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Abstract. In the present paper we extend some recent results of R. Filippucci, P. Pucci
and Cs. Varga to continuous functionals. As an application we prove the existence of at
least three different solutions of a quasilinear eigenvalue problem, for every λ in some
interval, which solutions are invariants by Schwarz symmetrization.
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1 Introduction

There is a rich literature on the study of symmetric solutions of the PDE’s. A very important
paper is due to Gidas, Ni, Nirenberg [9], where they prove symmetry, and some related prop-
erties, of positive solutions of second order elliptic equations. Their methods employ various
forms of the maximum principle, and a device of moving parallel planes to a critical position.
After this work appeared many papers where the solutions of PDE’s have different symme-
tries for e.g. radial symmetry (see e.g. Pacella, Salazar [8], Squassina [11]), axial symmetry or
have some symmetry properties with respect to certain group actions.

In articles [13, 14] Van Shaftingen developed an abstract method for the study of sym-
metrization. In [15] Van Shaftingen and Willem study different symmetry properties (spheri-
cal cap, Schwarz, polarization) of least energy positive or nodal solutions of semilinear elliptic
problems with Dirichlet or Neumann boundary conditions.

Filippucci, Pucci, Varga in [6] using the symmetric version of Ekeland’s variational prin-
ciple (Van Schaftingen [13]) and the symmetric Mountain Pass theorem (Squassina [10]) es-
tablish the existence of two nontrivial (weak) solutions of abstract eigenvalue problems. In
order to show the existence of three different symmetric solutions of an abstract eigenvalue
problem, they prove a symmetric version of the Pucci and Serrin three critical points theo-
rem. Then, as a consequence of the main results, they show the existence of two nontrivial
nonnegative solutions of quasilinear elliptic Dirichlet problems either in a ball of RN , or in
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an annulus of RN , both centered at 0. The obtained solutions are invariant by k-spherical cap
symmetrization (1 < k < N).

In the present paper we extend some of these results to continuous functionals. More
precisely, let Ω be a ball in RN (N ≥ 3) and f : Ω ×R → R be a Carathéodory function,
which satisfies a natural growth condition, given in Section 2.

Consider the following quasilinear elliptic eigenvalue problem

−
N

∑
i,j=1

Dj(aij(u)Diu) +
1
2

n

∑
i,j=1

a′ij(u)DiuDju = λ f (x, u), (1.1)

where λ > 0 is a real parameter, aij : R → R is of class C1 with aij(x) = aji(x) and by Di we
denote the partial derivative with respect to xi.

We also assume that there exist C, ν > 0 such that for and all s ∈ R, ξ ∈ RN we have

(a1) |aij(s)| ≤ C;

(a2) |a′ij(s)| ≤ C;

(a3) ∑N
i,j=1 aij(s)ξiξ j ≥ ν|ξ|2,

where | · | denotes the usual Euclidean norm in RN .
Let Eλ : H1

0(Ω)→ R,

Eλ(u) =
1
2

∫
Ω

N

∑
i,j=1

aij(u)DiuDjudx− λ
∫

Ω
F(x, u)dx, (1.2)

be the corresponding energy functional, where F(x, t) =
∫ t

0 f (x, s)ds.
Under the above conditions the energy functional is continuous. However, we cannot ex-

pect that Eλ to be of class C1 or even locally Lipschitz continuous, so, the classical critical point
theory cannot be applied. To overcome this difficulty, we define the derivative of the function
only in some special direction. Such techniques has been used for quasilinear problems by
several authors (see e.g. Canino [1]; Liu, Guo [3] and the references therein).

The aim of our paper is to prove the existence of at least three different solutions of the
quasilinear eigenvalue problem (1.1) for every λ in some interval. Moreover, we prove that
the obtained solutions are symmetric invariants by Schwarz symmetrization. A comprehen-
sive survey of results about existence, multiplicity, perturbation from symmetry and concen-
tration phenomena for the quasilinear elliptic equations can be found in the monograph of
Squassina [12].

Our paper is organized as follows. In Section 2 we present the necessary symmetrization
tools. We begin with the abstract framework of symmetrization following Van Schaftingen [13]
and in Section 2.2 we obtain symmetric critical point results for E-differentiable continuous
functions f : X → R, where E is a dense subspace of X.

In order to demonstrate the main results of the present paper, in Section 3 we study first
an abstract eigenvalue problem

J′(u) = λF (u), F (u) =
∫

Ω
F(x, u(x))dx,

where λ > 0 is a real parameter, and we give some information about the symmetry of
solutions, when the underlying domain is a ball of RN and f : Ω×R→ R is a Carathéodory
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function, which satisfies natural growth conditions given in Section 3. In Theorem 3.1 we
guarantee three symmetric invariant critical points for the continuous functional f . Using
the aforementioned theorem, in Section 4 we justify the existence of three different, Schwartz
symmetric critical point of the E-differentiable energy functional Eλ in (1.2).

2 Auxiliary results

2.1 Abstract framework of symmetrization

In this subsection we recall some symmetrizations notions from Van Schaftingen [13] and
Squassina [10].

Let us begin with some notion of symmetrizations.

Definition 2.1. The Schwarz symmetrization of a set A ⊂ RN is the unique open ball centered
at the origin A∗, such that LN(A∗) = LN(A), where LN denotes the N-dimensional outer
Lebesgue measure.

If LN(A) = 0, then A∗ = ∅, while A∗ = RN , if LN(A) = ∞.

Definition 2.2. Let f : A→ R a function and c ∈ R. Then we define the following set

{ f > c} = {x ∈ A | f (x) > c}.

The Schwarz symmetrization of a measurable nonegative function f : A → R (A ⊂ RN)

is the unique function f ∗ : A∗ → R such that

{ f ∗ > c} = { f > c}∗, for all c ∈ R.

Remark 2.3. The function f ∗ is also characterized by

f ∗(y) = sup{c ∈ R : y ∈ { f > c}∗}.

Definition 2.4 (Polarization). A subset H of RN is called a polarizer if it is a closed affine
half-space of RN , namely the set of points x which satisfy α · x ≤ β for some α ∈ RN and
β ∈ R with |α| = 1.

Given x in RN and a polarizer H the reflection of x with respect to the boundary of H is
denoted by xH.

The polarization of a function u : RN → R+ by a polarizer H is the function uH : RN → R+

defined by

uH(x) =

{
max{u(x), u(xH)}, if x ∈ H

min{u(x), u(xH)}, if x ∈ RN \ H.
(2.1)

The polarization CH ⊂ RN of a set C ⊂ RN is defined as the unique set which satisfies
χCH = (χC)

H, where χ denotes the characteristic function. The polarization uH of a positive
function u defined on C ⊂ RN is the restriction to CH of the polarization of the extension
ũ : RN → R+ of u by zero outside C. The polarization of a function which may change sign
is defined by uH := |u|H, for any given polarizer H.

In the following we present some crucial abstract symmetrization and polarization results.
We begin with the following main assumption.

Let X and V be two real Banach spaces, with X ⊂ V and let S ⊆ X.
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Main assumptions. Let H? be a path-connected topological space and denote by h : S×H? → S,
(u, H) 7→ uH, the polarization map. Let ? : S → S, u 7→ u?, be any symmetrization map. Assume
that the following properties hold.

1) The embedding X ↪→ V is continuous;

2) h is continuous;

3) (u?)H = (uH)? = u? and (uH)H = uH for all u ∈ S and H ∈ H?;

4) for all u ∈ S there exists a sequence (H)m ⊂ H? such that uH1 ...Hm → u? in V, as m → ∞,
where uH1 ...Hm = (((uH1)H2)...)Hm ;

5) ‖uH − vH‖V ≤ ‖u− v‖V for all u, v ∈ S and H ∈ H?.

We assume that there exists a Lipschitz continuous map Θ : (X, ‖ · ‖V) → (S, ‖ · ‖V) with
Lipschitz constant CΘ > 0 such that Θ|S = Id|S and both maps h : S×H? → S and ? : S → S
can be extended to h : X ×H? → S and ? : X → V by setting u = (Θ(u))H and u? = (Θ(u))?

for every u ∈ X and H ∈ H?.
The previous properties, in particular 4) and 5), and the definition of Θ easily yield that

‖uH − vH‖V ≤ CΘ‖u− v‖V , ‖u? − v?‖V ≤ CΘ‖u− v‖V (2.2)

for all u, v ∈ X and for all H ∈ H?.
Now, we describe the set H∗ for the Schwarz symmetrization following the papers [6, 13,

14].
Consider the set of polarizers

H = {H closed half space in RN : 0 ∈ H}. (2.3)

We endow the set H with a topology. To this aim let i : RN → RN be an isometry, that is,
|i(x)− i(y)| = |x− y|, for every x, y ∈ RN and let I be the set of isometries on RN , that is

I = {i : RN → RN : i is an isometry on RN}.

Definition 2.5. Let H1, H2 ∈ H and

ρ(H1, H2) = inf
i∈I

{
log

(
1 + sup

x∈RN

|x− i(x)|
1 + |x| + sup

x∈i(H1)∆H2

1
1 + |x|

)}
,

where ∆ is the symmetric difference between two sets.
The distance between H1 and H2 is defined by

d(H1, H2) = ρ(H1, H2) + ρ(H2, H1).

Remark 2.6. The metric space (H, d) is a separable, locally compact by Proposition 2.36 of [14].

For any fixed function u : RN → R, we put u+ = max{u, 0} and u− = min{u, 0}.
We recall now, the notion of extended polarizer as given in Definition 2.17 of [13].

Definition 2.7 (Extended polarizer). The set of polarizers H is compactified by an addition of
two polarizers at infinity defined by uH+∞ = u+ and uH−∞ = −u−, such that Hn → H+∞ if
βn → ∞ and Hn → H−∞ if βn → −∞ in the representation of Definition 2.4. The compactified
set of polarizers is denoted by H∗ = H∪ {H+∞, H−∞} and is homeomorphic with SN .
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Therefore, the set H∗ = H∪{H+∞} is homeomorphic with SN \ {a point}, which is home-
omorphic to RN . In conclusion, the space H∗ is a path-connected locally compact topological
space and so H∗ satisfies all the properties required in the Main assumptions and will be used
throughout the paper.

We recall here examples relative to the Schwarz symmetrization proved by Van Schaftingen
in [13].

Example 2.8 (Schwarz symmetrization for non-negative functions). Let Ω = B(0, 1) ⊂ RN ,
X = W1,p

0 (Ω), with 1 < p < N, V = Lp ∩ Lp∗(Ω), with p? = Np/(N − p), S be the set of
non-negative functions of W1,p

0 (Ω), ∗ denotes the Schwarz symmetrization and H∗ be defined
as above. Then the assumptions stated in the Main assumptions are satisfied, see [13].

Example 2.9 (Schwarz symmetrization). Let Ω = B(0, 1) ⊂ RN , X = W1,p
0 (Ω), with 1 < p <

N, V = Lp ∩ Lp∗(Ω), with p? = Np/(N − p), S = W1,p
0 (Ω), u∗ = |u|∗ denotes the Schwarz

symmetrization and H∗ be defined as above for Schwarz symmetryzation, but h(u, H) =

|u|H in the Main assumptions. Then all the assumptions stated in the Main assumptions are
satisfied, see [13]. In this case Θ(u) = max{0, u}.

2.2 Symmetric critical point results for E-differentiable functions

First, we recall from Guo, Liu [3] some notions and results of nonsmooth critical point theory.
Let X be a Banach space and E be a dense subspace of X. Let f : X → R be a continuous

functional.

Definition 2.10. A continuous functional f is said to be E-differentiable if

(1) for all u ∈ X and ϕ ∈ E the derivative of f in direction ϕ at u exists and will be denoted
by 〈D f (u), ϕ〉:

〈D f (u), ϕ〉 = lim
t→0+

f (u + tϕ)− f (u)
t

;

(2) the map (u, ϕ) 7→ 〈D f (u), ϕ〉 satisfies:

(i) 〈D f (u), ϕ〉 is linear in ϕ ∈ E,

(ii) 〈D f (u), ϕ〉 is continuous in u, that is, if a sequence un → u in X, then 〈D f (un), ϕ〉 →
〈D f (u), ϕ〉, as n→ ∞.

Definition 2.11. The slope of an E-differentiable functional f at u ∈ X, denoted by |D f (u)|, is
a generalized number in [0, ∞]:

|D f (u)| = sup{〈D f (u), ϕ〉 | ϕ ∈ E, ‖ϕ‖ = 1}.

A point u ∈ X is said to be a critical point of f at level c, if |D f (u)| = 0 and f (u) = c.

Definition 2.12. Let c be a real number. We say that an E-differentiable functional f satisfies
the concrete Palais–Smale condition at level c (shortly (CPS)c) if every sequence {un} ⊂ X
satisfying |D f (un)| → 0 and f (un)→ c, possesses a strongly convergent subsequence in X.

In the following we recall the notion of the weak slope of a continuous functional from the
paper of Canino [1].
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Definition 2.13. Let f : X → R be a continuous functional and let u ∈ X. We denote by
|d f |(u) the supremum of the σ’s in [0, ∞[ such that there exist δ > 0 and a continuous map

G : B(u, δ)× [0, δ]→ X

such that

∀ν ∈ B(u, δ), ∀t ∈ [0, δ] : ‖G(ν, t)− ν‖ ≤ t,

∀ν ∈ B(u, δ), ∀t ∈ [0, δ] : f (G(ν, t)) ≤ f (ν)− σt.

The extended number |d f |(u) is called the weak slope of f at u.

We prove the next important lemma, which is used several times in the following.

Lemma 2.14. Let f be an E-differentiable functional. Then for every u ∈ X we have

|d f |(u) ≥ |D f (u)|.

Proof. Let u ∈ X be fixed.

Case I. If |D f (u)| = 0, then the assertion is true.

Case II. Otherwise, if |D f (u)| > 0, we can consider an ε > 0 such that 0 < σ = |D f (u)| − ε.
Then by the definition of the slope, there exists v ∈ E, with ‖v‖ = 1 and

σ < 〈D f (u), v〉.

Since 〈D f (u), v〉 is continuous in u, we can choose a δ̃ > 0 such that for every w ∈ B(u, δ̃) we
have

σ < 〈D f (w), v〉. (2.4)

For δ = δ̃/2 we define the following continuous map

G : B(u, δ)× [0, δ]→ X, G(w, t) = w− tv.

It is trivial that ‖G(w, t)− w‖ = t. On the other hand, since 〈D f (u), v〉 is linear in v, by (2.4)
we have that

−σ > 〈D f (w),−v〉 = lim
t↘0

f (w− tv)− f (w)

t
.

After a rearrangement we obtain

lim
t↘0

f (w− tv)− f (w) + σt
t

< 0,

which yields that taking a smaller δ if it is necessary, f (G(w, t)) = f (w− tv) ≤ f (w)− σt, for
every w ∈ B(u, δ), ∀t ∈ [0, δ]. Then using the Definition 2.13, we obtain that |d f |(u) ≥ σ =

|D f (u)| − ε, and the assertion follows by the arbitrariness of ε.

Remark 2.15. Using Lemma 2.14, it is easy to verify that if f satisfies the (CPS)c condition,
then f satisfies the (PS)c condition as well, for every real number c.

Using Lemma 2.14 and the Theorem 3.9 of Squassina in [11], we have the following lemma.
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Lemma 2.16. Let X be a complete metric space and f : X → R a continuous functional. Let D and S

denote the closed unit ball and sphere in RN , respectively, and Γ0 ⊂ C(S, X). Let us define

Γ = {γ ∈ C(D, X) : γ|S ∈ Γ0}.

Assume that
+∞ > c = inf

γ∈Γ
sup
τ∈D

f (γ(τ)) > sup
γ0∈Γ0

sup
λ∈S

f (γ0(τ)) = a.

Then, for every ε ∈ (0, (c− a)/2), every δ > 0 and γ ∈ Γ such that

sup
τ∈D

f (γ(τ)) ≤ c + ε,

there exists u ∈ X such that

a) c− 2ε ≤ f (u) ≤ c + 2ε;

b) dist(u, γ(D) ∩ f−1([c− 3ε, c + 3ε])) ≤ 3δ;

c) |D f (u)| ≤ 3ε/δ.

Theorem 2.17 (Existence of a quasi-critical sequence). Let E be a dense subspace of X and f be a
continuous E-differentiable functional defined on the Banach space X. We assume that f possesses two
different local minima u0 and u1 in X. We define

Γ = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1};

and
c = inf

γ∈Γ
max
t∈[0,1]

f (γ(t)).

Then there exist a sequence {un} ∈ X \ {u0, u1} such that

a) f (un) is finite;

b) lim
n→∞
|D f (un)| = 0.

Proof. Since u0 and u1 are distinct local minima of f in X, there exists r0 > 0, with 2r0 <

‖u0 − u1‖, such that
f (ui) ≤ f (u), ∀u ∈ B(ui, r0), i = 0, 1.

We use the notations f (u0) = c0 and f (u1) = c1 and assume, without loss of generality, that
c0 ≥ c1. We distinguish two cases.

Case 1. We assume the existence of r ∈ (0, r0) such that

inf
u∈Sr

f (u) > c0, where Sr(u0) = {u ∈ X : ‖u− u0‖ = r}.

Since γ(0) = u0 ∈ B(u0, r) and γ(1) = u1 ∈ X \ B(u0, r) we have γ([0, 1] ∩ Sr(u0)) 6= ∅, for

every γ ∈ Γ. Hence c > c0. Now, we use the Lemma 2.16 with a = c0. So, for every n >
√

c−a
2

and δ = 3
n , there exists un ∈ X such that

a) c− 2
n2 ≤ f (un) ≤ c + 2

n2 ;

b) |D f (un)| ≤ 1
n .
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Taking the limits as n→ ∞ the assertions of the theorem follow immediately.

Case 2. Now, we have
inf

u∈Sr(u0)
f (u) = c0, for all r ∈ (0, r0).

Then for r ∈ (0, r0) and for every n ∈N, there exist a sequence {zn} ∈ X with

‖zn − u0‖ = r, f (zn) ≤ c0 +
1
n2 .

We fix now r ∈ (0, r0) and choose n > 0 such that 0 < r− 2
n < r + 2

n < r0. We assume

U =

{
u ∈ X : r− 2

n
≤ ‖u− u0‖ ≤ r +

2
n

}
.

Then infu∈U f (u) = c0. Now, we apply the Ekeland variational principle (Theorem 1.1 in
I. Ekeland [2]) to f |U and u = zn. Then there exists a sequence {un} ∈ U such that

(i) c0 ≤ f (un) ≤ f (zn) ≤ c0 +
1
n2 ;

(ii) ‖un − zn‖ ≤ 1
n ;

(iii) n[ f (v)− f (un)] ≥ −‖un − v‖ for all v ∈ U .

The first assertion follows from (i).
Using the relations (ii) and ‖zn − u0‖ = r, we get∣∣‖un − u0‖ − r

∣∣ = ∣∣‖un − u0‖ − ‖zn − u0‖
∣∣ ≤ ‖un − zn‖ ≤

1
n

.

Then
r− 2

n
≤ r− 1

n
≤ ‖un − u0‖ ≤ r +

1
n
≤ r +

2
n

,

which means that un ∈ intU .
Let w be any vector in E, with ||w|| = 1, t ∈ R+ and put v = un + tw. Clearly if t > 0 is

small enough, then v ∈ U and from (iii) it follows that

f (un + tw)− f (un) ≥ −
1
n
‖w‖t = − 1

n
t.

Then
〈D f (uε), w〉 ≥ − 1

n
.

Since 〈D f (u), w〉 is linear in w ∈ E, and because −w ∈ E with ‖ − w‖ = 1, we get
〈D f (un),−w〉 ≤ 1

n , so |D f (un)| ≤ 1
n . Taking now the limit when n → ∞, we have

limn→∞ |D f (un)| = 0.

Lemma 2.18. Let (X, V, ?,H?, S) satisfy the Main assumptions. Assume that f : X → R is a
continuous E-differentiable functional bounded from below such that

f (uH) ≤ f (u) for all u ∈ S and H ∈ H?. (2.5)

and for all u ∈ X there exists ξ ∈ S, with f (ξ) ≤ f (u).
If f satisfies the (CPS)inf f condition, then there exists v ∈ X, such that f (v) = inf f and v = v?

in V.
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Proof. Put inf f = d. For the minimizing sequence (un)n we consider the following sequence:

εn =

 f (un)− d, if f (un)− d > 0
1
n

, if f (un)− d = 0.

Then f (un) ≤ d + εn and εn → 0 as n → ∞. By the Symmetric Ekeland principle II., proved
by M. Squassina in [10, Theorem 2.8] and Lemma 2.14, there exists a sequence (vn)n ⊂ X such
that:

a) f (vn) ≤ f (un);

b) |D f (un)| → 0;

c) ‖vn − v?n‖ → 0;

Since f satisfies the (CPS)d condition, there exists v ∈ X such that vn → v in X.
Since the embedding X ↪→ V is continuous by Main assumption 1), we have that vn → v

in V, and using the second inequality of (2.2) we obtain v∗n → v∗ in V. In particular,

‖v− v?‖V ≤ ‖v− vn‖V + ‖vn − v?n‖V + ‖v?n − v?‖V → 0.

Therefore v = v? in V, as stated.

Theorem 2.19 (Existence of a third symmetric critical point). We assume that (X, V, ∗,H∗, S =

X) satisfy the Main assumptions. Let the functional f satisfy the (CPS) condition in X and verify
the polarization condition (2.5). Suppose that the local minima u0 and u1 of f in X also verify a
polarization condition: uH

0 = u0, uH
1 = u1 for all H ∈ H∗.

Then f has at least a third critical point v, which is invariant by symmetrization in V, namely
v = v∗ in V.

Proof. We prove this theorem in two steps.

Step 1. First, we prove the existence of a sequence {un} ∈ X \ {u0, u1} such that

i) f (un) is finite;

ii) limn→∞ ‖un − u∗n‖ = 0;

iii) limn→∞ |D f (un)| = 0.

The proof is the same as in Theorem 2.17.

In Case 1, we use the inequality (2.2) and the assumption X = S. Then we can replace

Lemma 2.16 by its symmetric version [11, Theorem 3.10]. Thus for all n >
√

c−a
2 and δ = 3

n ,
there exists un ∈ X such that

a) c− 2
n2 ≤ f (un) ≤ c + 2

n2 ;

b) ‖un − u∗n‖V ≤ 9((1 + CΘ)K + 1)/n;

c) |D f (u)| ≤ 1
n ,
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where CΘ and K are some constants. Now, the assertion follows at once.

In Case 2, we choose ρ := min{r2/4, (r − r0)2/4} and for every r ∈ (0, r0) and all n >

1/
√

ρ, we define f̃ = f and f̃ = ∞ elsewhere. Now, we apply again the Symmetric Ekeland
Principle II [Theorem 2.8] of Squassina [10] combined with Lemma 2.14 (instead of Theo-
rem 1.1 in Ekeland [2]), since (2.2) holds and S = X. Then there exists a sequence {un} ∈ U
such that

a) c0 ≤ f (un) ≤ c0 +
1
n2 ;

b) ‖un − u∗n‖V ≤ ((1 + CΘ)K + 1)/n;

c) |D f (u)| ≤ 1
n ,

so, we proved the claim in this Step 1.

Step 2. Now, we apply the assertion of Step 1 for n sufficiently large.

In Case 1, the obtained sequence {un} is a (CPS) sequence, so it possesses a subsequence
which will be denoted also by {un}, which is convergent to some v ∈ X, with f (v) = c > a,
|D f (v)| = 0 and v = v∗ as seen in the proof of Lemma 2.18.

In Case 2, the constructed (CPS) sequence admits a subsequence converging to some v ∈
Sr(u0), with f (v) = c0 = a = max{ f (u0), f (u1)}, |D f (v)| = 0 and as in the proof of the
Lemma 2.18, v = v∗.

In both cases v is a critical point of f , different from u0 and u1, and it is invariant by
symmetrization in V.

3 Main result

Let Ω be a ball, Ω = B(0, R) = {x ∈ RN : |x| < R}, where | · | is the Euclidean norm in RN .
Let (X, V, ∗,H∗, S = X) satisfy the Main assumptions, where X is a reflexive, real Banach

space, which verifies the following embedding condition:

(EC) there exists p ∈]1, N[, such that the embedding X ↪→ Lq(Ω) is continuous for q ∈ [1, p∗] and
compact if q ∈ [1, p∗[. We denote the best embedding constant by Cq > 0, i.e. ‖u‖q ≤ Cq‖u‖,
for all u ∈ X and q ∈ [1, p∗].

Further we assume, that J : X → R is a convex functional such that the following proper-
ties hold

(J1) J is E-differentiable, with E = C∞
0 (Ω);

(J2) J is continuous and weakly lower semicontinuous;

(J3) J(uH) ≤ J(u) for all u ∈ X and H ∈ H∗, where (X, V, ∗,H∗, S = X) satisfies the Main
assumptions, with V = Lp(Ω) and 0 ∈ H for all H ∈ H∗.

Let f : Ω×R→ R be a Carathéodory function satisfying the following assumptions

( f1) for all ε > 0 there exists cε > 0 such that | f (x, t)| ≤ ε|t|p−1 + cε for a.e. x ∈ Ω and all
t ∈ R;
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( f2) F(x, t) = F(y, t) for a.e. x, y ∈ Ω, with |x| = |y|, and all t ∈ R;

( f3) F(x, t) ≤ F(x,−t) for a.e. x ∈ Ω and all t ∈ R−;

( f4) there exists a function v ∈ X such that F (v) =
∫

Ω F(x, v(x))dx > 0.

We say that u ∈ X is a (weak) solution of the equation

J′(u) = λF ′(u), (3.1)

if
〈DJ(u), ϕ〉 − λ

∫
Ω

f (x, u(x))ϕ(x)dx = 0 for every ϕ ∈ E

holds, where λ > 0 is a fixed real number.
Let Eλ : X → R,

Eλ(u) = J(u)− λ
∫

Ω
F(x, u(x))dx.

be the energy functional associated to the problem (3.1). The critical points of the energy
functional Eλ are exactly the (weak) solutions of (3.1).

Before stating and proving the main theorem, we present some auxiliary results from
Filippucci et al. [6].

Lemma 3.1 ([6, Lemma 3.4]). Let F be a Carathéodory function, satisfying ( f2) and ( f3). Then, for
all H ∈ H? ∫

Ω
F(x, u(x))dx ≤

∫
Ω

F(x, uH(x))dx

for every u ∈ X, with F(·, u(·)) ∈ L1(Ω). If furthermore F satisfies

( f3)′ F(x, t) = F(x,−t) for a.e. x ∈ Ω and all t ∈ R−

in place of ( f3), then ∫
Ω

F(x, u(x))dx =
∫

Ω
F(x, uH(x))dx

for every u ∈ X, with F(·, u(·)) ∈ L1(Ω).

We use the following notation

XH∗ = {u ∈ X | uH = u, for all H ∈ H∗}.

Lemma 3.2 ([6, Proposition 3.9]).

i) For every r ∈ F (X) \ supu∈X F (u), the F−1([r, ∞))∩XH? is a non-empty, weakly closed subset
of X and also F−1(Ir) ∩ XH? is non-empty, where Ir = (r, ∞). Moreover,

ϕ1(r) = inf
u∈F−1(Ir)∩XH?

inf
v∈F−1(r)

J(v)− J(u)

r−F (u) (3.2)

is well-defined.
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ii) If furthermore ( f3)′ holds, then for all r ∈ F (X) \ infu∈X F (u) also the set F−1((−∞, r])∩ XH?

is a non-empty, weakly closed subset of X and F−1(Ir) ∩ XH? is non-empty, where now Ir =

(−∞, r). Furthermore,

ϕ2(r) = sup
u∈F−1(Ir)∩XH?

inf
v∈F−1(r)

J(v)− J(u)

r−F (u) (3.3)

is well-defined.

The next two lemmas provide us two different symmetric local minima of the energy
functional Eλ.

Lemma 3.3. Let (J1)–(J3), ( f1)–( f4) hold and let f be non constant. Assume that Eλ is coercive,
bounded below and there exists a real number r, with r ∈ F (X) \ supu∈X F (u). Then the infimum of
Eλ = J − λF in F−1([r, ∞)) ∩ XH? is attained at some point u0, provided that λ ∈ R+ satisfies the
inequality

λ > ϕ1(r).

Moreover, u0 is a local minimizer of Eλ in X, uH
0 = u0 for every H ∈ H?, and F (u0) > r. If

( f3) is replaced by the stronger condition ( f3)′, then the result continues to hold for all λ ∈ R, with
λ > ϕ1(r).

Lemma 3.4. Let (J1)–(J3), ( f1)–( f3) and ( f3)′ hold, and let f be non constant. Assume that Eλ is
coercive, bounded below and there exists a real number r, with r ∈ F (X) \ infu∈X F (u). Then the
infimum of Eλ = J − λF in F−1((−∞, r]) ∩ XH? is attained at some point u1, provided that λ ∈ R

satisfies the inequality
λ < ϕ2(r).

Moreover, u1 is a local minimizer of Eλ in X, uH
1 = u1 for every H ∈ H?, and F (u1) < r.

Now, we can state the main result of this section, which extends the Theorem 3.12 of [6].

Theorem 3.5. Let the functionals J,F and Eλ satisfy the (J1)–(J3) and ( f1)–( f4) conditions. We
assume in addition that

(E1) F (uH) ≥ F (u), for every u ∈ X and H ∈ H∗;

(E2) Eλ = J − λF is coercive in X, for all λ ∈ I;

(E3) Eλ satisfy the (CPS)c condition, for every λ ∈ R.

Assume also that there exists r ∈ R such that

(i) inf
u∈X
F (u) < r < sup

u∈X
F (u);

(ii) ϕ1(r) < ϕ2(r);

Then Eλ has at least three critical points in X, for every λ ∈ (ϕ1(r), ϕ2(r)), which are symmetric
invariant in V.

Proof. By Lemmas 3.3 and 3.4 we have two different local minima u0 and u1 in X for the
energy functional Eλ for every λ ∈ (ϕ1(r), ϕ2(r)) and these minima are also in XH∗ . From
the assumptions (E2) and (E3) we have that Eλ is coercive and satisfies the (CPS)c condition
for all λ ∈ R. Furthermore (E1) implies that Eλ(uH) ≤ Eλ(u), for all u ∈ X, H ∈ H∗ and
λ ∈ (ϕ1(r), ϕ2(r)). So, we can apply Theorem 2.19, which ensures the existence of a third
invariant critical point u2 for Eλ, with λ ∈ (ϕ1(r), ϕ2(r)).
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4 Application

Let Ω be a ball in RN , X = W1,2
0 (Ω) and let E = C∞

0 (Ω), which is dense in X.
We consider the problem (1.1), namely

−
N

∑
i,j=1

Dj(aij(u)Diu) +
1
2

N

∑
i,j=1

a′ij(u)DiuDju = λ f (x, u),

where aij satisfy the conditions (a1)–(a3). We recall the corresponding energy functional Eλ

defined in (1.2), as
Eλ(u) = J(u)− λF (u),

where J(u) = 1
2

∫
Ω ∑N

i,j=1 aij(u)DiuDjudx and F (u) =
∫

Ω F(x, u)dx, F(x, t) =
∫ t

0 f (x, s)ds.
By the conditions (a1)− (a3), the functional Eλ is continuous, E-differentiable and

〈DEλ(u), ϕ〉 = lim
t→0

Eλ(u + tϕ)− Eλ(u)
t

=
∫

Ω

N

∑
i,j=1

aij(x)DiuDjuϕdx +
1
2

N

∑
i,j=1

a′ij(u)DiuDjuϕdx

− λ
∫

Ω
f (x, u)ϕdx, for all u ∈W1,2

0 (Ω), ϕ ∈ C∞
0 (Ω),

and
|DEλ(u)| = sup{〈DEλ(u), ϕ〉 | ϕ ∈ C∞

0 (Ω), ‖ϕ‖C∞
0 (Ω) = 1}. (4.1)

We say that u ∈W1,2
0 (Ω) is a weak solution of the quasilinear problem (1.1) if u is a critical

point of Eλ.
We assume that f : Ω × R → R satisfies the conditions ( f1)–( f4) with p = 2 and in

addition the following assumptions hold

( f5) there exists c > 0 such that | f (x, t)| ≤ c|t| for a.e. x ∈ Ω and all t ∈ R;

( f6) there exist q ∈ (2, 2∗) and a positive constant M > 0, such that for a.e. x ∈ Ω and all
t ∈ R, |F(x, t)| ≤ M|t|q.

Remark 4.1.

a) Condition ( f6) is stronger than ( f5) for t ∈ [−1, 1] while the condition ( f5) is stronger when
t is outside of the interval [−1, 1]. We need both conditions in the proof of our main result
(Theorem 4.1).

b) The embedding condition (EC) also remains true for p = 2.

Now, we give a concrete example for the function f , which satisfies the conditions
( f1)–( f6).

Example 4.2. Let f (x, u) = a(x) · g(u), where

(1) a is a nonnegative measurable function such that a(x) = a(y), for a.e. x, y ∈ Ω with
|x| = |y|;
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(2) g is defined by

g(u) =

{
|u|α−2u(|u|β−α − 1), if |u| ≥ 1 and 1 < α < β < 2

|u|γ−2u(|u|δ−γ − 1), if |u| < 1 and 2 < γ < δ.

The main result in this section is the following.

Theorem 4.3. We assume that the conditions (a1)–(a3), ( f1)–( f6) hold.
Then there exists λ > 0, such that for every λ > λ, the problem (1.1) has two nontrivial nonegative

solutions which are invariant by Schwarz symmetrization and also a third solution, which is Schwarz
symmetric, but possibly trivial.

In order to prove this theorem, we use the Theorem 3.5. So, first of all we verify the
hypotheses of this theorem.

Lemma 4.4. We assume that the conditions (a1)–(a3) hold. Then we have

J(uH) ≤ J(u), for every u ∈ X and H ∈ H∗. (4.2)

Proof. Let us consider the following function j : R× [0, ∞)→ R, defined by

j(u, |∇u|) = 1
2

N

∑
i,j=1

aij(u)DiuDju. (4.3)

The assumptions (a1)–(a3) for aij imply that the assumptions of Corollary 3.3. of [7] are satis-
fied. Then the required inequality follows immediately.

Lemma 4.5. Assume that the (a3) and ( f1) hold. Then the energy functional Eλ is coercive, for every
λ ∈ R.

Proof. Let λ ∈ R is fixed and take ε ∈ (0, ν
2λC2

2
), where ν is from the condition (a3) and C2

is the embedding constant from (EC). Then, by (a3) and ( f1)

Eλ(u) ≥
1
2

∫
Ω

ν|∇u|2 − λ
∫

Ω
(ε|u|+ cε)

≥ 1
2

ν‖u‖2 − ελC2
2‖u‖2 − cελ|Ω|

=

(
1
2

ν− ελC2
2

)
‖u‖2 − cελ|Ω|.

Hence if ‖u‖ → ∞, then Eλ(u) → ∞, which means that the energy functional is coercive for
every λ ∈ R. �

In order to prove the (CPS) condition of the energy functional, we recall here a lemma of
A. Canino (see [1]).

Lemma 4.6. Let (uh) be a bounded sequence in H1
0(Ω) satisfying

∫
Ω

N

∑
i,j=1

aij(uh)DiuhDjuhvdx +
1
2

N

∑
i,j=1

a′ij(uh)DiuhDjuhvdx = 〈βh, v〉, for all v ∈ C∞
0 (Ω)

with (βh) strongly convergent in H−1(Ω). Then it is possible to extract a subsequence (uhk) strongly
convergent in H−1(Ω).
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Lemma 4.7. Assuming that (a1)–(a3) and ( f1) are true, the energy functional Eλ satisfies the (CPS)c

condition, for every λ and c ∈ R.

Proof. Let {un} ⊂W1,2
0 (Ω) be an arbitrary Palais–Smale sequence for Eλ, i.e.

(a) {Eλ(un)} is bounded;

(b) |DEλ|(un)→ 0.

We have to prove that {un} contains a strongly convergent subsequence. Since Eλ is coer-
cive, we have that the sequence {un} is bounded.

By the condition ( f1), the Nemytskii operator f (x, ·) is compact operator from W1,2
0 (Ω)

into W−1,2(Ω) (the dual space of W1,2
0 (Ω)) (see for example [4]). So, { f (x, un)} is strongly

convergent in W−1,2(Ω).
Now, using the Lemma 4.6 with the choice: βn = λ f (x, un) + DEλ(un), we can extract a

strongly convergent subsequence of {un} in W1,2
0 , which completes the proof.

Now, we are ready to prove the main theorem of this section.

Proof of Theorem 4.1. By Lemma 4.4, Lemma 4.5, Lemma 4.7, the conditions (E1)–(E3) of The-
orem 3.5 are satisfied.

In what follows we verify the conditions (i)–(ii).
Let λ1 be the first eigenvalue of the problem

−4u = λu,

in H1
0(Ω), that is λ1 is defined by the Rayleigh quotient

λ1 = inf
u∈H1

0 (Ω),u 6=0

‖u‖2

‖u‖2
2

. (4.4)

By [5], this infimum is achieved and λ1 > 0.
By ( f4), there exists v ∈ H1

0(Ω) such that F (v) > 0, so the number ϕ1(0) is well defined
by Lemma 3.2 and

λ̄ = ϕ1(0) = inf
u∈F−1((0,∞))

J(u)
F (u) . (4.5)

On the other hand by (a1) and ( f5), we have

J(u)
F (u) ≥

ν||u||2
c · ||u||22

≥ ν

c
· λ1, (4.6)

where λ1 is the first eigenvalue from (4.4). Hence, by (4.5) and (4.6)

λ̄ = ϕ1(0) > 0.

From the definition of ϕ1 in (3.2), for every u ∈ F−1((0, ∞)), we have

ϕ1(r) ≤
J(u)

F (u)− r
, ∀r ∈ (0,F (u)),

so
lim sup

r→0+
ϕ1(r) ≤ ϕ1(0) = λ̄. (4.7)
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Using the embedding condition (EC) and the assumption ( f6), we obtain

|F (u)| ≤ M‖u‖q
q ≤ MCq

q‖u‖q = C̄‖u‖q, (4.8)

where C̄ = MCq
q .

Let r > 0 and u ∈ F−1(r). Then by (a1) and (4.8), we have

r = F (u) ≤ C̄
(
‖u‖2) q

2 ≤ C̄
(

2J(u)
ν

) q
2

,

so

J(u) ≥ Kr
2
q , (4.9)

where K = ν
2 C̄−

2
q .

Therefore, by the definition of ϕ2 in (3.3) and by the fact that u ≡ 0 ∈ F−1(Ir), we obtain

ϕ2(r) ≥
1
r

inf
u∈F−1(r)

J(u) ≥ 1
r

Kr
2
q = Kr

2
q−1. (4.10)

It follows that lim
r→0+

ϕ2(r) = ∞, since q > 2.

In conclusion, we have proved that

lim sup
r→0+

ϕ1(r) ≤ ϕ1(0) = λ̄ < lim sup
r→0+

ϕ2(r) = ∞.

From here we can conclude that for every integers n ≥ n̄ = 2 + [λ̄] there exists rn > 0 so close
to zero that

ϕ1(rn) < λ̄ + 1/n < n < ϕ2(rn). (4.11)

By condition ( f4), there exists v ∈ X = W1,2
0 (Ω) with F (v) > 0. So, ∅ 6= [0,F (v)] ⊂ F (X)

hence we can assume without loss of generality that rn defined in (4.11) satisfies the conditions
(i) and (ii) of Theorem 3.5. Therefore by Theorem 3.5, the problem (1.1) admits two nontrivial
solutions which are invariants by Schwarz symmetrization and a third solution, possibly zero,
which is also symmetric invariant in V = L2(Ω), for all

λ ∈
∞⋃

n=n̄
(ϕ1(rn), ϕ2(rn)) ⊃

∞⋃
n=n̄

[λ̄ + 1/n, n] = (λ̄, ∞),

as claimed.
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