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1 Introduction

Recently, boundary value problems with non-local conditions for non-linear differential equa-
tions have attracted much attention (see, e. g., the editorial note [1] and the rest of the issue
for extensive references). Problems with non-local boundary conditions are usually treated by
using equivalent reformulation as a suitable fixed point or coincidence equation, for which
purpose, as a rule, one uses Green’s operator of a linearised problem. The process of approx-
imation of the solution based directly on this kind of representations, however, may be quite
complicated.

A reasonably efficient way to deal with this kind of problems is provided by methods
of numerical-analytic type (see, e. g., [3]). Since convergence conditions often involve terms
proportional to the length of the time interval, the conditions needed for the applicability
of this type of methods can be significantly weakened if one constructs the scheme using a
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suitable interval division. It turns out that, by introducing a single intermediate point, one can
weaken the convergence conditions by half at the cost of one more variable in the parameter
list (see [5–7]). In [7], where mainly the periodic problem is considered, we also note that it is
possible to consider multiple interval divisions. A scheme of this kind, which is applicable to
the case of general boundary conditions, is constructed in the present note.

The approach that we are going to discuss is based on a suitable parametrisation, so that
the values of approximations to a solution are monitored at multiple time instants. In this
way, it can be regarded as an efficient alternative to the multiple shooting [2, 10] and may be
well applicable also in the cases where shooting procedures fail. The latter may happen either
because of the complicated character of the boundary conditions (according to our knowl-
edge, the currently available shooting schemes are designed for the cases where the boundary
conditions are local two-point) or, more importantly, due to the failure to satisfy the basic
assumptions needed to apply the method. Indeed, one may note that shooting methods re-
quire the existence of sufficiently many derivatives of the non-linearity (in particular, because
Newton-like methods are commonly used to solve the corresponding numerical equations,
see, e.g., [10, p. 516] or [11, p. 375]). Furthermore, in order to carry out shooting, one has to
be sure that the initial value problem for the differential equation in question has always a
unique solution defined on the entire given time interval. The smoothness of the non-linearity
alone is insufficient: consider, e. g., u′ = u2 on [a, b] with u(a) = 1/(λ− a), where a < λ < b;
then the solution u(t) = 1/(λ− t) is undefined at t = λ. Last, but not least, the existence of
a solution is usually assumed a priori when applying shooting methods. In contrast to this,
the approach that we suggest here, in many cases, allows one to prove the solvability of the
problem in a rigorous way (see, e. g., [7, 9]).

Here, we study the non-linear boundary value problem

u′(t) = f (t, u(t)) , t ∈ [a, b] , (1.1)

φ(u) = d, (1.2)

where f : [a, b]×Rn → Rn, d ∈ Rn is a given vector, and φ is a vector functional on the space
of absolutely continuous functions (generally speaking, non-linear).

Following the idea used in numerical methods for approximate solution of initial value
problems for ordinary differential equations, let us fix a natural N and choose N + 1 grid
points

t0 = a, tk = tk−1 + hk, k = 1, . . . , N − 1, tN = b, (1.3)

where hk, k = 1, . . . , N − 1, are the corresponding step sizes. Thus, [a, b] is divided into N
subintervals [t0, t1], [t1, t2], [t2, t3], . . . , [tN−1, tN ]. Of course, one can use a constant step size in
(1.3): hk = N−1(b− a), k = 1, 2, . . . , N; the more general form (1.3), however, may allow one
to pose better conditions on the non-linearity in the corresponding region.

The aim of this note is to present an approach to problems of type (1.1)–(1.2) which is
similar in principle to [7] and is also based on reductions to certain simpler problems with
unknown parameters. The auxiliary two-point problems are constructed here with multiple
interval divisions, which leads one to convergence conditions significantly weaker than in the
case of a single intermediate point. Here, in contrast to the case of linear two-point conditions
discussed in [6, 7], the exact fulfilment of the boundary condition for approximations is not
guaranteed any more (of course, the boundary condition is satisfied exactly in the limit). The
advantage is, however, that many different types of boundary conditions can be thus handled
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in a unified way, the specific properties of the problem being transferred to the determining
equations. It seems that, in the case of general boundary value problems, interval division for
approximations constructed analytically is employed here for the first time.

2 Notation

We fix an n ∈ N and a bounded closed set D ⊂ Rn. For vectors x = col(x1, . . . , xn) ∈ Rn

the obvious notation |x| = col(|x1| , . . . , |xn|) is used and the inequalities between vectors are
understood componentwise. The same convention is adopted implicitly for operations like
“max” and “min”.

1n and 0n are, respectively, the unit and zero matrices of dimension n.
r(K) is the maximal, in modulus, eigenvalue of a matrix K.
For a set D ⊂ Rn, closed interval [a, b] ⊂ R, Carathéodory function f : [a, b]× D → Rn,

n× n matrix K with non-negative entries, we write f ∈ LipK(D) if the inequality

| f (t, u)− f (t, v)| ≤ K |u− v| (2.1)

holds for all {u, v} ⊂ D and a.e. t ∈ [a, b] .
If $ ∈ Rn is a non-negative vector, by the componentwise $-neighbourhood of a point

z ∈ Rn we understand the set

O$(z) := {ξ ∈ Rn : |ξ − z| ≤ $} . (2.2)

Similarly, the componentwise $-neighbourhood of a set Ω ⊂ Rn is defined as

O$(Ω) :=
⋃

ξ∈Ω

O$(ξ). (2.3)

For given two bounded connected sets D0 ⊂ Rn and D1 ⊂ Rn, introduce the set

B(D0, D1) := {(1− θ)ξ + θη : ξ ∈ D0, η ∈ D1, θ ∈ [0, 1]}. (2.4)

Finally, given a set D ⊂ Rn and a function f : [a, b]× D → Rn, we put

δ[τ1,τ2],D( f ) := ess sup
(t,x)∈[τ1,τ2]×D

f (t, x)− ess inf
(t,x)∈[τ1,τ2]×D

f (t, x) (2.5)

for any {τ1, τ2} ⊂ [a, b], τ1 < τ2.
The sequence of functions αm(·, τ, I) : [τ, τ + l] → [0, ∞), m = 0, 1, . . . , where l ∈ (0, ∞), is

defined by the relations

α0(t, τ, l) := 1, (2.6)

αm+1(t, τ, l) :=
(

1− t− τ

l

) ∫ t

τ
αm(s, τ, l)ds +

t− τ

l

∫ τ+I

t
αm(s, τ, l)ds (2.7)

for all t ∈ [τ, τ + l] and m ≥ 0. Functions (2.7) have the following properties essentially used
below.

Lemma 2.1 ([3, Lemma 3.16]). Let τ and l be given. Then, for all t ∈ [τ, τ + l], the functions
αm(·, τ, l), m ≥ 1, satisfy the estimates

αm+1(t, τ, l) ≤ 10
9

(
3l
10

)m

α1(t, τ, l) (2.8)
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if m ≥ 0 and

αm+1(t, τ, l) ≤ 3l
10

αm(t, τ, l) (2.9)

if m ≥ 2.

Lemma 2.2 ([4, Lemma 2]). For an arbitrary essentially bounded function f : [τ, τ + l] → Rn, the
estimate∣∣∣∣∣

∫ t

τ

(
f (τ)− 1

l

∫ τ+l

τ
f (s)ds

)
dτ

∣∣∣∣∣ ≤ 1
2

α1(t, τ, l)

(
ess sup
s∈[τ,τ+l]

f (s)− ess inf
s∈[τ,τ+l]

f (s)

)
(2.10)

is true for a.e. t ∈ [τ, τ + l] .

It follows from (2.7) that

α1(t, τ, l) = 2 (t− τ)

(
1− t− τ

l

)
, t ∈ [τ, τ + l] , (2.11)

and maxt∈[τ,τ+l] α1(t, τ, l) = l/2.

3 Parametrisation and auxiliary problems

3.1 Parameter sets

Let us fix certain closed bounded sets

Dk ⊂ Rn, k = 0, 1, 2, . . . , N, (3.1)

and focus on the absolutely continuous solutions u of problem (1.1)–(1.2) whose values at
nodes (1.3) lie in the corresponding sets (3.1), i. e., the solutions u such that

u(tk) ∈ Dk, k = 0, 1, 2, . . . , N. (3.2)

Given sets (3.1), we introduce the sets

Dk−1,k := B(Dk−1, Dk), k = 1, 2, . . . , N, (3.3)

and, for any non-negative vector $, put

Ωk($) := O$(Dk−1,k), k = 1, 2, . . . , N. (3.4)

Recall that, according to (2.3), (2.4), Dk−1,k is the set of all possible straight line segments join-
ing points of Dk−1 with points of Dk, whereas Ωk($) is the componentwise $-neighbourhood
of Dk−1,k.
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3.2 Freezing

The idea that we are going to use suggests to replace the original non-local problem (1.1)–(1.2)
by a suitable family of model boundary value problems with simpler boundary conditions
(see, e. g., [8, 9]. Let us do this in the following way. Consider the vectors

z(k) = col (z(k)1 , z(k)2 , . . . , z(k)n ), k = 0, 1, 2, . . . , N, (3.5)

where N is the number of nodes from (1.3). These vectors will be regarded as unknown
parameters whose values are to be determined. Let us “freeze” the values of u at the nodes
(1.3) by formally putting

u(tk) = z(k), k = 0, 1, 2, . . . , N, (3.6)

and consider the restrictions of equation (1.1) to each of the subintervals of the division:

x′(t) = f (t, x(t)), t ∈ [tk−1, tk] . (3.7)

Then, in a natural way, we have

x(tk−1) = z(k−1), x (tk) = z(k), k = 1, 2, . . . , N. (3.8)

For any fixed k = 1, 2, . . . , N, relations (3.7), (3.8) can be regarded formally as an overde-
termined boundary value problem with two-point boundary conditions containing unknown
parameters z(k−1) and z(k). This leads one to a kind of reduction principle where, instead of
the original equation (1.1), one considers the parametrised problems (3.7), (3.8) and tries to
determine the appropriate value of z(0), z(1), . . . , z(N).

Due to the form of the boundary condition (3.8), it is natural to apply to (3.7), (3.8) tech-
niques similar to those used in [7] for two-point problems. This is done in Section 4.2 below,
where the successive approximations x(k)m (·, z(k−1), z(k)), m ≥ 0, defined, respectively, on the
intervals

[tk−1, tk] , k = 1, 2, . . . , N, (3.9)

are constructed. Note that the differential equation (3.7) is considered on an interval of length
hk (see (1.3)).

4 Interval division and successive approximations

4.1 Assumptions

Let us fix the sets Dk ⊂ Rn, k = 0, 1, . . . , N, from (3.1). We make the following assumptions.

Assumption 4.1. There exist non-negative vectors $(1), $(2), . . . , $(N) such that

$(k) ≥ hk

4
δ[tk−1,tk ],Ωk($(k))

( f ) (4.1)

for all k = 1, 2, . . . , N.

Recall that Ωk($
(k)) is a $(k)-neighbourhood of Dk−1,k (see (3.4)). We suppose that f is

Lipschitzian, in the space variable, on the sets Ωk($
(k)), k = 1, 2, . . . , N. Namely,

Assumption 4.2. There exist non-negative matrices K1, K2, . . . , KN such that

f ∈ LipKk

(
Ωk($

(k))
)
, k = 1, 2, . . . , N. (4.2)
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Finally, we assume in the sequel that the matrices K1, K2, . . . , KN involved in (4.2) satisfy
the conditions

r(Kk) <
10
3hk

, k = 1, . . . , N. (4.3)

Assumptions 4.1 and 4.2, together with condition (4.3), are used to prove the applicabil-
ity of the techniques described below. They mean essentially that the non-linearities in the
equation are Lipschitzian on sufficiently large domains ($(k) satisfies inequality (4.1)) with
sufficiently small constants (condition (4.3)). It should be noted, however, that (4.1) and (4.3)
are both satisfied if the number N of nodes in (1.3) is large enough. Thus, the basic and, in
fact, the only restrictive assumption in this note is that f is Lipschitzian on a bounded set.

4.2 Successive approximations

For any fixed values z(0), z(1), . . . , z(N), define the sequences of functions x(k)m : [tk−1, tk]×Rn×
Rn → Rn, k = 1, 2, . . . , N, m = 0, 1, 2, . . . , by putting

x(k)0

(
t, z(k−1), z(k)

)
:=
(

1− t− tk−1

hk

)
z(k−1) +

t− tk−1

hk
z(k), (4.4)

x(k)m
(
t, z(k−1), z(k)

)
:= z(k−1) +

∫ t

tk−1

f
(

s, x(k)m−1

(
s, z(k−1), z(k)

))
ds

− t− tk−1

hk

∫ tk

tk−1

f
(

s, x(k)m−1

(
s, z(k−1), z(k)

))
ds

+
t− tk−1

hk
(z(k) − z(k−1)) (4.5)

for all m = 1, 2, . . . and t ∈ [tk−1, tk], k = 1, 2, . . . , N.
In view of (4.4), relation (4.5) can be represented alternatively as

x(k)m
(
t, z(k−1), z(k)

)
= x(k)0

(
t, z(k−1), z(k)

)
+
∫ t

tk−1

f
(

s, x(k)m−1

(
s, z(k−1), z(k)

))
ds

− t− tk−1

hk

∫ tk

tk−1

f
(

s, x(k)m−1

(
s, z(k−1), z(k)

))
ds. (4.6)

One can see from (4.4) that the graphs of the functions x(k)0

(
·, z(k−1), z(k)

)
, k = 1, 2, . . . , N, form

a broken line joining the points (tk, z(k)), k = 1, 2, . . . , N. By virtue of (4.6), this implies, in
particular, that all the functions (4.5) have property (3.8), i. e.,

x(k)m
(
tk−1, z(k−1), z(k)

)
= z(k−1), x(k)m

(
tk, z(k−1), z(k)

)
= z(k) (4.7)

for any k = 1, 2, . . . , N, independently of the values of z(0), z(1), . . . , z(N).

5 Convergence of successive approximations

It turns out that the sequences {x(k)m (·, z(k−1), z(k)) : m ≥ 0}, k = 1, 2, . . . , N given by (4.4) and
(4.5) are helpful for the investigation of solutions of the given problem (1.1)–(1.2).

Theorem 5.1. Let Assumptions 4.1 and 4.2 hold and, moreover, the corresponding matrices
K1, K2, . . . , KN satisfy condition (4.3). Then, for any (z(0), z(1), . . . , z(N)) ∈ D0 × D1 × · · · × DN

and k = 1, 2, . . . , N:
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1. The limit
lim

m→∞
x(k)m (t, z(k−1), z(k)) =: x(k)∞ (t, z(k−1), z(k)) (5.1)

exists uniformly in t ∈ [tk−1, tk].

2. The limit function (5.1) satisfies the conditions

x(k)∞ (tk−1, z(k−1), z(k)) = z(k−1), x(k)∞ (tk, z(k−1), z(k)) = z(k). (5.2)

3. The function x(k)∞ (·, z(k−1), z(k)) is the unique absolutely continuous solution of the integral equa-
tion

x(t) = z(k−1) +
∫ t

tk−1

f (s, x(s))ds− t− tk−1

hk

∫ tk

tk−1

f (s, x(s))ds

+
t− tk−1

hk
(z(k) − z(k−1)), t ∈ [tk−1, tk] . (5.3)

4. The estimate∣∣∣x(k)∞ (·, z(k−1), z(k))− x(k)m (·, z(k−1), z(k))
∣∣∣ ≤ 5

9
α1(t, tk−1, hk)Rm,k δ[tk−1,tk ],Ωk($(k))

( f ) (5.4)

holds for m ≥ 0, t ∈ [tk−1, tk], where

Rm,k :=
(

3
10

hkKk

)m (
1n −

3
10

hkKk

)−1

. (5.5)

Proof. The proof is carried out similarly to that of [8, Theorem 3]. Let us fix arbitrary vectors
z(i) ∈ Di, i = 0, 1, . . . , N, and a number k ∈ {1, 2, . . . , N}. We first show that, under the
conditions assumed,{

x(k)m (t, z(k−1), z(k)) : (t, z(k−1), z(k)) ∈ [tk−1, tk]× Dk−1 × Dk

}
⊂ Ωk($

(k)) (5.6)

for any m ≥ 0. Indeed, the validity of (5.6) for m = 0 is an immediate consequence of (4.4).
Let us put

r(k)m (t, ξ, η) = |x(k)m (t, ξ, η)− x(k)m−1(t, ξ, η)|, (5.7)

where m = 1, 2, . . . , (ξ, η) ∈ Dk−1 × Dk. Due to estimate (2.10) of Lemma 2.2 with τ = tk−1,
l = hk, relations (4.4) and (4.5) yield

r(k)1 (t, z(k−1), z(k)) ≤ 1
2

α1(t, tk−1, hk)

(
ess sup
t∈[tk−1,tk ]

f (t, x(k)0 (t, z(k−1), z(k)))

− ess inf
t∈[tk−1,tk ]

f (t, x(k)0 (t, z(k−1), z(k)))
)

≤ 1
2

α1(t, tk−1, hk) δ[tk−1,tk ],Ωk($(k))
( f )

≤ hk

4
δ[tk−1,tk ],Ωk($(k))

( f ) (5.8)
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for all t ∈ [tk−1, tk], (ξ, η) ∈ Dk−1 × Dk. In view of (4.1), this means that x(k)1 (t, ξ, η) ∈ Ωk($
(k))

whenever (t, ξ, η) ∈ [tk−1, tk]× Dk−1 × Dk, i. e., (5.6) holds for m = 1. Using this and arguing
by induction with the help of Lemma 2.2, we easily establish that

|x(k)m (t, z(k−1), z(k))− x(k)0 (t, z(k−1), z(k))| ≤ 1
2

α1(t, tk−1, hk) δ[tk−1,tk ],Ωk($(k))
( f )

≤ hk

4
δ[tk−1,tk ],Ωk($(k))

( f ) (5.9)

for k = 1, 2, . . . , N and m ≥ 2. Therefore, (5.6) holds for any m ≥ 0.
In view of (4.4), (4.5), the identity

x(k)m+1(t, z(k−1), z(k))− x(k)m (t, z(k−1), z(k))

=
∫ t

tk−1

[
f (s, x(k)m (s, z(k−1), z(k)))− f (s, x(k)m−1(s, z(k−1), z(k)))

]
ds

− t− tk−1

hk

∫ tk

tk−1

[
f (s, x(k)m (s, z(k−1), z(k)))− f (s, x(k)m−1(s, z(k−1), z(k)))

]
ds (5.10)

holds. Using equality (5.10), Assumption 4.2 and Lemmata 2.1 and 2.2, we obtain

r(k)2 (t, z(k−1), z(k)) ≤ 1
2

Kk

((
1− t− tk−1

hk

) ∫ t

tk−1

α1(s, tk−1, hk)ds

+
t− tk−1

hk

∫ tk

t
α1(s, tk−1, hk)ds

)
δ[tk−1,tk ],Ωk($(k))

( f )

≤ 1
2

Kk α2(t, tk−1, hk) δ[tk−1,tk ],Ωk($(k))
( f )

≤ 5
9

(
3

10
hkKk

)
α1(t, tk−1, hk) δ[tk−1,tk ],Ωk($(k))

( f ) (5.11)

for t ∈ [tk−1, tk]. One then easily shows by induction that

r(k)m+1(t, z(k−1), z(k)) ≤ Km
k αm+1(t, tk−1, hk) δ[tk−1,tk ],Ωk($(k))

( f )

≤ 5
9

(
3
10

hkKk

)m

α1(t, tk−1, hk) δ[tk−1,tk ],Ωk($(k))
( f ) (5.12)

for t ∈ [tk−1, tk]. Therefore, in view of (5.12)

∣∣∣x(k)m+j(t, z(k−1), z(k))− x(k)m (t, z(k−1), z(k))
∣∣∣ ≤ j

∑
i=1

r(k)m+i(t, z(k−1), z(k))

≤ 5
9

α1(t, tk−1, hk)
j

∑
i=1

(
3
10

hkKk

)m+i−1

δ[tk−1,tk ],Ωk($(k))
( f )

=
5
9

α1(t, tk−1, hk)

(
3
10

hkKk

)m

×
j−1

∑
i=0

(
3
10

hkKk

)i

δ[tk−1,tk ],Ωk($(k))
( f ) (5.13)

for all m ≥ 0 and j ≥ 1. Recall that δ[tk−1,tk ],Ωk($(k))
( f ) is computed according to (2.5). Since, due

to (4.3), r( 3
10 hkKk) < 1, we have limm→∞

( 3
10 hkKk

)m
= 0n and ∑

j−1
i=0

( 3
10 hkKk

)i ≤
(
1n − 3

10 hkKk
)−1
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for any j. Therefore, (5.13) and the Cauchy criterion imply the existence of a uniform limit in
(5.1). Equalities (5.2) are an immediate consequence of (4.7). Finally, passing to the limit as
m → ∞ in (4.5) and (5.13), we show that the limit function satisfies (5.3) and obtain estimate
(5.4). It remains to recall the arbitrariness of z(0), z(1), . . . , z(N) and k.

Theorem 5.1 implies, in particular, that one can introduce the function ∆(k) : Dk−1 × Dk →
Rn by putting

∆(k)(ξ, η) := η − ξ −
∫ tk

tk−1

f (s, x(k)∞ (s, ξ, η))ds (5.14)

for all (ξ, η) ∈ Dk−1 × Dk, k = 1, 2, . . . , N. Then it follows immediately from (5.3) that the
following statement holds.

Corollary 5.2. Let the conditions of Theorem 5.1 hold. Let z(j) ∈ Dj, j = 0, 1, . . . , N, be arbitrary.

Then, for any k = 1, 2, . . . , N, the function x(k)∞ (·, z(k−1), z(k)) : [tk−1, tk] is the solution of the Cauchy
problem

x′(t) = f (t, x(t)) +
1
hk

∆(k)(z(k−1), z(k)), t ∈ [tk−1, tk], (5.15)

x(tk−1) = z(k−1), (5.16)

where ∆(k) : Dk−1 × Dk → Rn is given by (5.14).

Note that, by (2.11), α1(t, tk−1, hk) ≤ hk/2 and, therefore, (5.4) implies the estimate

∣∣x(k)∞ (·, z(k−1), z(k))− x(k)m (·, z(k−1), z(k))
∣∣ ≤ 5hk

18
Rm,k δ[tk−1,tk ],Ωk($(k))

( f ) (5.17)

for any t ∈ [tk−1, tk], k = 1, 2, . . . , N, with Rm,k given by (5.5).

6 Limit functions and determining equations

It is natural to expect that the limit functions x(k)∞ (·, z(k−1), z(k)) : [tk−1, tk]→ Rn, k = 0, 1, . . . , N,
of iterations (4.5) may help one to state general criteria of solvability of problem (1.1), (1.2).
Such criteria can be formulated in terms of the respective functions ∆(k) : Dk−1 × Dk → Rn,
k = 0, 1, . . . , N, given by equalities (5.14) that provide such a conclusion. Indeed, Theorem 5.1
ensures that, under the conditions assumed, the functions x(k)∞ (·, z(k−1), z(k)) : [tk−1, tk] → Rn,
k = 1, 2, . . . , N, are well defined for all (z(k−1), z(k)) ∈ Dk−1 × Dk. Therefore, by putting

u∞(t, z(0), z(1), . . . , z(N)) :=


x(1)∞ (t, z(0), z(1)) if t ∈ [t0, t1] ,

x(2)∞ (t, z(1), z(2)) if t ∈ [t1, t2] ,
...

x(N)
∞ (t, z(N−1), z(N)) if t ∈ [tN−1, tN ] ,

(6.1)

we obtain a function u∞(·, z(0), z(1), . . . , z(N)) : [a, b] → Rn, which is well defined for all the
values z(k) ∈ Dk, k = 0, 1, . . . , N. This function is obviously continuous because, at the points
t = tk, we have

x(k)∞ (tk, z(k−1), z(k)) = x(k+1)
∞ (tk, z(k), z(k+1)) (6.2)
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for all k = 1, 2, . . . , N − 1. Equalities (6.2) follow immediately from the fact that the function
x(k)∞ (·, z(k−1), z(k)) is a solution of equation (5.3).

The following theorem establishes a relation of function (6.1) to the solution of the bound-
ary value problem (1.1)–(1.2) in terms of the zeroes of the functions ∆(k), k = 1, 2, . . . , N.

Theorem 6.1. Let the conditions of Theorem 5.1 hold. Then:

1. The function u∞(·, z(k−1), z(k)) : [a, b] → Rn defined by (6.1) is an absolutely continuous solu-
tion of problem (1.1)–(1.2) if and only if the vectors z(k), k = 0, 1, . . . , N, satisfy the system of
n(N + 1) numerical equations

∆(k)(z(k−1), z(k)) = 0, k = 1, 2, . . . , N,

∆(N+1)(z(0), z(1), . . . , z(N)) = 0,
(6.3)

where ∆(N+1) : D0 × D1 × · · · × DN → Rn is defined as

(z(0), z(1), . . . , z(N)) 7−→ ∆(N+1)(z(0), z(1), . . . , z(N)) := φ(u∞(·, z(0), z(1), . . . , z(N)))− d.

2. For every solution u(·) of problem (1.1)–(1.2) with u(tk) ∈ Dk, k = 0, 1, . . . , N, there exist
vectors z(k), k = 0, 1, . . . , N, such that

u(·) = u∞(·, z(0), z(1), . . . , z(N)). (6.4)

This statement is proved similarly to [5, Theorem 4]. Equations (6.3) are usually referred to
as determining or bifurcation equations because their roots determine solutions of the original
problem.

7 Approximate determining equations

Although Theorem 6.1 provides a complete theoretical answer to the question on the construc-
tion of a solution of problem (1.1)–(1.2), its application faces complications since it is difficult
to find the limit function (5.1) and, as a consequence, the functions ∆(k) : Dk−1 × Dk → Rn,
k = 1, 2, . . . , N, and ∆(N+1) : D0 × D1 × · · · × DN → Rn, appearing in (6.3) are usually
unknown explicitly. The complication can be overcome if we replace the unknown limit
x(k)∞ (·, z(k−1), z(k)) by an iteration x(k)m (·, z(k−1), z(k)) of form (4.5) for a fixed m and put

um(t, z(0), z(1), . . . , z(N)) :=


x(1)m (t, z(0), z(1)) if t ∈ [t0, t1] ,

x(2)m (t, z(1), z(2)) if t ∈ [t1, t2] ,
...

x(N)
m (t, z(N−1), z(N)) if t ∈ [tN−1, tN ] .

(7.1)

We see that (7.1) is an approximate version of the unknown function (6.1). Its values can be
found explicitly for all t ∈ [a, b] and z(k) ∈ Dk, k = 0, 1, 2, . . . , N.

Considering function (7.1), we arrive in a natural way to the so-called approximate determin-
ing equations:

∆(k)
m (z(k−1), z(k)) = 0, k = 1, 2, . . . , N,

∆(N+1)(z(0), z(1), . . . , z(N)) = 0,
(7.2)
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where

∆(k)
m (z(k−1), z(k)) := z(k) − z(k−1) −

∫ tk

tk−1

f (s, x(k)m (s, z(k−1), z(k)))ds, k = 1, 2, . . . , N,

∆(N+1)
m (z(0), z(1), . . . , z(N)) := φ(um(·, z(0), z(1), . . . , z(N)))− d.

Note that, unlike system (6.3), the mth approximate determining system (7.2) contains only
terms involving the functions x(j)

m (·, z(j−1), z(j)), j = 1, 2, . . . , N, and, thus, known explicitly.
Let (z̃(0), z̃(1), . . . , z̃(N)) be a solution of the approximate determining system (7.2) for a

certain value of m. Then the function

[a, b] 3 t 7−→ Um(t) := um(t, z̃(0), z̃(1), . . . , z̃(N))

is natural to be regarded as the mth approximation to a solution of the boundary value prob-
lem (1.1)–(1.2). In particular, it follows from (5.17) that

∣∣x(k)∞ (·, z̃(k−1), z̃(k))−Um(t)
∣∣ ≤ 5hk

18

(
3

10
hkKk

)m (
1n −

3
10

hkKk

)−1

δ[tk−1,tk ],Ωk($(k))
( f ) (7.3)

for any t ∈ [tk−1, tk], k = 1, 2, . . . , N.
The existence of a solution can be analysed based on the approximate determining equa-

tions (7.2) similarly to [3, 9], this topic is not considered here. In relation to estimate (7.3)
one may note that, according to Theorem 6.1, the solution necessarily has form (6.4) with
certain values of z(k), k = 0, 1, . . . , N. Thus, we have z(k) ≈ z̃(k), k = 0, 1, . . . , N, and, therefore,
x(k)∞ (t, z̃(k−1), z̃(k)) is an approximation of x(k)∞ (t, z(k−1), z(k)), which is the value of the exact
solution for t ∈ [tk−1, tk].

8 Example

Let us demonstrate the approach described above on a model example. Consider the system
of differential equations

x′1 (t) =
1
2
(x2(t))2 − t

4
x1(t) +

t2(t− 1)
32

+
9t
40

,

x′2 (t) =
t
8

x1(t)− t2x2(t) +
15
64

t3 +
t

80
+

1
4

, t ∈ [0, 1.9] ,
(8.1)

with the integral boundary conditions∫ 1.9

0

(
sx1(s)x2(s) +

1
4

x′1 (s)
)

ds =
10099697
48000000

,∫ 1.9

0

(
s2x2

2(s) +
1
4

x′2 (s)
)

ds =
3426099
8000000

.
(8.2)

Clearly, problem (8.1), (8.2) is a particular case of (1.1)–(1.2) with a = 0, b = 1.9, d ≈
col (0.21, 0.428), x 7→ φ(x) := col

(∫ 1.9
0

(
sx1(s)x2(s) + 1

4 x′1(s)
)

ds,
∫ 1.9

0

(
s2x2

2(s) +
1
4 x′2(s)

)
ds
)
,

(x1, x2) 7→ f (t, x1, x2) := col
( 1

2 x2
2 − 1

4 tx1 +
1
32 t2(t− 1) + 9

40 t, 1
8 tx1 − t2x2 +

15
64 t3 + 1

80 t + 1
4

)
. It is

easy to check that

x∗1(t) =
t2

8
− 1

10
, x∗2(t) =

t
4

(8.3)
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x∗1(0) x∗2(0) x∗1(1) x∗2(1) x∗1(1.5) x∗2(1.5) x∗1(1.9) x∗2(1.9)

−0.1 0 0.025 0.25 0.18125 0.375 0.35125 0.475

Table 8.1: Values of functions (8.3) at nodes (8.4).

is a solution of problem (8.1), (8.2).
Let us choose the grid (1.3) with N = 3 and the nodes

t0 := 0, t1 := 1, t2 := 1.5, t3 := 1.9. (8.4)

Then, obviously,

h1 = 1, h2 =
1
2

, h3 =
2
5

. (8.5)

According to (3.5), the scheme will depend on four two-dimensional vector parameters z(k),
0 ≤ k ≤ 3; their meaning is explained by Table 8.2.

Variable z(0) z(1) z(2) z(3)

Value it approximates x(0) x(1) x(1.5) x(1.9)

Table 8.2: The meaning of the parameters in the example.

The number of the solutions of the algebraic determining system (7.2) coincides with the
number of the solutions of the given problem. Different solutions have to be detected by
changing appropriately the initial domains Dk, 0 ≤ k ≤ 3. Let us carry out several steps of
iteration with two different choices of the initial domains and the radii of neighbourhoods.

8.1 First solution

Let us choose the sets Dk, 0 ≤ k ≤ 3, as follows:

D0 := {(x1, x2) : −0.15 ≤ x1 ≤ 0.182, −0.01 ≤ x2 ≤ 0.38},
D1 := {(x1, x2) : 0.024 ≤ x1 ≤ 0.182, 0.24 ≤ x2 ≤ 0.38},
D2 := D1,

D3 := {(x1, x2) : 0.024 ≤ x1 ≤ 0.352, 0.24 ≤ x2 ≤ 0.48}.

(8.6)

This choice can be justified by the fact that the zeroth approximate determining system (i.e.,
(7.2) with m = 0) has roots lying in these sets (see the first column in Table 8.3). Furthermore,
sets (8.6) contain the corresponding parts of the graph of the zeroth approximation. The
graphs of the components of the latter function, which, according to (4.4), have the form of
broken lines, are shown on Figure 8.1.

Using (3.3), we find that the corresponding sets Dk−1,k, 0 ≤ k ≤ 3, have the form

D0,1 = {(x1, x2) : −0.15 ≤ x1 ≤ 0.182, − 0.01 ≤ x2 ≤ 0.38} ,

D1,2 = {(x1, x2) : 0.024 ≤ x1 ≤ 0.182, 0.24 ≤ x2 ≤ 0.38} ,

D2,3 = {(x1, x2) : 0.024 ≤ x1 ≤ 0.352, 0.24 ≤ x2 ≤ 0.48} .
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(a) First component (b) Second component

Figure 8.1: The zeroth approximation to solution (8.3).

In order to construct suitable sets on which Assumptions 4.1 and 4.2 will be verified, we
need to choose vectors $(1), 0 ≤ k ≤ 3. Let us put, for example,

$(1) := col (0.2, 0.3), $(2) := col (0.1, 0.2), $(3) := col (0.1, 0.4). (8.7)

Then, according to formula (3.4), the corresponding sets Ωk($
(1)), 0 ≤ k ≤ 3, have the form

Ω1($
(1)) = {(x1, x2) : −0.35 ≤ x1 ≤ 0.382, − 0.31 ≤ x2 ≤ 0.68} ,

Ω2($
(2)) = {(x1, x2) : −0.076 ≤ x1 ≤ 0.282, 0.04 ≤ x2 ≤ 0.58} ,

Ω3($
(3)) = {(x1, x2) : −0.076 ≤ x1 ≤ 0.452, − 0.16 ≤ x2 ≤ 0.88} .

(8.8)

m = 0 m = 1 m = 2 m = 9

z(0)1 −0.1035005019 −0.09996763819 −0.09999692457 −0.1000000003

z(0)2 −0.001518357199 −0.00005070186245 −6.201478977 · 10−6 2.976222204 · 10−10

z(1)1 0.01941727634 0.02499481248 0.02500348592 0.02499999977

z(1)2 0.2496837722 0.2499856345 0.2499933349 0.2500000002

z(2)1 0.1756874698 0.1812419151 0.1812534461 0.1812499999

z(2)2 0.3748370539 0.3749950964 0.3749933900 0.3750000000

z(3)1 0.3748370539 0.3512417410 0.3512532909 0.3512500000

z(3)2 0.4748456880 0.4749990066 0.4749934809 0.4750000000

Table 8.3: Approximate values of the parameters for the first solution
on several steps of approximation.

A direct computation shows that the Lipschitz condition (4.2) for the right-hand side terms
of (8.1) holds in Ω1($

(1)), Ω2($(2)), Ω3($(3)), respectively, with the matrices

K1 =

(
1/4 17/25
1/8 1

)
, K2 =

(
3/8 29/50

3/16 9/4

)
, K3 =

(
19/40 22/25
19/80 361/100

)
. (8.9)
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Then, by (8.5), we obtain

r(K1) = 1.1 <
10
3

=
10
3h1

,

r(K2) =
21
16

+
7
80

√
129 ≈ 2.3063 < 6.6667 ≈ 20

3
=

10
3h2

,

r(K3) =
817 +

√
426569

400
≈ 3.6753 < 8.3334 ≈ 25

3
=

10
3h3

.

(8.10)

Relations (8.10) show that matrices (8.9) satisfy conditions (4.3) with the step sizes (8.5). Fur-
thermore, in view of (8.5), (8.7), and (8.8), we have

h1

4
δ[t0,t1],Ω1($(1))

( f ) =
1
4

δ[0,1],Ω1($(1))
( f ) =

1
4

(
0.5437
1.0815)

)
=

(
0.135925
0.270375)

)
≤
(

0.2
0.3

)
= $(1),

h2

4
δ[t1,t2],Ω2($(2))

( f ) =
1
8

δ[1,1.5],Ω2($(2))
( f ) =

1
8

(
0.41405625
1.282125)

)
≈
(

0.05175703125
0.160265625)

)
≤
(

0.1
0.2

)
= $(2),

h3

4
δ[t2,t3],Ω3($(3))

( f ) =
1

10
δ[1.5,1.9],Ω3($(3))

( f ) =
1
10

(
0.753925
3.882175)

)
=

(
0.0753925
0.3882175)

)
≤
(

0.1
0.4

)
= $(3),

which means that vectors (8.7) satisfy conditions (4.1) of Assumption 4.1.
Thus, we see that that all the conditions of Theorem 5.1 are fulfilled, and the sequences of

functions (4.5) for this example are convergent. Using Maple 14 for constructing the iterations
and solving the approximate determining equations (7.2) for m = 0, 1, 2, 9, we obtain the
numerical results shown in Table 8.3.

(a) First component (b) Second component

Figure 8.2: The first solution ((8.3), solid line) and its first approximation (dots).

We may note at this point that, at nodes (8.4), the pair of functions (8.3), which, as has been
indicated, is a solution of problem (8.1), (8.2), has the values listed in Table 8.1. Comparing
Tables 8.3 and 8.1, we find enough evidence to claim that the results of computation with the
present choice of initial domains correspond to solution (8.3). This is further confirmed when
we put the components of this function and the first approximation (m = 1) on the same plot
(see Figure 8.2). The graphs of higher approximations (we have carried out computations up
to m = 9) practically coincide with one another and there is no way to distinguish them in the
given resolution.
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(a) First component (b) Second component

Figure 8.3: Error of the first approximation to solution (8.3).

Considering the difference between the approximation and solution (8.3), e. g., for m = 1,
we see that the maximal error is about 6 · 10−4 (see Figure 8.3). All this, together with Tables 8.3
and 8.1, demonstrates a rather high quality of approximation.

8.2 Second solution

Let us now check the results of computation with a different choice of the sets Dk, 0 ≤ k ≤ 3.
Instead of (8.6), we put

D0 := {(x1, x2) : −0.3 ≤ x1 ≤ 0.11, −0.65 ≤ x2 ≤ 0.16},
D1 := {(x1, x2) : −0.05 ≤ x1 ≤ 0.11, −0.22 ≤ x2 ≤ 0.16},
D2 := D1,

D3 := {(x1, x2) : −0.05 ≤ x1 ≤ 0.27, −0.22 ≤ x2 ≤ 0.404}.

According to (3.3), the corresponding sets D0,1, D1,2 and D2,3 have the form

D0,1 = {(x1, x2) : −0.3 ≤ x1 ≤ 0.11, − 0.65 ≤ x2 ≤ 0.16} ,

D1,2 = {(x1, x2) : −0.05 ≤ x1 ≤ 0.11, − 0.22 ≤ x2 ≤ 0.16} ,

D2,3 = {(x1, x2) : −0.05 ≤ x1 ≤ 0.27, − 0.22 ≤ x2 ≤ 0.404} .

Putting now

$(1) = col (0.3, 0.6), $(2) = col (0.1, 0.3), $(3) = col (0.15, 0.9), (8.11)

we find from formula (3.4) that, in this case,

Ω1($
(1)) = {(x1, x2) : −0.6 ≤ x1 ≤ 0.41, − 1.25 ≤ x2 ≤ 0.76} ,

Ω2($
(2)) = {(x1, x2) : −0.15 ≤ x1 ≤ 0.21, − 0.52 ≤ x2 ≤ 0.46} ,

Ω3($
(3)) = {(x1, x2) : −0.2 ≤ x1 ≤ 0.42, − 1.12 ≤ x2 ≤ 1.304} .

(8.12)

We see that sets (8.8) and (8.12) essentially differ from one another.
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m = 0 m = 1 m = 2 m = 7 m = 9

z(0)1 −0.3130351578 −0.2915938662 −0.2899053146 −0.2913487961 −0.2913488037

z(0)2 −0.6853367388 −0.6463772306 −0.6463171293 −0.6452155574 −0.6452156078

z(1)1 −0.0657496383 −0.0462927056 −0.0440494448 −0.0456699676 −0.0456699553

z(1)2 −0.2581141824 −0.2183359461 −0.2180852446 −0.2170072781 −0.2170073139

z(2)1 0.0838541806 0.1001891237 0.1021532831 0.1006981868 0.1006981978

z(2)2 0.1398968489 0.1589542884 0.1589307544 0.1594479818 0.1594479635

z(3)1 0.2497893002 0.2659558438 0.2675903580 0.2664281996 0.2664282026

z(3)2 0.4027863216 0.4033132063 0.4036275942 0.4033665823 0.4033666220

Table 8.4: Approximate values of the parameters for the second solution.

Using (8.5), (8.11), (8.12) and computing the corresponding values δ[tk−1,tk ],Ωk($(k))
( f ), 0 ≤

k ≤ 3, we get

h1

4
δ[t0,t1],Ω1($(1))

( f ) =
1
4

δ[0,1],Ω1($(1))
( f ) =

1
4

(
1.15625
2.13625)

)
=

(
0.2890625
0.5340625)

)
≤
(

0.3
0.6

)
= $(1),

h2

4
δ[t1,t2],Ω2($(2))

( f ) =
1
8

δ[1,1.5],Ω2($(2))
( f ) ≈ 1

8

(
0.39160625

2.289850344)

)
≈
(

0.04895
0.28623

)
≤
(

0.1
0.3

)
= $(2),

h3

4
δ[t2,t3],Ω3($(3))

( f ) =
1
10

δ[1.5,1.9],Ω3($(3))
( f ) =

1
10

(
1.259083
8.89789

)
=

(
0.1259083
0.889789

)
≤
(

0.15
0.9

)
= $(3).

The last estimates imply that (4.1) holds for vectors (8.11) and, therefore, Assumption 4.1
is satisfied. A further computation shows that the Lipschitz condition (4.2) holds on the
respective sets (8.12) with the matrices

K1 =

(
1/4 19/25
1/8 1

)
, K2 =

(
3/8 19/25

3/16 9/4

)
, K3 =

(
19/40 163/125
19/80 361/100

)
, (8.13)

for which one finds that

r(K1) =
5
8
+

√
377
40

≈ 1.1104 <
10
3

=
10
3h1

,

r(K2) =
21
16

+

√
6537
80

≈ 2.3231 < 6.6667 ≈ 20
3

=
10
3h2

,

r(K3) =
817 +

√
442681

400
≈ 3.7059 < 8.3334 ≈ 25

3
=

10
3h3

.

(8.14)

It follows from relations (8.14) that matrices (8.13) satisfy conditions (4.3) with h1, h3, and h3

given by (8.5).
Carrying out computations, we see that the approximate determining systems (7.2), along

with the solution found in Section 8.1 in sets (8.8) (see Table 8.3), has another solution in
sets (8.12). The corresponding approximate values of parameters at several steps of iteration
(m = 0, 1, 2, 7, 9) are presented in Table 8.4. In particular, we see that, as in Section 8.1, the
piecewise linear zeroth approximation provides a useful hint as to where the solution should
be looked for (see the first column of Table 8.4).
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(a) First component (b) Second component

Figure 8.4: The zeroth (�), first (+), and ninth (solid line) approximations
to the second solution.

The graphs of three approximations to this solution (m = 0, 1, 9) are shown on Figure 8.4.
The residual obtained as a result of substitution of the ninth approximation into the given
differential system (8.1) is of order of 10−8.
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