
Electronic Journal of Qualitative Theory of Differential Equations
2016, No. 85, 1–29; doi: 10.14232/ejqtde.2016.1.85 http://www.math.u-szeged.hu/ejqtde/

Local invariant manifolds for delay differential
equations with state space in C1((−∞, 0], Rn)

Dedicated to Professor Tibor Krisztin on the occasion of his 60th birthday

Hans-Otto WaltherB

Universität Gießen, Mathematisches Institut, Arndtstr. 2, Gießen, D 35392, Germany

Received 20 January 2016, appeared 12 September 2016

Communicated by Ferenc Hartung

Abstract. Consider the delay differential equation x′(t) = f (xt) with the history
xt : (−∞, 0] → Rn of x at ‘time’ t defined by xt(s) = x(t + s). In order not to lose any
possible entire solution of any example we work in the Fréchet space C1((−∞, 0], Rn),
with the topology of uniform convergence of maps and their derivatives on compact
sets. A previously obtained result, designed for the application to examples with un-
bounded state-dependent delay, says that for maps f which are slightly better than
continuously differentiable the delay differential equation defines a continuous semi-
flow on a continuously differentiable submanifold X ⊂ C1 of codimension n, with
all time-t-maps continuously differentiable. Here continuously differentiable for maps in
Fréchet spaces is understood in the sense of Michal and Bastiani. It implies that f is of
locally bounded delay in a certain sense. Using this property – and a related further mild
smoothness hypothesis on f – we construct stable, unstable, and center manifolds of
the semiflow at stationary points, by means of transversality and embeddings.
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1 Introduction

Let U be a set of maps (−∞, 0] → Rn and let a map f : U → Rn be given. A solution of the
delay differential equation

x′(t) = f (xt) (1.1)

is a map x : (−∞, 0] + I → Rn, with I ⊂ R an interval of positive length, such that all its
segments

xt : (−∞, 0] 3 s 7→ x(t + s) ∈ Rn, t ∈ I,
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belong to U, x is differentiable on I, and satisfies (1.1) on I. In [18] we studied the initial value
problem

x′(t) = f (xt) for t > 0 and x0 = φ ∈ U (1.2)

for a functional f on an open subset U of the Fréchet space C1 of continuously differentiable
maps (−∞, 0]→ Rn, with the topology of uniform convergence of maps and their derivatives
on compact sets. Let us briefly recall the motivation for working in the Fréchet space C1,
and not in a smaller Banach space of continuously differentiable maps (−∞, 0] → Rn : we
did not want to exclude any possible continuously differentiable map satisfying (1.1) on some
interval, neither by growth conditions at −∞ nor by integrability conditions.

The main result of [18] says that if f : C1 ⊃ U → Rn is continuously differentiable in the
sense of Michal and Bastiani (we come back to this below) and if its derivatives satisfy a mild
extension property then the initial value problem (1.2) defines a continuous semiflow S on the
continuously differentiable submanifold

X = {φ ∈ U : φ′(0) = f (φ)}, codim X = n,

with all solution operators S(t, ·) : φ 7→ xt continuously differentiable. The extension property
is that

(e) each derivative D f (φ), φ ∈ U, extends to a linear map De f (φ) on the Fréchet space C of
continuous maps (−∞, 0]→ Rn, and the map

U × C 3 (φ, χ) 7→ De f (φ)χ ∈ Rn

is continuous.
The topology on C is given by uniform convergence on compact sets, of course. A first

version of property (e) is the notion of being almost Fréchet differentiable due to [10].
A toy example covered by the result from [18] is the state-dependent delay equation

x′(t) = g(x(t− ∆)), ∆ = δ(x(t)),

with g : R→ R and δ : R→ [0, ∞) continuously differentiable, not necessarily bounded.
Let us recall results on semiflows on submanifolds of Banach spaces which will be used in

the sequel. The Banach spaces are

C1
d = C1([−d, 0], Rn), d > 0,

with the norm given by
|φ|d,1 = max

−d≤s≤0
|φ(s)|+ max

−d≤s≤0
|φ′(s)|,

and

B1
a =

{
φ ∈ C1 : lim

s→−∞
φ(s)eas = 0, lim

s→−∞
φ′(s)eas = 0

}
, a > 0,

with the norm given by
|φ|a,1 = sup

s≤0
|φ(s)|eas + sup

s≤0
|φ′(s)|eas.

In [6, 15, 16] the initial value problem (1.2) was studied for f defined on an open subset of
C1

d, and the results apply to differential equations with bounded state-dependent delay. In
[17] the initial value problem (1.2) was studied for f defined on an open subset of B1

a , which
covers differential equations with unbounded delay. The hypotheses are that f is continuously
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differentiable and that the extension property holds, with an additional requirement in the
second case: for a map f : B1

a ⊃ U → Rn in (1.1) it is also assumed in [17] that f represents
locally bounded delay in the sense that

(lbd) for every φ ∈ U there are a neighbourhood N(φ) ⊂ U and some d > 0 so that f (ψ) = f (χ)
for all ψ, χ in N(φ) with ψ(s) = χ(s) on [−d, 0].

It may seem surprising that in case of maps f : U → Rn on open sets in Fréchet spaces
property (lbd) is linked to smoothness. In fact, [18, Proposition 1.1] says that property (lbd)
follows from continuous differentiability in the sense of Michal and Bastiani [1,12]. The latter notion
means for a continuous map

g : U → G, U ⊂ F open, F and G Fréchet spaces,

that all directional derivatives

Dg(u)v = lim
0 6=h→0

1
h
(g(u + hv)− g(u)) ∈ G, u ∈ U, v ∈ F,

exist and that the map
U × F 3 (u, v) 7→ Dg(u)v ∈ G

is continuous.
This notion of continuous differentiability avoids choosing a topology on the vector space

Lc(F, G) of linear continuous maps F → G. In case F and G are Banach spaces it is obviously
weaker than continuous differentiability in the sense of Fréchet (that is, there are derivatives
Dg(u) ∈ Lc(F, G), u ∈ U, in the sense of Fréchet and U 3 u 7→ Dg(u) ∈ Lc(F, G) is continuous
with respect to the usual norm topology on Lc(F, G)).

In the sequel the labels (MB) and (F) are used in order to distinguish between both notions
of continuous differentiability wherever confusion might arise.

In the present paper we find local invariant manifolds at a stationary point φ̄ ∈ X ⊂ C1

of the semiflow S, for f continuously differentiable (MB), with property (e), and satisfying a
further mild smoothness assumption (d) which requires that a map induced by f via property
(lbd) is continuously differentiable (F). In order to state this precisely consider the restriction
map Rd,1 : C1 3 φ 7→ φ|[−d,0] ∈ C1

d and the prolongation map Pd,1 : C1
d → C1 given by

(Pd,1φ)(s) = φ(s) for −d ≤ s ≤ 0 and (Pd,1φ)(s) = φ(−d) + (s + d)φ′(−d) for s < −d. Both
maps are linear and continuous. Choose a neighbourhood N = N(φ̄) ⊂ U of φ̄ and d > 0
according to property (lbd). Set φ̄d = Rd,1φ̄ and notice that

Pd,1φ̄d = φ̄ ∈ N

(because φ̄ is constant, see the preliminaries at the end of this introduction). By continuity
there exist neighbourhoods V of φ̄d in C1

d with Pd,1V ⊂ N, and due to the chain rule the
composition f ◦ (Pd,1|V) is continuously differentiable (MB), with

D( f ◦ (Pd,1|V))(φ)χ = D f (Pd,1φ)Pd,1χ.

We assume that
(d) there is an open neighbourhood Ud of φ̄d in C1

d with Pd,1Ud ⊂ N so that fd = f ◦ (Pd,1|Ud) is
continuously differentiable (F).

Combining (e) and (d) we shall see in Proposition 2.2 below that the map fd has an exten-
sion property analogous to (e). Then results from [15, 16] apply and show that the equation

x′(t) = fd(xt) (1.3)
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(with segments xt : [−d, 0] 3 s 7→ x(t + s) ∈ Rn) defines a semiflow Sd of continuously differ-
entiable solution operators Sd(t, ·) on domains in the continuously differentiable submanifold

Xd = {φ ∈ Ud : φ′(0) = fd(φ)}, codim Xd = n,

of the Banach space C1
d. The restriction φ̄d is a stationary point of Sd. From [6] we get local

stable, center, and unstable manifolds of Sd at φ̄d ∈ Xd ⊂ C1
d .

We construct each local invariant manifold of S at φ̄ ∈ X ⊂ C1 in a different way. For
the local stable manifold of S at φ̄ ∈ X ⊂ C1 we need the local stable manifold of Sd at
φ̄d ∈ Xd ⊂ C1

d, and make use of a local transversality result in Fréchet spaces which is derived
in the Appendix (Section 7). The local unstable manifold of S at φ̄ ∈ X ⊂ C1 results from
embedding the local unstable manifold obtained in [17], which sits in a Banach space B1

a ,
a > 0. The construction of a local center manifold of S at φ̄ ∈ X ⊂ C1 begins as in Krisztin’s
Lyapunov–Perron type approach to a local center manifold of Sd at φ̄d ∈ Xd ⊂ C1

d from [6, 8],
and deviates at a certain point.

Section 3 below provides the tangent spaces of the local invariant manifolds of S at φ̄ ∈
X ⊂ C1. Using the decomposition of the Banach space Yd = Tφ̄d

Xd ⊂ C1
d into stable, center

and unstable spaces of the linearized solution operators

Td,t : Yd 3 η 7→ D2Sd(t, φ̄d)η ∈ Yd, t ≥ 0,

from [6] we construct linear stable, center and unstable spaces in the tangent space

Y = Tφ̄X = {χ ∈ C1 : χ′(0) = D f (φ̄)χ} ⊂ C1,

for the linearized solution operators

Tt : Y 3 χ 7→ D2S(t, φ̄)χ ∈ Y, t ≥ 0.

This is done without recourse to spectral properties of the operators Tt.
Returning to the hypotheses on f : C1 ⊃ U → Rn it may be of interest to note that we

could have started from another arrangement, in order to obtain the desired local invariant
manifolds in C1. As the objectives are local in nature it is possible to begin with property (lbd)
of f where N(φ̄) = U. Next one can assume that an induced map like fd on a neighbourhood
of φ̄d in C1

d is continuously differentiable (F) and that an analogue of the extension property
(e) holds for the induced map. It would then follow that a restriction of f to a neighbourhood
of φ̄ in C1 is continuously differentiable (MB) and has property (e), which means that we are
back at the set of hypotheses which we prefer and actually use in this paper. – Arguing this
way one finds in particular that for the toy example, where

f (φ) = g(φ(−δ(φ(0)))) for all φ ∈ C1 (with n = 1),

all our hypotheses are satisfied.
Let us mention other recent work on invariant manifolds for equations with unbounded

delay: in [11] Matsunaga et al. obtain local center manifolds for integral equations with un-
bounded state- and time-invariant delay.

Preliminaries, notation. Banach spaces also are Fréchet spaces, that is, locally convex
topological vector spaces which are complete and metrizable. For each k ∈ N0 the topology
on the Fréchet space Ck of k times continuously differentiable maps (−∞, 0]→ Rn is given by
the seminorms | · |k,j, j ∈N, with

|φ|k,j =
k

∑
κ=1

max
−j≤s≤0

|φ(κ)(s)|,
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with the sets

Vk,j =

{
φ ∈ Ck : |φ|k,j <

1
j

}
forming a neighbourhood base at the origin. In Ck we have φm → φ as m → ∞ if and only if
for every j ∈N, |φm − φ|k,j → 0 as m→ ∞.

Continuously differentiable submanifolds of Fréchet spaces and continuously differen-
tiable maps on such submanifolds are defined using continuous differentiability (MB). The
reference for results on calculus in Fréchet spaces based on continuous differentiability (MB)
which are freely used in the sequel is [5]. See also the survey [14]. For basic facts about
topological vector spaces, see [13].

In the sequel also the vector space C∞ = ∩∞
k=0Ck occurs, but without a topology on it.

It is convenient to denote the unique maximal solution to the initial value problem

x′(t) = f (xt) for t > 0, x0 = φ ∈ X,

by xφ.
Stationary points of the semiflow S are constant. (Proof of this: suppose S(t, φ) = φ for all

t ≥ 0. The solution x of (1.1) on [0, ∞) with x0 = φ satisfies x(t) = xt(0) = S(t, φ)(0) = φ(0)
for all t ≥ 0. For all s < 0 we have x(s) = φ(s) = S(−s, φ)(s) = x−s(s) = x(0) = φ(0).)

For reals a < b and k ∈ N0 let Ck([a, b], Rn) denote the Banach space of k times continu-
ously differentiable maps [a, b]→ Rn, with the norm given by

|φ|[a,b],k =
k

∑
κ=1

max
a≤s≤b

|φ(κ)(s)|.

In case a = −d < b = 0 we abbreviate Ck
d = Ck([−d, 0], Rn) and | · |d,k = | · |[−d,0],k.

It is easy to see that the linear restriction maps

Rd,k : Ck → Ck
d, d > 0 and k ∈N0,

and the linear prolongation maps

Pd,k : Ck
d → Ck, d > 0 and k ∈N0,

given by (Pd,kφ)(s) = φ(s) for −d ≤ s ≤ 0 and

(Pd,kφ)(s) =
k

∑
κ=0

φ(κ)(−d)
κ!

(s + d)κ for s < −d

are continuous, and for all d > 0 and k ∈N0,

Rd,k ◦ Pd,k = idCk
d
.

Solutions of equations

x′(t) = g(xt), with g : C1
d ⊃ U → Rn or g : B1

a ⊃ U → Rn,

on some interval I ⊂ R are defined as in case of (1.1): with J = [−d, 0] or J = (−∞, 0],
respectively, they are continuously differentiable maps x : J + I → Rn so that xt ∈ U for all
t ∈ I and the differential equation holds for all t ∈ I. Notice that xt may denote a map on
[−d, 0] or on (−∞, 0], depending on the context.

The following statement on “globally bounded delay” for continuous linear maps corre-
sponds to a special case of [18, Proposition 1.1].
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Proposition 1.1. For every continuous linear map L : C0 → B, B a Banach space, there exists r > 0
with Lφ = 0 for all φ ∈ C0 with φ(s) = 0 on [−r, 0].

Proof. Otherwise there are sequences rm → ∞ and (φm)∞
1 in C0 with φm(s) = 0 on [−rm, 0]

and 0 6= Lφm for all m ∈N. For cm = |Lφm| > 0 we get 1
cm

φm → 0 because for each j ∈N and
for all integers m with rm ≥ j,

∣∣ 1
cm

φm
∣∣
0,j = 0. By continuity,

L
(

1
cm

φm

)
→ 0 as m→ ∞,

contradicting ∣∣∣∣L( 1
cm

φm

)∣∣∣∣ = 1 for all m ∈N.

For results on strongly continuous semigroups given by solutions of linear autonomous
retarded functional differential equations

x′(t) = Λxt

with Λ : C0
d → Rn linear and continuous, see [2, 4].

2 On locally bounded delay, the extension property, and prolonga-
tion and restriction

This section contains proofs of a few facts which were used already in Section 1, and further
relations between the functionals f and fd and between the semiflows S and Sd. Recall that f
is continuously differentiable (MB) and has property (lbd), with N = N(φ̄) and d > 0.

Proposition 2.1. For every φ ∈ N we have

D f (φ)ψ = 0 for all ψ ∈ C1 with ψ(s) = 0 on [−d, 0],

and
De f (φ)χ = 0 for all χ ∈ C0 with χ(s) = 0 on [−d, 0].

Proof. Let φ ∈ N and ψ ∈ C1 with ψ(s) = 0 on [−d, 0] be given. For h 6= 0 sufficiently small,
φ + hψ ∈ N (due to continuity of multiplication with scalars), hence f (φ + hψ) = f (φ), and
thereby,

D f (φ)ψ = lim
0 6=h→0

1
h
( f (φ + hψ)− f (φ)) = lim

0 6=h→0

1
h
( f (φ)− f (φ)) = 0.

Let φ ∈ N and χ ∈ C0 with χ(s) = 0 on [−d, 0] be given. Choose a sequence of points χm ∈ C1

with χm(s) = 0 on [−d, 0] which converges to χ in the topology of C0. (For example, let m ≥ d
and find χ̂m ∈ C1([−m, 0], Rn) with

|χ̂m(s)− χ(s)| < 1
m

on [−m, 0] and χ̂m(s) = 0 on [−d, 0].

Extend χ̂m to χm ∈ C1 by χm(s) = χ̂m(−m) + (χ̂m)′(−m)(s + m) for s < −m. Conclude that
for each j ∈N, |χm − χ|0,j → 0 as m→ ∞.) – We obtain

De f (φ)χ = lim
m→∞

De f (φ)χm = lim
m→∞

D f (φ)χm = 0,
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where the last equation follows from the first part of the assertion, with χm(s) = 0 on [−d, 0].

With regard to the next result on the extension property of fd observe that each directional
derivative of fd, at a point φ ∈ Ud in direction of χ ∈ C1

d, is given by D fd(φ)χ with the Fréchet
derivative D fd(φ) ∈ Lc(C1

d, Rn).

Proposition 2.2. Each Fréchet derivative D fd(φ) ∈ Lc(C1
d, Rn), φ ∈ Ud, extends to a linear map

De fd(φ) : C0
d → Rn and the map Ud × C0

d 3 (φ, χ) 7→ De fd(φ)χ ∈ Rn is continuous.

Proof. 1. Let φ ∈ Ud be given. By the chain rule for continuous differentiability (MB) in
combination with the remark preceding Proposition 2.2 the Fréchet derivative of fd at φ is
given by D fd(φ) = D f (Pd,1φ) ◦ Pd,1. Define De fd(φ) : C0

d → Rn by De fd(φ)χ = De f (Pd,1φ)Pd,0χ.
The map De fd(φ) is linear. It also is a continuation of D fd(φ) since for χ ∈ C1

d we have

De fd(φ)χ = De f (Pd,1φ)Pd,0χ

= De f (Pd,1φ)Pd,1χ (with Proposition 2.1 and Pd,0χ(s) = Pd,1χ(s) on [−d, 0])

= D f (Pd,1φ)Pd,1χ = D fd(φ)χ.

2. The continuity of the map

Ud × C0
d 3 (φ, χ) 7→ De fd(φ)χ ∈ Rn

follows from its definition in combination with property (e) of f and the continuity of Pd,1 and
Pd,0.

Proposition 2.3. Xd = Rd,1(X ∩ N ∩ R−1
d,1(Ud))

Proof. 1. On Xd ⊂ Rd,1(X ∩ N ∩ R−1
d,1(Ud)). For φ ∈ Xd ⊂ Ud we have Pd,1φ ∈ N. Using this

and φ = Rd,1Pd,1φ we get Pd,1φ ∈ N ∩ R−1
d,1(Ud) and

(Pd,1φ)′(0) = φ′(0) = fd(φ) (by φ ∈ Xd)

= f (Pd,1φ),

which means Pd,1φ ∈ X. It follows that φ = Rd,1Pd,1φ is in Rd,1(X ∩ N ∩ R−1
d,1(Ud)).

2. On Rd,1(X ∩ N ∩ R−1
d,1(Ud)) ⊂ Xd. Consider φ = Rd,1ψ with ψ ∈ X ∩ N ∩ R−1

d,1(Ud). Then
φ = Rd,1ψ ∈ Ud ⊂ P−1

d,1 (N), Pd,1Rd,1ψ = Pd,1φ ∈ N, ψ ∈ X ∩ N ⊂ U, and

φ′(0) = (Rd,1ψ)′(0) = ψ′(0) = f (ψ) (since ψ ∈ X)

= f (Pd,1Rd,1ψ)

(with (lbd), ψ ∈ N, Pd,1Rd,1ψ ∈ N, and ψ(s) = Pd,1Rd,1ψ(s) on [−d, 0])

= f (Pd,1φ) = fd(φ),

which gives φ ∈ Xd.

Proposition 2.4. For every φ ∈ X ∩ N ∩ R−1
d,1(Ud),

TRd,1φXd = Rd,1TφX.
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Proof. Let φ ∈ X ∩ N ∩ R−1
d,1(Ud) be given. Using Proposition 2.3 we infer Rd,1φ ∈ Xd and

Rd,1TφX = DRd,1(φ)TφX ⊂ TRd,1φXd,

hence codim Rd,1TφX ≥ codim TRd,1φXd = n. As Rd,1 is surjective and codim TφX = n we also
get n ≥ codim Rd,1TφX. It follows that Rd,1TφX and TRd,1φXd have the same finite codimension
n. Using the previous inclusion we obtain equality.

Let Ω ⊂ X × [0, ∞) and Ωd ⊂ Xd × [0, ∞) denote the domains of S and Sd, respectively.
The unique maximal solutions to the initial value problems

x′(t) = fd(xt) for t > 0, x0 = χ ∈ Xd,

are denoted by xχ (as in case of the initial value problem for (1.1) and data in X).

Proposition 2.5.
(i) For (t, φ) ∈ Ω with S([0, t]× {φ}) ⊂ N ∩ R−1

d,1(Ud),

(t, Rd,1φ) ∈ Ωd and Sd(t, Rd,1φ) = Rd,1S(t, φ).

(ii) If (t, χ) ∈ Ωd and if x : (−∞, t]→ Rn given by x(s) = xχ(s) on [−d, t] and by x(s) = (Pd,1χ)(s)
for s < −d satisfies {xs : 0 ≤ s ≤ t} ⊂ N then

(t, Pd,1χ) ∈ Ω and Rd,1S(t, Pd,1χ) = Sd(t, χ).

Proof. On (i): Let x = xφ and set y = x|[−d,t]. Each segment ys ∈ C1
d, 0 ≤ s ≤ t, equals

Rd,1xs ∈ Rd,1(X ∩ N ∩ R−1
d,1(Ud)) = Xd. In particular, y0 = Rd,1x0 = Rd,1φ ∈ Ud, and for

0 ≤ s ≤ t,

y′(s) = x′(s) = f (xs)

= f (Pd,1Rd,1xs)

(by (lbd), using xs ∈ N, Rd,1xs ∈ Ud ⊂ P−1
d,1 (N), Pd,1Rd,1xs ∈ N, xs(v) = Pd,1Rd,1xs(v)

on [−d, 0])

= fd(Rd,1xs) = f (ys),

which implies that the restriction y = x|[−d,t] satisfies (1.3) on [0, t]. Now the assertion becomes
obvious.

On (ii): consider (t, χ) ∈ Ωd and the maximal solution xχ of (1.3) and x : (−∞, t] → Rn as
defined in assertion (ii) and assume the segments xs ∈ C1, 0 ≤ s ≤ t, belong to N. For such s
we have

x′(s) = (xχ)′(s) = fd(xχ
s ) = f (Pd,1xχ

s )

= f (xs)

(by (lbd), use Pd,1xχ
s ∈ N, xs ∈ N, (Pd,1xχ

s )(v) = xχ
s (v) = xχ(s + v) = x(s + v) = xs(v)

for − d ≤ v ≤ 0),

and x0 = Pd,1χ ∈ N. It follows that (t, Pd,1χ) ∈ Ω and xs = S(s, Pd,1χ) for all s ∈ [0, t]. Finally,
observe Rd,1xs = xχ

s = Sd(s, χ) for 0 ≤ s ≤ t.

Proposition 2.5 (i) shows that φ̄d is a stationary point of the semiflow Sd.
For t ≥ 0 consider the operators Tt = D2S(t, φ̄) on Tφ̄X and Td,t = D2Sd(t, φ̄d) on Tφ̄d

Xd.
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Corollary 2.6.
(i) For (t, φ) ∈ Ω as in Proposition 2.5 (i) and for all χ ∈ TφX,

Rd,1χ ∈ TRd,1φXd and Rd,1D2S(t, φ)χ = D2Sd(t, Rd,1φ)Rd,1χ.

(ii) For all χ ∈ Tφ̄X and for all t ≥ 0,

Rd,1χ ∈ Tφ̄d
Xd and Rd,1Ttχ = Td,tRd,1χ.

Proof. On (i): for φ ∈ X with S([0, t]× {φ}) ⊂ N ∩ R−1
d,1(Ud) we have Sd(t, Rd,1φ) = Rd,1S(t, φ),

by Proposition 2.5. Let χ ∈ TφX be given. By Proposition 2.4, Rd,1χ ∈ TRd,1φXd. By the chain
rule, D2Sd(t, Rd,1φ)Rd,1χ = Rd,1D2S(t, φ)χ, which yields the assertion.

On (ii): we have [0, ∞)× {φ̄} ⊂ Ω, and for all t ≥ 0, S(t, φ̄) = φ̄ ∈ N ∩ R−1
d,1(Ud), because

of φ̄ ∈ N and Rd,1φ̄ = φ̄d ∈ Ud. Using part (i) we conclude that for all t ≥ 0 and χ ∈ Tφ̄X,
Rd,1χ ∈ Tφ̄d

Xd and

Td,tRd,1χ = D2Sd(t, Rd,1φ̄)Rd,1χ = Rd,1D2S(t, φ̄)χ = Rd,1Ttχ.

3 Decompositions of tangent spaces

This section contains the decomposition of the Fréchet space Y = Tφ̄X ⊂ C1 into the stable,
center, and unstable spaces which in the subsequent sections will become the tangent spaces
of the desired local invariant manifolds at φ̄ ∈ X. The construction does not make use of
spectral properties of the operators Tt = D2S(t, φ̄), t ≥ 0, on Y, or of the generator of this
semigroup, but exploits well-known properties of the strongly continuous semigroup on the
Banach space C0

d which arises from linearizing the semiflow Sd at φ̄d ∈ Xd as follows: in [6] it
is shown that the derivatives Td,t = D2Sd(t, φ̄d), t ≥ 0, form a strongly continuous semigroup
on the Banach space

Yd = Tφ̄d
Xd = {χ ∈ C1

d : χ′(0) = D fd(φ̄d)χ},

and they are given by the equations

Td,tχ = Td,e,tχ for t ≥ 0, χ ∈ Y

where Td,e,tη = vt with the continuous solution v : [−d, ∞)→ Rn of the initial value problem

v′(t) = De fd(φ̄d)vt for t > 0, v0 = η ∈ C0
d.

Here the term continuous solution means that v is continuous, differentiable for t > 0, and
satisfies the delay differential equation for t > 0, as in [2, 4]. – In the present section a symbol
like vt above always denotes a segment which is defined on [−d, 0].

The operators Td,e,t : C0
d → C0

d, t ≥ 0, form a strongly continuous semigroup whose gener-
ator has a discrete spectrum σd,e which consists of eigenvalues of finite algebraic multiplicity,
with only a finite number of them in each halfplane {z ∈ C : Re z > u}, u ∈ R. Then the
stable, center, and unstable spaces of the semigroup are defined as the realified generalized
eigenspaces C0

d,s, C0
d,c, C0

d,u which are given by the eigenvalues satisfying

Re z < 0, Re z = 0, Re z > 0,

respectively. The operators Td,e,t, t ≥ 0, map C0
d,s into itself and act on C0

d,c and on C0
d,u as

isomorphisms. The center and unstable spaces are finite-dimensional. Initial data χ in C0
d,c
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and in C0
d,u uniquely define analytic solutions v = v(χ) on R of the equation v′(t) = De fd(φ̄d)vt

with v0 = χ and with all segments vt : [−d, 0] 3 s 7→ v(t + s) ∈ Rn, t ∈ R, in C0
d,c and in C0

d,u,
respectively. From χ ∈ C1

d and χ′(0) = De fd(φ̄d)χ = D fd(φ̄d)χ we have χ ∈ Yd. This yields
C0

d,c ⊂ Yd, C0
d,u ⊂ Yd. For every t ≥ 0 the operator Td,t given by Td,e,t acts as an ismorphism

on Yd,c = C0
d,c and on Yd,u = C0

d,u. With the closed space Yd,s = Yd ∩ C0
d,s,

Yd = Yd,s ⊕Yd,c ⊕Yd,u and Td,tYd,s ⊂ Yd,s for all t ≥ 0,

see [6]. The injective linear maps

Ic : C0
d,c 3 χ 7→ v(χ)|(−∞,0] ∈ C1 and Iu : C0

d,u 3 χ 7→ v(χ)|(−∞,0] ∈ C1

with finite-dimensional domains are continuous. Define

Yc = IcC0
d,c = IcYd,c and Yu = IuC0

d,u = IuYd,u.

Notice that
φ = IcRd,1φ on Yc and φ = IuRd,1φ on Yu.

The finite-dimensional spaces Yc and Yu are both contained in Y, because of

(v(χ)|(−∞,0])
′(0) = χ′(0) = D fd(φ̄d)χ

= D f (Pd,1φ̄d)Pd,1χ

= D f (φ̄)(v(χ)|(−∞,0])

(by Proposition 2.1).

The spaces Yc and Yu serve as center and unstable spaces in Y.

Proposition 3.1 (Conjugacy, invariance). For every t ≥ 0,

Tt Icχ = IcTd,tχ for all χ ∈ Yd,c = C0
d,c and

Tt Iuχ = IuTd,tχ for all χ ∈ Yd,u = C0
d,u,

and TtYc = Yc and TtYu = Yu.

Proof. Let χ ∈ C0
d,c, v = v(χ), t ≥ 0. Then vt = Td,tχ ∈ C0

d,c. The translate w = v(t + ·) of
v : R → Rn also is an analytic solution of the linear equation given by De fd(φ̄d) : C0

d → Rn,
with initial value w0 = vt ∈ C0

d,c. Hence w|(−∞,0] = Icvt. Next, Icχ = v|(−∞,0], and for all s > 0,

v′(s) = De fd(φ̄d)vs = D fd(φ̄d)vs = D f (Pd,1φ̄d)Pd,1vs

= D f (φ̄)Pd,1vs

= D f (φ̄)(v(s + ·)|(−∞,0])

(by Proposition 2.1, with (Pd,1vs)(r) = vs(r) = v(s + r) for − d ≤ r ≤ 0),

which gives Tt(v|(−∞,0]) = v(t + ·)|(−∞,0] = w|(−∞,0]. Altogether,

Tt Icχ = Tt(v|(−∞,0]) = w|(−∞,0] = Icvt = IcTd,tχ.

The proof for χ ∈ C0
d,u is analogous. The last assertions follow from the first and second

assertion, respectively.
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Define the stable space in Y as the closed space

Ys = Y ∩ R−1
d,1Yd,s.

Proposition 3.2. Y = Ys ⊕Yc ⊕Yu and TtYs ⊂ Ys for all t ≥ 0.

Proof. 1. Proof of Y ⊂ Ys ⊕ Yc ⊕ Yu: for φ ∈ Y, Rd,1φ ∈ Yd, see Proposition 2.4. There exist
χs ∈ Yd,s, χc ∈ Yd,c = C0

d,c, χu ∈ Yd,u = C0
d,u so that Rd,1φ = χs + χc + χu. Hence

Rd,1(φ− Icχc − Iuχu) = χs + χc + χu − Rd,1 Icχc − Rd,1 Iuχu = χs ∈ Yd,s,

which in combination with φ− Icχ− Iuχu ∈ Y yields φ− Icχc − Iuχu ∈ Ys.
2.1 Proof of Ys ∩ Yc ⊂ {0}: for φ ∈ Ys ∩ Yc = (Y ∩ R−1

d,1Yd,s) ∩ IcYd.c we have Rd,1φ ∈
Yd,s ∩Yd,c = {0}. Consequently, Rd,1φ = 0, and thereby φ = IcRd,1φ = 0.

2.2 The proof of Ys ∩Yu ⊂ {0} is analogous.
2.3 Proof of Yc ∩Yu ⊂ {0}: for φ ∈ Yc ∩Yu = IcYd.c ∩ IuYd,u, hence Rd,1φ ∈ Yd,c ∩Yd,u = {0}.

Consequently, Rd,1φ = 0, and thereby φ = IcRd,1φ = 0.
3. Let t ≥ 0, φ ∈ Ys. Then Rd,1φ ∈ Yd,s. Using this and Corollary 2.6 one finds

Rd,1Ttφ = Td,tRd,1φ ∈ Yd,s,

which gives Ttφ ∈ Ys.

What will be used from this section in the sequel are only the definitions of the spaces
Ys, Yc, Yu and the inclusion

IuC0
d,u = Yu ⊂ B1

a

which follows from v(χ)(t)→ 0 and (v(χ))′(t)→ 0 as t→ −∞ for all χ ∈ C0
d,u.

4 The local stable manifold

We begin with the local stable manifold Ws
d ⊂ Xd of the semiflow Sd at the stationary point

φ̄d ∈ Xd ⊂ C1
d as it was obtained in [6]. It is easy to see that Ws

d is a continuously differen-
tiable submanifold of the Banach space C1

d which is locally positively invariant under Sd, with
tangent space

Tφ̄d
Ws

d = Yd,s

at φ̄d, and that it has the following properties (I) and (II), for some β > 0 chosen with

−β > Re z for all z ∈ σd,e with Re z < 0

and for some γ > β.

(I) There are an open neighbourhood W̃s
d of φ̄d in Ws

d such that [0, ∞) × W̃s
d ⊂ Ωd and

Sd([0, ∞)× W̃s
d) ⊂Ws

d, and a constant c̃ > 0 such that for all ψ ∈ W̃s
d and all t ≥ 0,

|Sd(t, ψ)− φ̄d|d,1 ≤ c̃ e−γt|ψ− φ̄d|d,1.

(II) There exists a constant c̄ > 0 such that each ψ ∈ Xd with [0, ∞)× {ψ} ⊂ Ωd and

eβt|Sd(t, ψ)− φ̄d|d,1 < c̄ for all t ≥ 0
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belongs to Ws
d.

The codimension of Ws
d in C1

d is equal to

n + dim Yd,c + dim Yd,u = n + dim C0
d,c + dim C0

d,u.

As the continuous linear map Rd,1 : C1 → C1
d is surjective we can apply Proposition 7.3 from

the Appendix and obtain an open neighbourhood V of φ̄ in N ⊂ U ⊂ C1 so that

Ws = Ws(φ̄) = V ∩ R−1
d,1(W

s
d)

is a continuously differentiable submanifold of C1 with codimension n + dim C0
d,c + dim C0

d,u
and tangent space

Tφ̄Ws = R−1
d,1(Tφ̄d

Ws
d) = R−1

d,1(Yd,s).

The next propositions show that Ws is the desired local stable manifold of S at φ̄.

Proposition 4.1. Ws ⊂ X and Tφ̄Ws = Ys, and Ws is locally positively invariant.

Proof. 1. Let φ ∈ Ws. Then φ ∈ V ⊂ N and Rd,1φ ∈ Ws
d ⊂ Xd ⊂ Ud ⊂ P−1

d,1 (N) and
φ(t) = Pd,1Rd,1φ(t) on [−d, 0]. Using Rd,1φ ∈ Xd, the definition of fd, and property (lbd)
we infer

φ′(0) = (Rd,1φ)′(0) = fd(Rd,1φ) = f (Pd,1Rd,1φ) = f (φ)

which means φ ∈ X.
2. The first assertion yields Tφ̄Ws ⊂ Tφ̄X = Y ⊂ C1. Hence

Tφ̄Ws = Y ∩ R−1
d,1(Yd,s) = Ys.

3. (On local positive invariance) Choose an open neighbourhood Vd of φ̄d according to local
positive invariance of Ws

d. Then choose an open neighbourhood V̂ ⊂ V of φ̄ with Rd,1V̂ ⊂ Vd.
Consider t ≥ 0 and φ ∈ Ws ∩ V̂ with S([0, t]× {φ}) ⊂ V̂. Then Rd,1S([0, t]× {φ}) ⊂ Vd and
Rd,1φ ∈Ws

d ∩Vd. For 0 ≤ s ≤ t the solution x : (−∞, t]→ Rn of the initial value problem (1.2)
satisfies

x′(s) = f (xs) = f (Pd,1Rd,1xs) (with (lbd); we have

Rd,1xs ∈ Ud, Pd,1Rd,1xs ∈ N, xs ∈ V̂ ⊂ N, Pd,1Rd,1xs = xs on [−d, 0])

= fd(Rd,1xs),

which shows that y = x|[−d,t] is a solution of (1.3) on [0, t], with initial value y0 = Rd,1φ ∈
Ws

d ∩ Vd and with the segments ys = Rd,1xs, 0 ≤ s ≤ t, in Rd,1V̂ ⊂ Vd. By local positive
invariance of Ws

d, ys = Rd,1xs ∈Ws
d for 0 ≤ s ≤ t. It follows that for such s, xs ∈ V̂ ∩R−1

d,1(W
s
d) ⊂

V ∩ R−1
d,1(W

s
d) = Ws.

Proposition 4.2.
(i) There are an open neighbourhood Ṽ of φ̄ in V with [0, ∞)× (Ṽ ∩Ws) ⊂ Ω and a constant c̃ > 0
such that for all φ ∈ Ṽ ∩Ws the solution x : R→ Rn of the initial value problem (1.2) satisfies

|x(t)− φ̄(0)|+ |x′(t)| ≤ c̃e−γt|Rd,1φ− φ̄d|d,1 for all t ≥ 0.

(ii) There are an open neighbourhood V̂ of φ̄ in V and a constant ĉ > 0 such that for every solution
x : R→ Rn of the initial value problem (1.2) with φ ∈ V̂ ∩ X and

|x(t)− φ̄(0)|+ |x′(t)| ≤ ĉ e−βt for all t ≥ 0

we have φ ∈Ws.
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Proof. 1. Consider γ > β > 0 and W̃s
d, c̃, c̄ from statements (I) and (II) above. There is an open

neighbourhood Ṽd ⊂ Ud of φ̄d with Ws
d ∩ Ṽd = W̃s

d.
2. On (i). Choose an integer j ≥ d so that for all χ ∈ C1

d with |χ− φ̄d|d,1 < 1
j we have χ ∈ Ud,

and for all ψ ∈ C1 with |ψ− φ̄|1,j <
1
j we have ψ ∈ N. Choose an open neighbourhood Ṽ ⊂ V

of φ̄ so that for all φ ∈ Ṽ we have

|φ− φ̄|1,j <
1

2j(c̃ + 1)
and Rd,1Ṽ ⊂ Ṽd.

For φ ∈Ws ∩ Ṽ we obtain Rd,1φ ∈Ws
d ∩ Ṽd = W̃s

d. By statement (I), [0, ∞)× {Rd,1φ} ⊂ Ωd and
for all t ≥ 0,

|Sd(t, Rd,1φ)− φ̄d|d,1 ≤ c̃ e−γt|Rd,1φ− φ̄d|d,1

≤ c̃ e−γt|φ− φ̄|1,j <
1
2j

.

Then the solution y : [−d, ∞)→ Rn on [0, ∞) of (1.3) with initial value y0 = Rd,1φ ∈ W̃s
d ⊂Ws

d
satisfies

|y(s)− φ̄(0)|+ |y′(s)| < 1
2j

for all s ≥ −d.

The map x : R → Rn given by x(t) = y(t) for t ≥ −d and x(t) = φ(t) for t < −d is
continuously differentiable. Using x(s) = φ(s) for s ≤ 0, φ ∈ Ṽ, and the previous estimate we
infer

|x(s)− φ̄(0)|+ |x′(s)| < 1
2j

for all s ≥ −j,

which yields |xt − φ̄|1,j < 1
j for all segments xt : (−∞, 0] 3 u 7→ x(t + u) ∈ Rn, t ≥ 0.

Consequently, xt ∈ N for all t ≥ 0. Using

|Rd,1xt − Rd,1φ̄|d,1 ≤ |xt − φ̄|1,j <
1
j

for all t ≥ 0

we obtain for all t ≥ 0 that Rd,1xt ∈ Ud, hence Pd,1Rd,1xt ∈ N, and

x′(t) = y′(t) = fd(yt) = fd(Rd,1xt) = f (Pd,1Rd,1xt) = f (xt) (with (lbd)).

It follows that x is the solution of the initial value problem (1.2), and for every t ≥ 0,

|x(t)− φ̄(0)|+ |x′(t)| = |y(t)− φ̄(0)|+ |y′(t)|
≤ |Sd(t, Rd,1φ)− φ̄d|d,1 ≤ c̃ e−γt|Rd,1φ− φ̄d|d,1.

3. On (ii). Choose an integer j ≥ d with

1
j
<

c̄
2

e−βd

so that {
φ ∈ C1 : |φ− φ̄|1,j <

2
j

}
⊂ V and

{
χ ∈ C1

d : |χ− φ̄d|d,1 <
2
j

}
⊂ Ud.

Set

V̂ =

{
φ ∈ C1 : |φ− φ̄|1,j <

1
j

}
and choose ĉ > 0 with ĉ eβd <

1
j
.
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Let φ ∈ X ∩ V̂ be given with [0, ∞)× {φ} ⊂ Ω and assume that the solution x : R → Rn of
the initial value problem (1.2) satisfies

|x(t)− φ̄(0)|+ |x′(t)| ≤ ĉ e−βt for all t ≥ 0.

Notice that all segments xt : (−∞, 0] 3 u 7→ x(t + u) ∈ Rn, t ≥ 0, belong to V. Next, consider
the restriction y = x|[−d,∞). For t ≥ 0 and −d ≤ s ≤ 0 we have in case t + s ≤ 0 that

|y(t + s)− φ̄(0)|+ |y′(t + s)| ≤ |φ− φ̄|1,j <
1
j
≤ c̄

2
e−βd ≤ c̄

2
e−βt

while for 0 < t + s,

|y(t + s)− φ̄(0)|+ |y′(t + s)| = |x(t + s)− φ̄(0)|+ |x′(t + s)| ≤ ĉ e−β(t+s)

≤ ĉ eβde−βt <
c̄
2

e−βt.

It follows that for all segments yt : [−d, 0] 3 u 7→ y(t+ u) ∈ Rn, t ≥ 0, we have eβt|yt− φ̄d|d,1 ≤
c̄. Notice that we also obtained

|yt − φ̄d|d,1 <
2
j

for all t ≥ 0,

which yields yt ∈ Ud for all t ≥ 0, hence Pd,1Rd,1xt = Pd,1yt ∈ N for all t ≥ 0. As xt ∈ V ⊂ N
we can apply (lbd) and find

y′(t) = x′(t) = f (xt) = f (Pd,1Rd,1xt) = fd(Rd,1xt) = fd(yt) for all t ≥ 0.

In particular, y0 ∈ Xd. It follows that yt = Sd(t, y0) for all t ≥ 0. Now statement (II) gives
Rd,1φ = y0 ∈Ws

d. Consequently, φ ∈ V ∩ R−1
d,1(W

s
d) = Ws.

5 The local unstable manifold

In this section segments xt are always defined on (−∞, 0]. Fix some a > 0 and consider the
Banach space B1

a ⊂ C1 introduced in Section 1, and let B0
a ⊂ C0 denote the Banach space of

continuous maps φ : (−∞, 0]→ Rn satisfying

lim
s→−∞

φ(s)eas = 0,

with the norm given by |φ|a,0 = sups≤0 |φ(s)|eas. It is easy to see that the linear inclusion maps

j0 : B0
a → C0 and j1 : B1

a → C1

are continuous, as well as the restriction and prolongation maps

Ra,d,1 : B1
a 3 φ 7→ Rd,1φ ∈ C1

d and Pa,d,1 : C1
d 3 χ 7→ Pd,1χ ∈ B1

a .

The set Ua = j−1
1 (N) ∩ R−1

a,d,1(Ud) ⊂ B1
a is open and contains φ̄, and the map

fa : Ua → Rn, fa(φ) = f (j1φ),

satisfies fa(φ̄) = 0. Notice that every solution of the equation

x′(t) = fa(xt) (5.1)

on some interval also is a solution of (1.1) on this interval.
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Proposition 5.1. For all φ and ψ in Ua with φ(s) = ψ(s) on [−d, 0] we have fa(φ) = fa(ψ). The
map fa is continuously differentiable (F), each derivative D fa(φ) : B1

a → Rn, φ ∈ Ua, has a linear
extension De fa(φ) : B0

a → Rn, and the map

Ua × B0
a 3 (φ, χ) 7→ De fa(φ)χ ∈ Rn

is continuous.

Proof. 1. For φ, ψ in Ua with φ(s) = ψ(s) on [−d, 0] we have j1φ ∈ N, j1ψ ∈ N, and Ra,d,1φ =

Ra,d,1ψ ∈ Ud ⊂ P−1
d,1 (N). Using (lbd) we infer

fa(φ) = f (j1φ) = f (Pd,1Ra,d,1φ) = f (Pd,1Ra,d,1ψ) = f (j1ψ) = fa(ψ).

2. Using fa(φ) = f (Pd,1Ra,d,1φ) = fd(Ra,d,1φ) we see that fa is continuously differen-
tiable (F).

3. For φ ∈ Ua and χ ∈ B0
a define De fa(φ)χ = De f (j1φ)j0χ.

Now results from [17] show that Xa = {φ ∈ Ua : φ′(0) = fa(φ)} is a continuously dif-
ferentiable submanifold of Ua ⊂ B1

a , that the solutions of (5.1) define a continuous semiflow
Sa : [0, ∞)× Xa ⊃ Ωa → Xa, and that there is a local unstable manifold Wu

a ⊂ Xa at the sta-
tionary point φ̄ ∈ Xa, which has the following properties: Wu

a is a continuously differentiable
submanifold of B1

a , φ̄ ∈ Wu
a , each φ ∈ Wu

a is a solution on (−∞, 0] of (5.1) with φs → φ̄ as
s→ −∞, and

Tφ̄Wu
a = Yu.

(In order to verify the last equation observe that in [17] the tangent space of Wu
a at φ̄ is obtained

as the vector space of all maps χ̂ : (−∞, 0] → Rn with χ̂0 = χ ∈ C0
d,u which for some t > 0

and for all integers j < 0 satisfy
χ̂jt = Λjχ

where Λ : C0
d,u → C0

d,u is the isomorphism whose inverse is given by Td,e,−t. The maps in the
vector space IuC0

d,u = Yu share the said property. The dimension of both vector spaces equals
dim C0

d,u.)
Moreover, there exist β > γ > 0 and cu > 0 so that
(I) |φs − φ̄|a,1 ≤ cueβ̄s|φ− φ̄|a,1 for all φ ∈Wu

a and s ≤ 0,
and
(II) for every solution ψ ∈ B1

a of (5.1) on (−∞, 0] with

sup
s≤0
|ψs − φ̄|a,1e−γ̄s < ∞

there exists sψ ≤ 0 with ψs ∈Wu
a for all s ≤ sψ.

From a manifold chart at φ̄ we obtain ε > 0 and a continuously differentiable (F) map

wu
a : Yu(ε)→ B1

a , Yu(ε) = {φ ∈ Yu : |φ|a,1 < ε},

with wu
a (0) = φ̄, wu

a (Yu(ε)) an open subset of Wu
a , and Dwu

a (0)η = η for all η ∈ Yu. Propo-
sition 7.4 applies to the continuously differentiable (MB) map j1 ◦ wu

a . So we may assume
that

Wu = Wu(φ̄) = j1wu
a (Yu(ε))

is a continuously differentiable submanifold of C1 with

Tφ̄Wu = j1Dwu
a (0)Yu = Yu.
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Proposition 5.2.
(i) Every φ ∈Wu is a solution of (1.1) on (−∞, 0], with φs → φ̄ as s→ −∞, and for all s ≤ 0,

|φ(s)− φ̄(0)| ≤ cueβ̄s|φ− φ̄|a,1 and |φ′(s)| ≤ cueβ̄s|φ− φ̄|a,1.

(ii) For every ψ ∈ X which is a solution of (1.1) on (−∞, 0] with

sup
s≤0

e−γ̄s|ψ(s)− φ̄(0)| < ∞ and sup
s≤0

e−γ̄s|ψ′(s)| < ∞

there exists s(ψ) ≤ 0 with ψs ∈Wu for all s ≤ s(ψ).

Proof. 1. On (i). Let φ ∈ Wu ⊂ j1Wu
a = Wu

a ⊂ B1
a be given. From the properties of Wu

a
combined with the remark preceding Proposition 5.1 we infer that φ is a solution of (1.1) on
(−∞, 0]. Using φs → φ̄ for s → −∞ in B1

a and continuity we get φs → φ̄ for s → −∞ also
in C1. The exponential estimate in assertion (i) is obvious from the exponential estimate of
|φs − φ̄|a,1 for s ≤ 0 in statement (I).

2. On (ii). Consider ψ ∈ C1 which is a solution of (1.1) on (−∞, 0] and assume there is
some c ≥ 0 with

e−γ̄s|ψ(s)− φ̄(0)| ≤ c and e−γ̄s|ψ′(s)| ≤ c for all s ≤ 0.

Then ψ and ψ′ are bounded, hence ψs ∈ B1
a for all s ≤ 0. For each s ≤ 0 we have

|ψs − φ̄|a,1 = sup
v≤0
|ψ(s + v)− φ̄(0)|eav + sup

v≤0
|ψ′(s + v)|eav

≤ sup
v≤0
|ψ(s + v)− φ̄(0)|+ sup

v≤0
|ψ′(s + v)|

≤ 2 c sup
v≤0

eγ̄(s+v) ≤ 2 c eγ̄s,

hence ψs → φ̄ in B1
a as s → −∞. Choose s1 ≤ 0 with ψs ∈ Ua for all s ≤ s1. For s ≤ s1 we also

have

ψ′(s) = (ψs)
′(0) = f (ψs) (since ψ is a solution of (1.1))

= fa(ψs) (since ψs ∈ Ua),

hence ψ also is a solution of (5.1) on (−∞, s1]. It follows that ψ̄ = ψs1 ∈ B1
a is a solution of (5.1)

on (−∞, 0]. For s ≤ 0 we get

e−γ̄s|ψ̄s − φ̄|a,1 = e−γ̄s|ψs1+s − φ̄|a,1

≤ 2 c eγ̄s1 < ∞.

Property (II) shows that there exists s2 ≤ 0 with ψ̄s ∈ Wu
a for all s ≤ s2. Using ψs → φ̄ in

B1
a for s → −∞ once again we find s3 ≤ s2 with ψ̄s ∈ wu

a (Yu(ε)) for all s ≤ s3. For such s,
ψs1+s = j1ψs1+s = j1ψ̄s ∈ j1wu

a (Yu(ε)) = Wu.

6 Local center manifolds

In this section we assume
{0} 6= C0

d,c = Yd,c.
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First we perform the translation φ̄d → 0, in order to use constructions from Section 4.2 in [6]
and from [8]. Consider the continuously differentiable (F) map

gd : C1
d ⊃ Vd → Rn, Vd = Ud − φ̄d, gd(φ) = fd(φ + φ̄d),

which satisfies gd(0) = 0 and Dgd(φ) = D fd(φ + φ̄d) for all φ ∈ Vd. In particular, Dgd(0) =
D fd(φ̄d). Setting Degd(φ) = De fd(φ+ φ̄d) for φ ∈ Vd we observe that the derivatives of gd have
an extension property as in Proposition 2.2. The set

Xgd = {φ ∈ Vd : φ′(0) = gd(φ)} = Xd − φ̄d

is a continuously differentiable submanifold of Xd, with codimension n, and a map x :
[−d, 0] + I → Rn, I ⊂ R an interval, is a solution of

x′(t) = gd(xt) (6.1)

on I if and only if the map [−d, 0] + I 3 t 7→ x(t) + φ̄(0) ∈ Rn is a solution of (1.3) on I. It
follows that the relations

Ωgd = {(t, φ) ∈ [0, ∞)× Xgd : (t, φ + φ̄d) ∈ Ωd}, Sgd(t, φ) = Sd(t, φ + φ̄d)

define a continuous semiflow on Xgd , with all solution operators Sgd(t, ·) continuously differ-
entiable (F). Now 0 ∈ Xgd is a stationary point of Sgd , the tangent space of Xgd at 0 is

Ygd = T0Xgd = {χ ∈ C1
d : χ′(0) = Dgd(0)χ} = {χ ∈ C1

d : χ′(0) = D fd(φ̄d)χ} = Yd,

and the derivatives D2Sgd(t, 0) : Ygd → Ygd , t ≥ 0, are given by

Tgd,t = D2Sgd(t, 0) = D2S(t, φ̄d) = Td,t.

For every χ ∈ Ygd and for all t ≥ 0, Tgd,tχ = vχ
t with the continuously differentiable solution

vχ : R→ Rn of the initial value problem

v′(t) = Dgd(0)vt = D fd(φ̄d)vt for t > 0, v0 = χ ∈ Ygd = Yd. (6.2)

In particular,
Tgd,tχ = Tgd,e,tχ

with the operator Tgd,e,t = Td,e,t from the strongly continuous semigroup on the space C0
d which

is given by the continuous solutions of the initial value problem

v′(t) = Degd(0)vt = De fd(φ̄d)vt for t > 0, v0 = η ∈ C0
d. (6.3)

The operators Tgd,e,t = Td,e,t, t ≥ 0, leave the stable space C0
d,s invariant and define isomor-

phisms of the center and unstable spaces C0
d,c, C0

d,u. In the sequel we need certain constants re-
lated to the behaviour of the semigroup on these invariant spaces: there are K ≥ 1, a < 0, b > 0
and ε ∈ (0, min{−a, b}) such that

|Td,e,tφ|d,0 ≤ K eat|φ|d,0 for all φ ∈ C0
d,s, t ≥ 0,

|Td,e,tφ|d,0 ≤ K eε|t||φ|d,0 for all φ ∈ C0
d,c, t ∈ R,

|Td,e,tφ|d,0 ≤ K ebt|φ|d,0 for all φ ∈ C0
d,u, t ≤ 0.
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Next we recall the first part of the construction of a continuously differentiable local center
manifold of Sgd at 0 ∈ Xgd from [8]. (Be aware of different notation: the space C in [8]
corresponds to the space C0

d in the present paper, etc.)
Setting C1

d,s = C1
d ∩ C0

d,s we obtain a decomposition

C1
d = C1

d,s ⊕ C0
d,c ⊕ C0

d,u (6.4)

of the space C1
d into closed subspaces. The associated projections C1

d → C1
d onto C1

d,s, C0
d,c, C0

d,u
are denoted by P1

d,s, P1
d,c, P1

d,u, respectively.
Following [8] we choose a norm | · |d,c on the finite-dimensional space C0

d,c whose restriction
to C0

d,c \ {0} is C∞-smooth. Then

||φ||d,1 = max{|P1
d,cφ|d,c, |(P1

d,s + P1
d,u)φ|d,1}

defines a norm on C1
d which is equivalent to | · |d,1. The continuously differentiable (F) remain-

der
rd : Vd 3 φ 7→ gd(φ)− Dgd(0)φ ∈ Rn

satisfies rd(0) = 0 and Drd(0) = 0. Using analogues of the formulae for rδ in [8] we introduce
a family of maps

rd,δ : C1
d → Rn, 0 < δ ≤ δ1,

which are defined on the whole space C1
d and have the property that for all δ ∈ (0, δ1] and for

all φ ∈ C1
d with ‖φ‖d,1 < δ,

φ ∈ Vd and rd,δ(φ) = rd(φ).

(The preceding property is obvious from the definition of rd,δ but was not stated for rδ in [8].)
In particular, rd,δ(0) = rd(0) = 0. There is a continuous non-decreasing function µ : [0, δ1] →
[0, 1] with µ(0) = 0 such that for all δ ∈ (0, δ1] and all φ, ψ in C1

d we have

|rd,δ(φ)| ≤ δ µ(δ)

and

|rd,δ(φ)− rd,δ(ψ)| ≤ µ(δ)‖φ− ψ‖d,1.

(For the construction of µ compare, e. g., the proof of [9, Proposition II.2].)
For a given Banach space E and η > 0 let Eη denote the Banach space of all continuous

maps u : R→ E satisfying supt∈R e−η|t||u(t)| < ∞, with the norm given by

|u|E,η = sup
t∈R

e−η|t||u(t)|.

For E = C0
d and E = C1

d abbreviate C0
d,η = (C0

d)η and C1
d,η = (C1

d)η , | · |d,0,η = | · |C0
d ,η and

| · |d,1,η = | · |C1
d ,η , respectively. In case η > ε the map

Sη : C0
d,c → C1

d,η , (Sηφ)(t) = Td,e,tφ,

is injective, linear, and continuous. This follows easily from the facts that the operators
Td,e,t, t ≥ 0, form a strongly continuous semigroup and define isomorphisms of the space
C0

d,c, in combination with the growth estimate on C0
d,c and with the equivalence of all norms

on the finite-dimensional space C0
d,c ⊂ C1

d.
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In the proof of [8, Theorem 2.1] it is shown that there exist ∆ ∈ (0, δ1] and η1 > η0 in
(ε, min{−a, b}) with the following properties: for every φ ∈ C0

d,c there is a uniquely deter-
mined curve u = u(φ) ∈ C1

d,η1
which satisfies the integral equation

u(t) = Td,e,t−su(s) +
∫ t

s
T�?d,e,t−τ l(rd,∆(u(τ)))dτ, −∞ < s ≤ t < ∞, (6.5)

and the condition P1
d,cu(φ)(0) = φ. (For the correct interpretation of (6.5), for the integral in it,

and for the maps T�?d,e,t−τ and l see [8].) We have u(0) = 0, and the map u : C0
d,c 3 φ 7→ u(φ) ∈

C1
d,η1

is continuously differentiable (F) with Du(0) = Sη1 .
Because of P1

d,cu(φ)(0) = φ the map u : C0
d,c 3 φ 7→ u(φ) ∈ C1

d,η1
is injective.

It is important to notice that in the preceding statement ∆ can be chosen so small that,
taking into account the Lipschitz constant µ(∆) of r∆ and the equivalence of the norms ‖ · ‖d,1
and | · |d,1, we also get

|rd,∆(φ)− rd,∆(ψ)| ≤ λ|φ− ψ|d,1 for all φ ∈ C1
d, ψ ∈ C1

d

with a constant λ = λ(∆) ≥ 0 strictly less than 1. (In [8] only the related estimate µ(δ) ≤ 1
occurs, which is not enough for the present purpose. We need λ < 1 for the application of
Proposition 7.1 in Part 1 of the proof of Proposition 6.4 below.)

(6.5) is equivalent to the differential equation

x′(t) = Dgd(0)xt + rd,∆(xt) (6.6)

in a certain sense, see [6, Section 4.2]. We only need that given φ ∈ C0
d,c there is a continuously

differentiable function x[φ] : R→ Rn which satisfies (6.6) for all t ∈ R and

x[φ]t = u(φ)(t) for all t ∈ R,

and conversely, that for every continuously differentiable function x : R→ Rn which satisfies
(6.6) for all t ∈ R the continuous curve R 3 t 7→ xt ∈ C1

d satisfies (6.5).
Define open balls

C0
d,c,∆ = {φ ∈ C0

d,c : ‖φ‖d,1 < ∆},
C1

d,su,∆ = {φ ∈ C1
d,s ⊕ C0

d,u : ‖φ‖d,1 < ∆},
N∆ = C0

d,c,∆ + C1
d,su,∆ (= {φ ∈ C1

d : ‖φ‖d,1 < ∆}).

From here on, we deviate from the proof of [8, Theorem 2.1]. The next aim is to show that
the map C0

d,c 3 φ 7→ x[φ]|(−∞,0] ∈ C1 is continuously differentiable (MB) with the derivative at
φ = 0 given by the map

Ic : C0
d,c → C1

from Section 3, with image IcC0
d,c = Yc ⊂ Y = Tφ̄X. This requires some preparation.

Notice that the differentiation and evaluation maps ∂d : C1
d → C0

d, ∂dφ = φ′, and evs : C0
d 3

φ 7→ φ(s) ∈ Rn, −d ≤ s ≤ 0, are linear and continuous.

Proposition 6.1.
(i) The set

Z = {z ∈ C1
d,η1

: for all t ∈ R and s ∈ [−d, 0], z(t)(s) = z(t + s)(0)}
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is a closed linear subspace of C1
d,η1

.
(ii) For each z ∈ C1

d,η1
, ∂d ◦ z ∈ C0

d,η1
, and the linear map

C1
d,η1
3 z 7→ ∂d ◦ z ∈ C0

d,η1

is continuous.
(iii) The linear maps

em0,s : C0
d,η1
3 z 7→ (evs ◦ z)|(−∞,0] ∈ C0, −d ≤ s ≤ 0,

are continuous.
(iv) For every z ∈ Z the map ev0 ◦ z is continuously differentiable with

(ev0 ◦ z)′(t) = (ev0 ◦ ∂d ◦ z)(t)

for all t ∈ R.
(v) The linear map

emZ : C1
d,η1
⊃ Z 3 z 7→ (ev0 ◦ z)|(−∞,0] ∈ C1

is continuous.

Proof. 1. On assertion (i). For every t ∈ R and s ∈ [−d, 0] the maps C1
d,η1
3 z 7→ z(t)(s) ∈ Rn

and C1
d,η1
3 z 7→ z(t + s)(0) ∈ Rn are linear and continuous. The set Z is the intersection of

the kernels of their differences.
2. In order to prove assertion (ii) recall the norm on C0

d,η1
and use that given z ∈ C1

d,η1
and

t ∈ R,

|(∂d ◦ z)(t)|d,0e−η1|t| = |(z(t))′|d,0e−η1|t|

≤ (|z(t)|d,0 + |(z(t))′|d,0)e−η1|t| = |z(t)|d,1e−η1|t|

≤ |z|d,1,η1

3. Proof of assertion (iii). Let −d ≤ s ≤ 0 and j ∈ N. For every z ∈ C0
d,η1

and for all
t ∈ [−j, 0],

|(evs ◦ z)(t)| = |z(t)(s)|e−η1|t|eη1|t|

≤ |z(t)|d,0e−η1|t|eη1 j

≤ |z|d,0,η1 eη1 j,

which shows

|em0,s(z)|0,j = |(evs ◦ z)|(−∞,0]|0,j ≤ eη1 j|z|d,0,η1 for all z ∈ C0
d,η1

.

Now continuity follows easily.
4. Proof of assertion (iv). Let z ∈ Z and t ∈ R be given. For h ∈ R with 0 < |h| < d

2 ,

z
(

t +
d
2

)(
−d

2
+ h
)
− z

(
t +

d
2

)(
−d

2

)
= z

(
t +

d
2
− d

2
+ h
)
(0)− z

(
t +

d
2
− d

2

)
(0)(

since z ∈ Z and − d
2
+ h ∈ [−d, 0] 3 −d

2

)
= (ev0 ◦ z)(t + h)− (ev0 ◦ z)(t)
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which shows that

1
h
((ev0 ◦ z)(t + h)− (ev0 ◦ z)(t)) → z

(
t +

d
2

)′ (
−d

2

)
as h→ 0, and ev0 ◦ z is differentiable. For −d ≤ h < 0 we have

(ev0 ◦ z)(t + h)− (ev0 ◦ z)(t) = z(t + h)(0)− z(t)(0)

= z(t)(h)− z(t)(0)

(as z ∈ Z and − d ≤ h ≤ 0).

This yields (ev0 ◦ z)′(t) = (z(t))′(0) = ∂d(z(t))(0) = (ev0 ◦ ∂d ◦ z)(t). The formula shows that
(ev0 ◦ z)′ is continuous.

5. Proof of assertion (v). From assertion (iii) in combination with the continuity of the
inclusion map

C1
d,η1
→ C0

d,η1

we infer that the map
C1

d,η1
⊃ Z 3 z 7→ em0,0(z) ∈ C0

is continuous, and for every z ∈ Z, emZ(z) = (ev0 ◦ z)|(−∞,0] = em0,0(z). According to assertion
(iv), each map emZ(z), z ∈ Z, is continuously differentiable with

(emZ(z))′(t) = (ev0 ◦ z)′(t) = (ev0 ◦ (∂d ◦ z))(t) = (em0,0(∂d ◦ z))(t)

for all t ≤ 0, or (emZ(z))′ = em0,0(∂d ◦ z). Using assertions (ii) and (iii) we conclude that the
map

C1
d,η1
⊃ Z 3 z 7→ (emZ(z))′ ∈ C0

is continuous. Recall |φ|1,j = |φ|0,j + |φ′|0,j for all j ∈ N and all φ ∈ C1. Now it follows easily
that the map

emZ : C1
d,η1
⊃ Z → C1

is continuous.

Observe that we have Sη1 C0
d,c ⊂ Z as for all χ ∈ C0

d,c, t ∈ R and s ∈ [−d, 0],

((Sη1 χ)(t))(s) = (Td,e,tχ)(s) = v(χ)t (s) = v(χ)(t + s) = v(χ)t+s(0) = ((Sη1 χ)(t + s))(0).

Also, for every χ ∈ C0
d,c and for all t ≤ 0,

ev0(Sη1(χ)(t)) = ev0(Td,e,tχ) = ev0(v
(χ)
t ) = v(χ)(t) = (Icχ)(t).

Corollary 6.2. The map J : C0
d,c 3 φ 7→ φ̄ + x[φ]|(−∞,0] ∈ C1 is continuously differentiable (MB) with

DJ(0) = Ic.

Proof. For every φ ∈ C0
d,c we have u(φ) ∈ Z, because of

(u(φ)(t))(s) = x[φ]t (s) = x[φ](t + s) = x[φ]t+s(0) = (u(φ)(t + s))(0)

for all t ∈ R and s ∈ [−d, 0]. For each t ≤ 0,

x[φ](t) = (u(φ)(t))(0) = ev0(u(φ)(t)) = (ev0 ◦ u(φ))(t) = (emZ(u(φ)))(t).
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Hence J(φ) = φ̄ + emZ(u(φ)) for all φ ∈ C0
d,c. An application of the chain rule to the linear

continuous map emZ from Proposition 6.1 (vi) and to the continuously differentiable (F) map

C0
d,c 3 φ 7→ u(φ) ∈ Z ⊂ C1

d,η1

yields that the map J is continuously differentiable (MB) with DJ(0)χ = emZ(Sη1 χ) for all
χ ∈ C0

d,c. For such χ and for all t ≤ 0,

(emZ(Sη1 χ))(t) = ev0((Sη1 χ)(t)) = v(χ)t (0) = v(χ)(t) = Icχ(t),

see the statement preceding the corollary.

As J(0) = φ̄ ∈ N ⊂ U and DJ(0) is injective Proposition 7.4 applies. It follows that there
is an open neighbourhood N0

d,c of 0 in C0
d,c so that the set

Wc = J(N0
d,c) ⊂ N ⊂ U

is a continuously differentiable submanifold of C1, with

Tφ̄Wc = IcC0
d,c = Yc.

As u(0) = 0 and as the map C0
d,c 3 φ 7→ u(φ)(0) ∈ C1

d is continuous we may assume that for
every φ ∈ N0

d,c we have

‖u(φ)(0)‖d,1 < ∆, or equivalently, u(φ)(0) ∈ N∆,

which implies u(φ)(0) ∈ Vd.

Proposition 6.3.
Wc ⊂ X

Proof. For φ ∈ N0
d,c and x = J(φ) = φ̄ + x[φ]|(−∞,0] ∈Wc ⊂ N ⊂ U,

x′(0) = (x[φ])′(0) = Dgd(0)x[φ]0 + rd,∆(x[φ]0 )

(by (6.6), with the segment x[φ]0 defined on [−d, 0])

= Dgd(0)x[φ]0 + rd(x[φ]0 )

(as ‖x[φ]0 ‖d,1 = ‖u(φ)(0)‖d,1 < ∆)

= gd(x[φ]0 ) = fd(φ̄ + x[φ]0 ) (as x[φ]0 ∈ Vd = Ud − φ̄)

= f (Pd,1(φ̄ + x[φ]0 ))

= f (x) (by (lbd), with arguments in N ⊂ C1)

= f (x0) (with the segment defined on (−∞, 0]).

Choose an open neighbourhood U∗ of φ̄ in N ⊂ U so small that

Rd,1U∗ ⊂ Ud ∩ (N∆ + φ̄d)

and for all ψ ∈ U∗,
P1

d,cRd,1(ψ− φ̄) ∈ N0
d,c.
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Proposition 6.4 (Local positive invariance). For every (t, ψ) ∈ Ω with ψ ∈Wc ⊂ X and S([0, t]×
{ψ}) ⊂ U∗ we have S([0, t]× {ψ}) ⊂Wc.

Proof. 1. Let (t, ψ) ∈ Ω with ψ ∈ Wc ⊂ X and S([0, t]× {ψ}) ⊂ U∗ be given. Let s ∈ [0, t]. We
have to show S(s, ψ) ∈Wc. There exists χ ∈ N0

d,c with ψ = J(χ) = φ̄+ x[χ]|(−∞,0]. Consider the
maximal continuously differentiable solution y : (−∞, ty)→ Rn of (1.1) on (0, ty), 0 < ty ≤ ∞,
with y0 = ψ ∈ X. Then t < ty and yv = S(v, ψ) for 0 ≤ v < ty. Obviously,

y(v)− φ̄(0) = ψ(v)− φ̄(0) = x[χ](v) for all v ≤ 0.

Proof of y(v)− φ̄(0) = x[χ](v) for 0 < v ≤ t : consider the map

z : [−d, ty) 3 v 7→ y(v)− φ̄(0) ∈ Rn.

For 0 < v ≤ t,

z′(v) = y′(v) = f (yv)

(with the segment yv defined on (−∞, 0])

= f (Pd,1Rd,1yv)

((lbd) applies since yv = S(v, ψ) ∈ U∗ ⊂ N ∩ R−1
d,1(Ud), Rd,1yv ∈ Ud, Pd,1Rd,1yv ∈ N)

= fd(Rd,1yv) (since Rd,1yv ∈ Ud)

= gd(Rd,1yv − φ̄d)

(with Vd = Ud − φ̄d and the definition of gd)

= Dgd(0)(Rd,1yv − φ̄d) + rd(Rd,1yv − φ̄d)

= Dgd(0)(Rd,1yv − φ̄d) + rd,∆(Rd,1yv − φ̄d)

(using Rd,1yv ∈ N∆ + φ̄d, ‖Rd,1yv − φ̄d‖1,d < ∆),

and Rd,1yv − φ̄d is the segment zv : [−d, 0] 3 s 7→ y(v + s)− φ̄(0) ∈ Rn. Proposition 7.1 now
yields y(v)− φ̄(0) = z(v) = x[χ](v) for 0 < v ≤ t.

2. Due to autonomy the shifted copy

ξ : R 3 v 7→ x[χ](v + s) ∈ Rn

of x[χ] satisfies (6.6) for all t ∈ R. The continuous curve

R 3 v 7→ ξv ∈ C1
d

is a solution of (6.5) and belongs to the space C1
d,η1

as we have the estimate

|ξv|d,1 = |x[χ]v+s|d,1 = |u(χ)(v + s)|d,1e−η1|v+s|eη1|v+s|

≤ eη1|v|eη1s sup
w∈R

|u(χ)(w)|d,1e−η1|w| for all v ∈ R.

It follows that for all v ∈ R,
ξv = u(φ)(v) = x[φ]v

with
φ = P1

d,cξ0,
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and we observe that ξ = x[φ]. - In order to show that φ belongs to the domain N0
d,c of J, notice

that Part 1 yields

ξ(v) = x[χ](v + s) = y(v + s)− φ̄(0) for all v ≤ 0.

Using this in combination with the fact that the segment ys : (−∞, 0] 3 v 7→ y(s + v) ∈ Rn

belongs to U∗, and the choice of U∗ we infer

φ = P1
d,cξ0 = P1

d,cRd,1(ξ|(−∞,0]) = P1
d,cRd,1(ys − φ̄) ∈ N0

d,c.

Finally,
ys = φ̄ + ξ|(−∞,0] = φ̄ + x[φ]|(−∞,0] = J(φ) ∈Wc.

Proposition 6.5. For every solution y : R → Rn of (1.1) on R with yt ∈ U∗ for all t ∈ R we have
yt ∈Wc for all t ∈ R.

Proof. Let a solution y : R→ Rn of (1.1) on R with yt ∈ U∗ for all t ∈ R be given. Because of
the autonomy of (1.1) it suffices to show y0 ∈ Wc. Define x : R → Rn by x(t) = y(t)− φ̄(0).
Then Rd,1xt = Rd,1(yt − φ̄) = Rd,1yt − Rd,1φ̄ = Rd,1yt − φ̄d ∈ Rd,1U∗ − φ̄d ⊂ N∆ for all t ∈ R.
The continuously differentiable map x is a solution of (6.6) on R because similar as in Part 1
of the proof of Proposition 6.4 we have

x′(t) = y′(t) = f (yt) = f (Pd,1Rd,1yt)

(with yt ∈ U∗ ⊂ N, Rd,1yt ∈ Ud, Pd,1Rd,1yt ∈ N and (lbd))

= fd(Rd,1yt) (since Rd,1yt ∈ Ud)

= gd(Rd,1yt − φ̄d)

(with Rd,1yt ∈ Ud = Vd + φ̄d and the definition of gd)

= Dgd(0)(Rd,1yt − φ̄d) + rd(Rd,1yt − φ̄d)

= Dgd(0)(Rd,1yt − φ̄d) + rd,∆(Rd,1yt − φ̄d)

(with Rd,1yt − φ̄d ∈ N∆)

= Dgd(0)(Rd,1xt) + rd,∆(Rd,1xt)

for every t ∈ R, and Rd,1xt is the segment [−d, 0] 3 s 7→ x(t + s) ∈ Rn for each t ∈ R. Then
the curve R 3 t 7→ Rd,1xt ∈ C1

d is continuous and solves (6.5). As all Rd,1xt = Rd,1yt − φ̄d ∈ N∆

are uniformly bounded the curve belongs to the space C1
d,η1

= Cη1(R, C1
d). It follows that

Rd,1xt = u(χ)(t) = x[χ]t for all t ∈ R

with
χ = P1

d,cRd,1x0 = P1
d,cRd,1(y0 − φ̄) ∈ N0

d,c.

Notice that x(t) = (Rd,1xt)(0) = x[χ]t (0) = x[χ](t) for all t ∈ R. Finally,

y0 = φ̄ + x|(−∞,0] = φ̄ + x[χ]|(−∞,0] = J(χ) ∈Wc.

Some comments on the choice of the different methods used in Sections 5 and 6 seem
in order. The proof in Section 5 embeds a local unstable manifold Wu

a ⊂ Xa ⊂ B1
a into the

space C1. The basic unstable manifold Wu
a is taken from [17]. Center manifolds in Xa are
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not addressed in [17], and seem unavailable anywhere else. This precludes the application of
the embedding technique from Section 5 in the present Section 6. Instead the construction in
Section 6 borrows from the work in [6, 8] on center manifolds in Xd ⊂ C1

d.
Let us mention that the present construction of a center manifold in X ⊂ C1 can be modi-

fied in order to establish first the local center manifolds in Xa ⊂ B1
a which are missing in [17].

Upon that, one could use the embedding technique from Section 5 and proceed to local center
manifolds in X ⊂ C1.

It also is possible to establish unstable manifolds in X ⊂ C1 in the same way as here in
Section 6, without recourse to results from [17] and starting from the construction of unstable
manifolds in Xd ⊂ C1

d in [7]. The different route chosen in Section 5 is much shorter. Moreover
it saves us from a discussion how to change technical details in the proof in [7], in order to get
rid of unnecessary hypotheses which are hyperbolicity and the assumption that the functional
in the delay differential equation considered is the restriction of a map on a subset of C0

d.

7 Appendix on uniqueness, preimages and embeddings

Proposition 7.1. Suppose L : C1
d → Rn is linear and continuous with a linear continuous extension

Le : C0
d → Rn, and r : C1

d → Rn satisfies |r(φ) − r(ψ)| ≤ λ|φ − ψ|d,1 for all φ, ψ in C1
d, with

0 ≤ λ < 1. Then any two continuously differentiable maps x : [−d, te)→ Rn and y : [−d, te)→ Rn,
0 < te ≤ ∞, satisfying x(t) = y(t) on [−d, 0] and

z′(t) = Lzt + r(zt) for 0 < t < te

coincide.

Proof. 1. Assume x(t′) 6= y(t′) for some t′ ∈ (0, te). Let t0 = inf {t ∈ [0, te) : x(t) 6= y(t)}. Then
0 ≤ t0 < te, x(t) = y(t) on [−d, t0] and for every ε > 0 there exists t′ ∈ (t0, t0 + ε) with t′ < te

and x(t′) 6= y(t′). The curves [0, te) 3 s 7→ xs ∈ C1
d and [0, te) 3 s 7→ ys ∈ C1

d are continuous.
Let c = |Le|Lc(C0

d ,Rn) = sup|χ|d,0≤1 |Leχ|.
2. A preliminary estimate. For t0 ≤ v ≤ t < te with t ≤ t0 + d, we have

|x(v)− y(v)| =
∣∣∣∣∫ v

t0

(x′(s)− y′(s))ds
∣∣∣∣ = ∣∣∣∣∫ v

t0

(L(xs − ys) + r(xs)− r(ys))ds
∣∣∣∣

=

∣∣∣∣∫ v

t0

(Le(xs − ys) + r(xs)− r(ys))ds
∣∣∣∣

≤ (v− t0)(c max
t0≤s≤v

|xs − ys|d,0 + λ max
t0≤s≤v

|xs − ys|d,1)

= (v− t0)((c + λ) max
t0≤s≤v

|xs − ys|d,0 + λ max
t0≤s≤v

|(x′)s − (y′)s|d,0)

≤ (t− t0)((c + λ)|xt − yt|d,0 + λ|(x′)t − (y′)t|d,0)

where the last estimate follows from t0 ≤ v ≤ t ≤ t0 + d and x(s) = y(s) on [−d, t0]. Using
this once more we get

|xt − yt|d,0 ≤ (t− t0)((c + λ)|xt − yt|d,0 + λ|(x′)t − (y′)t|d,0)

for t0 ≤ t < te with t ≤ t0 + d.
3. Estimate of derivatives. For t0 ≤ v ≤ t < te with t ≤ t0 + d, we have

|x′(v)− y′(v)| ≤ c|xv − yv|d,0 + λ(|xv − yv|d,0 + |(x′)v − (y′)v|d,0)

≤ (c + λ)|xt − yt|d,0 + λ|(x′)t − (y′)t|d,0,
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where the last estimate follows from v ≤ t ≤ t0 + d and x(s) = y(s) on [−d, t0]. Using this
once more we see that in case t0 ≤ t < te and t0 ≤ t ≤ t0 + d we have

|(x′)t − (y′)t|d,0 ≤ (c + λ)|xt − yt|d,0 + λ|(x′)t − (y′)t|d,0,

hence
|(x′)t − (y′)t|d,0 ≤

c + λ

1− λ
|xt − yt|d,0.

4. The result of part 3 inserted into the result of part 2 yields

|xt − yt|d,0 ≤ (t− t0)

(
(c + λ)|xt − yt|d,0 + λ

c + λ

1− λ
|xt − yt|d,0

)
for t0 ≤ t < te with t ≤ t0 + d. It follows that |xt− yt|d,0 = 0 for t > t0 sufficiently small, hence
x(u) = y(u) on [−d, t] for some t > t0 which is a contradiction to the properties of t0.

We turn to maps in Fréchet spaces which are continuously differentiable (MB). For the
proof of a local transversality result which is familiar in case of continuously differentiable (F)
maps in Banach spaces we need the following implicit function theorem.

Theorem 7.2. Let a Fréchet space F and finite-dimensional normed spaces B and E and a continuously
differentiable map (MB) f : F × B ⊃ U → E, U open, be given with f (x, y) = 0 and assume that
D2 f (x, y) : B→ E is an isomorphism. Then there exist convex open neighbourhoods NF of x in F and
NB of y in B and a continuously differentiable (MB) map g : NF → NB with y = g(x) and

(NF × NB) ∩ f−1(0) = {(z, b) ∈ NF × NB : b = g(z)}

For a proof see [3], or [18, Theorem 7.3] in combination with the remark preceding this
theorem.

Proposition 7.3. Let F, G be Fréchet spaces, U ⊂ F open, f : U → G continuously differentiable
(MB), and consider a continuously differentiable submanifold M ⊂ G of finite codimension m. Assume
that f and M are transversal at a point x ∈ f−1(M) in the sense that

G = D f (x)F + Tf (x)M.

Then there is an open neighbourhood V of x in U so that V ∩ f−1(M) is a continuously differentiable
submanifold of codimension m in F, and Tx( f−1(M) ∩V) = D f (x)−1Tx M.

Proof. 1. There are an open neighbourhood Ng of f (x) in G and a continuously differentiable
(MB) diffeomorphism g : Ng → G onto an open set Ug ⊂ G such that g( f (x)) = 0, g(Ng ∩
M) = Ug ∩ Tf (x)M, and Dg( f (x)) = id. (The last property can always be achieved by replacing
g with Dg( f (x))−1 ◦ g. Notice that Dg( f (x)) maps Tf (x)M onto itself.)

2. By transversality and codim M = m we find a subspace Q ⊂ D f (x)F of dimension m
which complements Tf (x)M in G,

G = Tf (x)M⊕Q.

The projection P : G → Q along Tf (x)M onto Q is linear and continuous (see [13, Theorem
5.16]), and PDg( f (x))D f (x) = PD f (x) is surjective. The preimage U f = f−1(Ng) is open,
with x ∈ U f ⊂ U. For z ∈ U f we have

z ∈ f−1(M) ∩U f ⇔ f (z) ∈ M ∩ Ng ⇔ Pg( f (z)) = 0.
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For the continuously differentiable (MB) map h = P ◦ g ◦ ( f |U f ) we infer f−1(M) ∩ U f =

h−1(0). The derivative Dh(x) : F → Q is surjective. It follows that there is a subspace R of F
with dim R = dim Q = m and

F = Dh(x)−1(0)⊕ R.

The restriction Dh(x)|R is an isomorphism.
3. The continuously differentiable (MB) map

H : {(z, r) ∈ Dh(x)−1(0)× R : x + z + r ∈ U f } 3 (z, r) 7→ h(x + z + r) ∈ Q

satisfies H(0, 0) = 0. Because of D2H(0, 0)r̂ = Dh(x)r̂ for all r̂ ∈ R and dim R = dim Q the
map D2H(0, 0) is an isomorphism. Theorem 7.2 yields convex open neighbourhoods VH of 0
in Dh(x)−1(0) and VR of 0 in R, with x + VH + VR ⊂ U f , and a continuously differentiable
(MB) map w : VH → VR with w(0) = 0 and

(VH ×VR) ∩ H−1(0) = {(z, r) ∈ VH ×VR : r = w(z)}.

For every y ∈ x + VH + VR, y = x + z + r with z ∈ VH and r ∈ VR, we have

y ∈ f−1(M) ∩U f ⇔ h(y) = 0⇔ h(x + z + r) = 0⇔ H(z, r) = 0⇔ r = w(z),

and f−1(M) ∩ (x + VH + VR) is a shifted continuously differentiable (MB) graph, hence a
continuously differentiable submanifold of F, with codimension equal to dim R = dim Q = m.
Set V = x + VH + VR.

4. (On tangent spaces) From f−1(M)∩U f = h−1(0) and h(x) = 0 we get h( f−1(M)∩V) =

{0}, hence Dh(x)Tx( f−1(M) ∩V) = {0}, or

Tx( f−1(M) ∩V) ⊂ Dh(x)−1(0).

As both spaces have the same codimension m they are equal. For every v ∈ F we have

v ∈ Dh(x)−1(0)⇔ Dh(x)v = 0⇔ PD f (x)v = 0

⇔ D f (x)v ∈ P−1(0) = Tf (x)M⇔ v ∈ D f (x)−1Tx M.

Using this we obtain

Tx( f−1(M) ∩V) = Dh(x)−1(0) = D f (x)−1Tx M.

Proposition 7.4. Suppose W is an open subset of a finite-dimensional normed space V, and j : W → F,
F a Fréchet space, is continuously differentiable (MB), b ∈W, and Dj(b) is injective. Then there is an
open neighbourhood N of j(b) such that N ∩ j(W) is a continuously differentiable submanifold of F,
with Tj(b)(N ∩ j(W)) = Dj(b)V (hence dim(N ∩ j(W)) = dim V).

Proof. 1. The finite-dimensional subspace Y = Dj(b)V has a closed complementary space
Z ⊂ F, see [13, Lemma 4.21], and the projection P : F → F along Z onto Y is continuous ([13,
Theorem 5.16]). The map P ◦ j is continuously differentiable (MB) and defines a continuously
differentiable (F) map W → Y since V and Y are finite-dimensional. Its derivative at b is an
isomorphism V → Y (use Py = y on Y and the injectivity of Dj(b)). The Inverse Mapping
Theorem yields a continuously differentiable (F) map g : Y ∩ U → V, U open in F and
P(j(b)) ∈ Y∩U, such that g(P(j(b))) = b, and an open neighbourhood W1 ⊂W of b in V such
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that g(Y ∩U) = W1, (P ◦ j)(W1) = Y ∩U, (g ◦ (P ◦ j))(v) = v on W1, and ((P ◦ j) ◦ g)(y) = y
on Y ∩U. It follows that the map h : Y ∩U → Z given by

h(y) = ((idF − P) ◦ j ◦ g)(y)

is continuously differentiable (MB).
2. Proof of j(W1) = {y + h(y) : y ∈ Y ∩U} : (a) For y ∈ Y ∩U,

y + h(y) = y + ((idF − P) ◦ j ◦ g)(y)

= ((P ◦ j) ◦ g)(y) + (j ◦ g)(y)− ((P ◦ j) ◦ g)(y) = j(g(y)) ∈ j(W1).

(b) For x ∈ j(W1) there exists y ∈ Y ∩U with

x = j(g(y)) = ((P ◦ j) ◦ g)(y) + j(g(y))− (P ◦ j)(g(y))

= y + ((idF − P) ◦ j ◦ g)(y) = y + h(y).

The graph representation of j(W1) now yields that it is a continuously differentiable subman-
ifold of F.
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