∣∣ ≤ a(s + r)
∫ s+r

t
|αk(t, u)| du

≤ a(s + r)
∫ s+r

t
ak(t + r)

(u− t + (k− 1)r)k−1

(k− 1)!
du

= a(s + r)ak(t + r)
[
(u− t + (k− 1)r)k

k!

]s+r

t

≤ a(s + r)ak(t + r)
(s− t + kr)k

k!
≤ ak+1(t + r)

(s− t + kr)k

k!
,

the last inequality being a consequence of the monotonicity of a. This proves that (3.5) holds
for all k.

From (3.5), we find that for all positive k,

|αk(t, t)| ≤ ak(t + r)
((k− 1)r)k−1

(k− 1)!
, t ≥ t0.

From this, using inequality (2.12) and taking into account that a is monotone decreasing, we
obtain for all k,

|αk(t, t)| ≤ ak(t)(re)k−1, t ≥ t0. (3.6)

Choose q > 0 such that qre < 1. Since a is monotone decreasing and (3.2) holds, it follows that
a(t)→ 0 as t→ ∞. Therefore there exists t1 ≥ t0 such that

sup
t≥t1

|p(t)| ≤ sup
t≥t1

a(t) ≤ q <
1
re

. (3.7)

By the application of Theorem 2.1, we conclude that the special solution y of the adjoint
equation (1.4) with property y(t1) = 1 has the form (2.5). This, combined with Theorem 1.1,
implies that every solution x of Eq. (1.1) satisfies the asymptotic relation

x(t) = exp
(
−
∫ t

t1

σ(s) ds
)
(c + o(1)), t→ ∞, (3.8)

where c is a constant depending on x. Moreover, as shown in Section 1, there exists a solution x
of Eq. (1.1) for which c > 0. For t ≥ t1, define

ρn(t) = σ(t)− σn(t) =
∞

∑
k=n+1

αk(t, t). (3.9)

We will show that
ρn(t) = O(an+1(t)) as t→ ∞. (3.10)
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From (3.6) and (3.7), we obtain for t ≥ t1,

|ρn(t)| ≤
∞

∑
k=n+1

|αk(t, t)| ≤
∞

∑
k=n+1

ak(t)(re)k−1

= an+1(t)
∞

∑
k=n+1

ak−n−1(t)(re)k−1 ≤ an+1(t)
∞

∑
k=n+1

qk−n−1(re)k−1

= an+1(t) q−n
∞

∑
k=n+1

(qre)k−1 = an+1(t)
(re)n

1− qre

which proves (3.10). From conditions (3.2) and (3.10), it follows that the improper Riemann
integral

∫ ∞
t1

ρn(t) dt converges. Since σn = σ− ρn, we have for t ≥ t1,

x(t) exp
(∫ t

t1

σn(s) ds
)
= x(t) exp

(∫ t

t1

σ(s) ds
)

exp
(
−
∫ t

t1

ρn(s) ds
)

. (3.11)

From this and the asymptotic representation (3.8), we obtain

x(t) exp
(∫ t

t1

σn(s) ds
)
−→ d = c exp

(
−
∫ ∞

t1

ρn(s) ds
)

as t→ ∞. Thus, (3.3) holds with

γ = d exp
(∫ t1

t0

σn(s) ds
)

.

Clearly, if c is nonzero, then so is d and hence γ. This completes the proof of the theorem.

Remark 3.2. To illustrate the importance of hypothesis (3.2) in Theorem 3.1 condsider Eq. (1.1),
where p : [t0, ∞) → (−∞, 0) is a negative monotone increasing function which tends to zero
as t→ ∞. Clearly, in this case condition (3.1) holds with a = |p|. Suppose that condition (3.2)
does not hold, that is∫ ∞

t0

|p(t)|n+1 dt = ∞ for every positive integer n. (3.12)

(An example of such a p is the function p(t) = − ln−1 t defined for t ≥ 2.) We will show that
if σn has the meaning from Theorem 3.1, then for every positive integer n,

x(t) exp
(∫ t

t0

σn(s) ds
)
−→ 0 as t→ ∞. (3.13)

Thus, in this case the constant γ in the asymptotic relation (3.3) is always zero. Therefore
if hypothesis (3.2) is not satisfied, then (3.3) in general does not give a genuine asymptotic
description of the solutions as t→ ∞.

Now we prove (3.13). Using the facts that p is negative and |p| is monotone decreasing, it
follows by easy induction that for all positive k,

αk(t, s) ≥ rk−1|p(s + kr)|k > 0 whenever s ≥ t ≥ t0. (3.14)

As noted in the proof of Theorem 3.1, if t1 ≥ t0 is chosen such that (3.7) is satisfied, then for
every solution x of (1.1) the asymptotic formula (3.8) holds. If ρn is defined by (3.9), then by
virtue of (3.14), we have for t ≥ t1,

ρn(t) ≥ αn+1(t, t) ≥ rn|p(t + (n + 1)r)|n+1.
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From this and (3.12), we find that∫ ∞

t1

ρn(t) dt = ∞ for all n.

This, together with (3.8) and (3.11), implies (3.13).

Example 3.3. As an application of Theorem 3.1, we will describe the asymptotic behavior of
the solutions of the equation

x′(t) = − x(t− r)√
t

, (3.15)

which is a special case of Eq. (1.1) when

p(t) = − 1√
t
, t ≥ 1.

In contrast with the Dickman–de Bruijn equation (1.11) in this case we do not know an explicit
formula for the special solution of the associated formal adjoint equation

y′(t) =
y(t + r)√

t + r
. (3.16)

Therefore conclusion (1.6) of Theorem 1.1 does not give an explicit asymptotic description
of the solutions of Eq. (3.15). We will determine the asymptotic behavior of the solutions of
Eq. (3.15) by applying Theorem 3.1 with

a(t) =
1√

t
, t ≥ 1

and n = 2. By simple calculations, we obtain for t ≥ 1,

α1(t, t) =
1√

t + r
(3.17)

and

α2(t, t) = 2
(√

t + 2r
t + r

− 1
)
= 2

(√
1 +

r
t + r

− 1
)

. (3.18)

From (3.17), we find for t ≥ 1,

exp
(∫ t

1
α1(s, s) ds

)
= exp(2

√
t + r) exp(−2

√
1 + r). (3.19)

By Taylor’s theorem, we have

2(
√

1 + x− 1) = x + O(x2) as x → 0.

This, combined with (3.18), yields

α2(t, t) =
r

t + r
+ ψ(t), (3.20)

where

ψ(t) = O
(

1
t2

)
as t→ ∞.
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In particular, the improper Riemann integral
∫ ∞

1 ψ(t) dt converges. From this and (3.20), we
find that

(t + r)−r exp
(∫ t

1
α2(s, s) ds

)
= (1 + r)−r exp

(∫ t

1
ψ(s) ds

)
−→ κ as t→ ∞,

where

κ = (1 + r)−r exp
(∫ ∞

1
ψ(s) ds

)
.

From the last limit relation and (3.19), by the application of Theorem 3.1, we conclude that
every solution x of Eq. (3.15) has the form

x(t) =
1

tr exp(2
√

t)

(
δ + o(1)

)
as t→ ∞, (3.21)

where δ is a constant depending on x. Moreover, there exists a solution x of Eq. (3.15) for
which δ 6= 0. Thus, every solution of Eq. (3.15) converges to zero as t→ ∞ and formula (3.21)
describes how the rate of convergence depends on the size of the delay r.

Example 3.4. In [8] we have considered the equation

x′(t) =
sin t√

t
x(t− r), t ≥ 1, (3.22)

where r > 0. We have shown that the solutions of Eq. (3.22) can be asymptotically stable, stable
or unstable depending on r (see Corollary 3.2 in [8]). As a refinement of the results presented
in [8], we will show that Theorem 3.1 enables us to determine the precise asymptotics of the
solutions of Eq. (3.22). Note that Eq. (3.22) is a special case of (1.1) when

p(t) =
sin t√

t
, t ≥ 1.

The hypotheses of Theorem 3.1 are satisfied with

a(t) =
1√

t
, t ≥ 1

and n = 2. By simple calculations, we obtain for t ≥ 1,

α1(t, t) = −sin(t + r)√
t + r

and

α2(t, t) =
sin(t + r)√

t + r

∫ t+r

t

sin(u + r)√
u + r

du.

By the Dirichlet convergence test for improper integrals, the improper integral∫ ∞

1

sin(s + r)√
s + r

ds

converges. Hence

exp
(∫ t

1
α1(s, s) ds

)
−→ κ1 = exp

(
−
∫ ∞

1

sin(s + r)√
s + r

ds
)

, t→ ∞. (3.23)
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Further, we have for t ≥ 1,
α2(t, t) = f (t) + g(t), (3.24)

where

f (t) =
sin(t + r)√

t + r

∫ t+r

t
sin(u + r)

(
1√

u + r
− 1√

t + r

)
du

and

g(t) =
sin(t + r)

t + r

∫ t+r

t
sin(u + r) du =

sin(t + r)
t + r

(
cos(t + r)− cos(t + 2r)

)
.

Clearly,

| f (t)| ≤ 1√
t + r

∫ t+r

t

(
1√

t + r
− 1√

u + r

)
du ≤ r√

t + r

(
1√

t + r
− 1√

t + 2r

)
=

r√
t + r

√
t + 2r−

√
t + r√

t + r
√

t + 2r
=

r
(t + r)

√
t + 2r

r√
t + 2r +

√
t + r

≤ r2

2t2

for t ≥ 1. Therefore the improper integral
∫ ∞

1 f (s) ds converges and

exp
(∫ t

1
f (s) ds

)
−→ κ2 = exp

(∫ ∞

1
f (s) ds

)
, t→ ∞. (3.25)

Using the trigonometric rules

cos α− cos β = −2 sin
α + β

2
sin

α− β

2
,

sin α sin β =
1
2
(cos(α− β)− cos(α + β)),

2 sin α cos α = sin 2α,

we obtain for t ≥ 1,

g(t) = 2 sin
r
2

1
t + r

sin(t + r) sin
(
t +

3r
2
)
= sin

r
2

1
t + r

(
cos

r
2
− cos

(
2t +

5r
2
))

=
sin r

2
1

t + r
− sin

r
2

cos
(
2t + 5r

2

)
t + r

.

From this, we find for t ≥ 1,

∫ t

1
g(s) ds =

sin r
2

ln
t + r
1 + r

− sin
r
2

∫ t

1

cos
(
2s + 5r

2

)
s + r

ds

and hence

exp
(∫ t

1
g(s) ds

)
=

(
t + r
1 + r

) sin r
2

exp
(
− sin

r
2

∫ t

1

cos
(
2s + 5r

2

)
s + r

ds
)

.

Taking into account that according to the Dirichlet convergence test the improper integral

∫ ∞

1

cos
(
2s + 5r

2

)
s + r

ds
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converges, it follows that

(t + r)−
sin r

2 exp
(∫ t

1
g(s) ds

)
−→ κ3, t→ ∞, (3.26)

where

κ3 = (1 + r)
− sin r

2 exp
(
− sin

r
2

∫ ∞

1

cos
(
2s + 5r

2

)
s + r

ds
)

.

From (3.24), (3.25) and (3.26), we find that

(t + r)−
sin r

2 exp
(∫ t

1
α2(s, s) ds

)
−→ κ, t→ ∞,

where κ = κ2κ3 > 0. From this and (3.23), by the application of Theorem 3.1, we conclude
that every solution x of Eq. (3.22) has the form

x(t) = t−
sin r

2 (η + o(1)
)

as t→ ∞, (3.27)

where η is a constant depending on x. Moreover, there exists a solution x of Eq. (3.22) for
which η 6= 0.

Note that the asymptotic representation (3.27) implies the following interesting stability
criteria for Eq. (3.22) (see Corollary 3.2 in [8]).

(i) The zero solution of Eq. (3.22) is asymptotically stable if and only if

r ∈
⋃

k∈Z+

(2kπ, (2k + 1)π),

where Z+ denotes the set of nonnegative integers.

(ii) The zero solution of Eq. (3.22) is stable if and only if

r ∈
⋃

k∈Z+

[2kπ, (2k + 1)π].

(iii) The zero solution of Eq. (3.22) is stable, but it is not asymptotically stable if and only if

r = kπ for some k ∈ Z+.
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