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Abstract. We study the ground state solutions of the following quasilinear Kirchhoff
type equation

−
(

1 + b
∫

R3
|∇u|2dx

)
∆u + V(x)u− [∆(u2)]u = |u|10u + µ|u|p−1u, x ∈ R3,

where b ≥ 0 and µ is a positive parameter. Under some suitable conditions on V(x), we
obtain the existence of ground state solutions of the above equation with 1 < p < 11.

Keywords: Kirchhoff type equations, ground state solution, quasilinear, variational
methods.

2010 Mathematics Subject Classification: 35J20, 35J60.

1 Introduction and main results

Consider the following Kirchhoff type equation

−
(

1 + b
∫

R3
|∇u|2dx

)
∆u + V(x)u− [∆(u2)]u = |u|10u + µ|u|p−1u, x ∈ R3, (1.1)

where b ≥ 0, 1 < p < 11, µ > 0 is a parameter and the potential V(x) satisfies the following
condition:

(V) V ∈C(R3, R) satisfies inf V(x)=V0 > 0 and for each M> 0, meas{x∈R3 : V(x)≤M}<
+∞, where meas denotes the Lebesgue measure in R3.

Problem (1.1) arises in an interesting physical context. In fact, if V(x) = 0 and replacing
R3 by a bounded domain Ω ⊂ R3 in (1.1), problem (1.1) without the term [∆(u2)]u reduces to
the following Dirichlet problem of Kirchhoff type{

−
(
1 + b

∫
R3 |∇u|2dx

)
∆u = f (u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.2)
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which is related to the stationary analogue of the equation

ρ
∂2u
∂t2 −

(
P0

h
+

E
2L

∫ L

0

∣∣∣∣∂u
∂x

∣∣∣∣2 dx

)
∂2u
∂x2 = 0 (1.3)

presented by Kirchhoff in [7], where ρ, ρ0, h, E and L are constants. Problem (1.3) extends the
classical D’Alembert’s wave equation, by considering the effects of the changes in the length
of the strings during the vibrations. After Lions [10] proposed an abstract framework to the
problem (1.2), many papers devoted to the existence of multiple nontrivial solutions, infinitely
many solutions and ground solution to the semiliner (without the term [∆(u2)]u) Kirchhoff
type problems by applying the modern variational methods. See for instance, Liu and He [15],
Wu [23], Sun and Wu [21], Chen and Li [3], Li and Ye [8], He and Zou [6], Zhang et al. [26],
Zhang and Zhang [27], Liu and Guo [12–14], Liu and Chen [4, 11] and the references therein.

On the other hand, many papers concerned with the following quasilinear Schrödinger
equation

− ∆u + V(x)u− [∆(u2)]u = h(u), x ∈ RN . (1.4)

Such equations arise in various branches of mathematical physics and have been extensively
studied in recent years. For example, the problem (1.4) was transformed to be a semilinear
one by a change of variables and the existence of positive solutions of problem (1.4) in [18] was
obtained on an Orlicz space by using the mountain pass theorem. The same method was also
used in [5], but the usual Sobolev space H1(RN) framework was used as the working space.
Liu, Wang and Wang [19] obtained the existence of both one sign and nodal ground state type
solutions of problem (1.4) by the Nehari method. In [17], the authors presented an approach
to study problem (1.4) and proved that the solutions of problem (1.4) can be obtained as limits
of 4-Laplacian perturbations.

However, to the best of our knowledge, very few papers deal with problem (1.1) in the
literature. More precisely, Liang and Shi [9] studied the problem (1.1) and obtained infinitely
many solutions which tend to zero via a concentration-compactness principle and the mini-
max methods. In [24], the authors got the infinitely many small energy solutions of problem
(1.1) by applying Clark’s theorem.

Motivated by the reasons above, the aim of this paper is to show the existence of ground
state solutions of problem (1.1). Different from the semilinear problems, the feature of the
quasilinear problem is the appearance of the term [∆(u2)]u. This makes the problem more
challenging and interesting because in general there is no suitable space in which the energy
functional enjoys both smoothness and compactness. Therefore, the variational methods can
not be applied directly. As we shall see in the present paper, problem (1.1) can be viewed as
an elliptic equation coupled with a non-local term. The competing effect of the non-local term
with the critical nonlinearity and the lack of compactness of the embedding of H1(R3) into the
space Lp(R3), prevent us from using the variational methods in a standard way. Following
the idea of [5, 18], we transform the problem to a semilinear one by a change of variables.
Note that the problem (1.1) becomes problem (1.4) when b = 0. It is worth pointing out that
although the idea was used to solve the problem (1.4) above, the adaptation to the procedure
to our problem is not trivial at all since the appearance of non-local term. To obtain the
ground state solution of problem (1.1), however, some more delicate estimates are needed in
the present paper.

Before stating our main results we need to introduce some notations and definitions.
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Notation 1.1. Throughout this paper, we denote by ‖ · ‖r the Lr-norm, 1 ≤ r ≤ ∞, and we use
the notation→ (⇀) to denote strong (weak) convergence. Also, if we take a subsequence of a
sequence {un} we shall denote it again {un}. We use o(1) to denote any quantity which tends
to zero when n → ∞. C and Ci express distinct positive constants which may vary from line
to line.

Definition 1.2. A nontrivial solution of problem (1.1) is called a ground state solution if its
energy is minimal among the energy of all nontrivial solutions.

Now, we give our main results.

Theorem 1.3. Suppose that condition (V) holds. Then problem (1.1) has a ground state solution for
all µ > 0 when 9 < p < 11.

Theorem 1.4. Suppose that condition (V) holds. Then there exists µ∗ > 0 such that problem (1.1) has
a ground state solution for all µ ∈ (µ∗,+∞) when 1 < p ≤ 9.

Remark 1.5. It should be mentioned that the authors in [16] have proved the problem (1.1)
with b = 0 has no nontrivial solution if x · ∇V(x) ≥ 0 and p ≥ 11. This is the reason why we
just consider the problem for 1 < p < 11.

Remark 1.6. Compared to the previous results (see e.g. [9]), the main novelty in this paper
is that we are able to obtain the existence of the ground state solution of problem (1.1) with
1 < p < 11. Moreover, since we consider the critical case, our main results are also different
from [24] in which the authors studied the nontrivial solutions.

The remainder of this paper is organized as follows. In Section 2, we present some pre-
liminaries while the proofs of our main results is given in Section 3.

2 Preliminaries

Define the Hilbert space

X =

{
u ∈ H1(R3) :

∫
R3

V(x)v2dx < ∞
}

with the inner product

〈u, v〉 =
∫

R3
[∇u∇v + V(x)uv]dx

and the norm
‖u‖ = 〈u, u〉 1

2 .

It is well known that the embedding X ↪→ Ls(R3) for 2 ≤ s < 6 is compact under the con-
dition (V). Problem (1.1) is the Euler–Lagrange equation associated with the natural energy
functional

I(v) =
1
2

∫
R3
(1 + 2v2)|∇v|2dx +

1
2

∫
R3

V(x)v2dx +
b
4

(∫
R3
|∇v|2dx

)2

− 1
12

∫
R3
|v|12dx− µ

p + 1

∫
R3
|v|p+1dx. (2.1)
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Unfortunately, I in general is not well defined on X because ∇(v2) is not always in L1(R3). To
overcome this difficulty, based on the strategy developed in [5], we introduce a C∞-function f
defined by

f ′(t) =
1√

1 + 2| f (t)|2
, for t ∈ [0,+∞)

and
f (−t) = − f (t), for t ∈ (−∞, 0].

Some properties of the function f are necessary in our arguments which we list below. The
corresponding proofs can be found in [5, 18, 25]. We omit them here.

Lemma 2.1. The function f enjoys the following properties:

(1) f is uniquely defined and invertible C∞-function;

(2) 0 < f ′(t) ≤ 1, ∀ t ∈ R;

(3) | f (t)| ≤ |t|, ∀ t ∈ R;

(4) f 2(t) ≤
√

2|t|, ∀ t ∈ R;

(5) f (t)
t is decreasing for t > 0;

(6) There exists a positive constant C such that

| f (t)| ≥
{

C|t|, |t| ≤ 1,

C|t| 12 , |t| ≥ 1.

By making the change of variables v = f (u), the functional I can be rewritten as

J(u) := I( f (u)) =
1
2

∫
R3
|∇u|2dx +

1
2

∫
R3

V(x) f 2(u)dx +
b
4

(∫
R3
( f ′(u)|∇u|)2dx

)2

− 1
12

∫
R3
| f (u)|12dx− µ

p + 1

∫
R3
| f (u)|p+1dx, (2.2)

which is well defined on X. Moreover, by Lemma 2.1, standard arguments (see e.g. Proposi-
tion 1.12 in [22]) show that J ∈ C1(X, R) and

〈J′(u), ϕ〉 =
∫

R3
∇u∇ϕdx +

∫
R3

V(x) f (u) f ′(u)ϕdx−
∫

R3
| f (u)|10 f (u) f ′(u)ϕdx

− µ
∫

R3
| f (u)|p−1 f (u) f ′(u)ϕdx + b

(∫
R3

|∇u|2
1 + 2 f 2(u)

dx
)

×
(∫

R3

∇u∇ϕ(1 + 2 f 2(u))− 2|∇u|2 f (u) f ′(u)ϕ

[1 + 2 f 2(u)]2
dx
)

, (2.3)

for all u, ϕ ∈ X. As in [9], if u is a nontrivial critical point of J, then u is nontrivial solution of
problem

− ∆u + V(x) f (u) f ′(u)− b
∫

R3
| f ′(u)|2|∇u|2dx ·

(
f ′(u) f ′′(u)|∇u|2 + | f ′(u)|2∆u

)
= g(x, u),

(2.4)
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where
g(x, u) = f ′(u)

[
µ| f (u)|p−1 f (u) + | f (u)|10 f (u)

]
.

Let

B(ρ) =
{

u ∈ X :
∫

R3
[|∇u|2 + V(x) f 2(u)]dx ≤ ρ2

}
and

S(ρ) = ∂B(ρ) =
{

u ∈ X :
∫

R3
[|∇u|2 + V(x) f 2(u)]dx = ρ2

}
.

The following two lemmas show that the functional J has a mountain pass geometric structure.

Lemma 2.2. There exist ρ, α > 0 such that J(u) ≥ α for all u ∈ S(ρ).

Proof. Since 1 < p < 11, for any ε > 0, there exists a constant C(ε) > 0 such that

|t|p+1 ≤ ε|t|2 + C(ε)|t|12, ∀ t ∈ R. (2.5)

By (2.5), condition (V), Lemma 2.1 (4) and the Sobolev inequality, for u ∈ S(ρ), it deduces
that

J(u) ≥ 1
2

∫
R3
|∇u|2dx +

1
2

∫
R3

V(x) f 2(u)dx− 1
12

∫
R3
| f (u)|12dx− µ

p + 1

∫
R3
| f (u)|p+1dx

≥ 1
4

∫
R3
|∇u|2dx +

1
4

∫
R3

V(x) f 2(u)dx +
1
4

∫
R3

V0 f 2(u)dx

− µε

p + 1

∫
R3
| f (u)|2dx−

(
1

12
+

µC(ε)
p + 1

) ∫
R3
| f (u)|12dx

≥ 1
4

∫
R3
[|∇u|2 + V(x) f 2(u)]dx−

(
1

12
+

µC(ε)
p + 1

) ∫
R3
| f (u)|12dx

≥ 1
4

∫
R3
[|∇u|2 + V(x) f 2(u)]dx−

(
1

12
+

µC(ε)
p + 1

)
8
∫

R3
|u|6dx

≥ 1
4

∫
RN

[|∇u|2 + V(x) f 2(u)]dx− C
(∫

R3
|∇u|2dx

)3

≥ 1
4

ρ2 − Cρ6,

for ε > 0 small. Choose ρ > 0 with 1
4 ρ2 − Cρ6 = 1

8 ρ2 := α > 0. Then J(u) ≥ α for all u ∈ S(ρ).
The proof is completed.

Lemma 2.3. There exists a u ∈ X such that J(u) < 0.

Proof. Choosing w ∈ X ∩ L12(R3) with 0 < |w| ≤ 1, it follows from Lemma 2.1 (5) that
f (tw) ≥ f (t)w for t > 0. Hence for t ≥ 1, by Lemma 2.1 (3) and (6), we have

J(tw) =
t2

2

∫
R3
|∇w|2dx +

1
2

∫
R3

V(x) f 2(tw)dx +
b
4

(∫
R3
( f ′(tw)|∇tw|)2dx

)2

− 1
12

∫
R3
| f (tw)|12dx− µ

p + 1

∫
RN
| f (tw)|p+1dx

≤ t2

2

∫
R3
|∇w|2dx +

t2

2

∫
R3

V(x)w2dx +
bt4

4

(∫
R3
|∇w|2dx

)2

− t6C
12

∫
R3
|w|6dx → −∞, as t→ +∞,

which implies that there exists a large t > 0 such that J(tw) < 0. We complete the proof.
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Define the mountain pass level c of the functional J as

c = inf
γ∈Γ

max
r∈[0,1]

J(γ(t)), (2.6)

where Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, J(γ(1)) < 0}. Let

Φ(u) =
∫

R3

[
|∇u|2 + V(x) f 2(u)

]
dx. (2.7)

It follows from Lemma 2.2 that J(u) ≥ 0 for u ∈ B(ρ). This implies that Φ(γ(1)) > ρ for
all γ ∈ Γ. Hence there exists a tγ ∈ (0, 1) such that Φ(γ(tγ)) = ρ for every γ ∈ Γ. By the
definition of c, we have c ≥ α > 0, where α is given in Lemma 2.2.

3 Proof of main results

Now, we are in the position to verify the main results. To this end, a further estimate of the
mountain pass level value c is necessary. We recall that the best constant S for the Sobolev
embedding D1,2(RN) ↪→ L2∗(RN) is given by

S = inf
v∈D1,2(RN),‖v‖2∗=1

‖∇v‖2
2. (3.1)

Consider the function wε defined by

wε =
[N(N − 2)]

N−2
8

[ε + |x|2] N−2
4

, ∀ ε > 0. (3.2)

Let 0 < R < 1 and uε = φwε, where φ is a smooth cut-off function satisfying φ(x) = 1 for
|x| ≤ R and φ(x) = 0 for |x| ≥ 2R. For any ε > 0, it is known that

−∆(w2
ε ) = w

2(N+2)
N−2

ε

and the infimum in (3.1) is achieved by the function w2
ε . Moreover, followed by [2], a direct

computation yields that∫
RN
|∇(u2

ε )|2dx = S
N
2 + O

(
ε

N−2
2

)
, (3.3)∫

RN
u22∗

ε dx = S
N
2 + O

(
ε

N
2

)
, (3.4)∫

RN
|∇uε|2dx ≤ O

(
ε

N−2
2 | ln ε|

)
, (3.5)∫

RN
u2

ε dx = O
(

ε
N−2

4

)
, (3.6)

and ∫
RN

uq
ε dx = O

(
ε

N
2 −

1
8 q(N−2)

)
, ∀ 2∗ < q < 22∗. (3.7)

Taking uε as a test function, we have the following estimates for the level value c given
in (2.6).
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Lemma 3.1.

(i) If 9 < p < 11, then c < 1
6 S

3
2 for any µ > 0.

(ii) If 1 < p ≤ 9, then there exists a constant µ∗ > 0 such that c < 1
6 S

3
2 for any µ > µ∗.

Proof. Let I be the functional defined in (2.1). Then I(uε) is well defined since uε ∈ X∩ L∞(R3).
Firstly, we consider the case of 9 < p < 11. From I(u) and uε, we can define tε > 0

satisfying
I(tεuε) = sup

t≥0
I(tuε).

Here, we claim that there exist positive constants t1, t2 and ε0 such that t1 ≤ tε ≤ t2 for all
ε ∈ (0, ε0). Indeed, by (3.3), (3.4), (3.5) and (3.6), there exists a small ε2 > 0 such that

0 ≤ I(tεuε) = sup
t>0

I(tuε)

=
1
2

∫
R3
(1 + 2t2u2

ε )|∇tuε|2dx +
1
2

∫
R3

V(x)t2u2
ε dx +

b
4

(∫
R3
|∇tuε|2dx

)2

− 1
12

∫
R3
|tuε|12dx− µ

p + 1

∫
R3
|tuε|p+1dx

=
t2

2

∫
R3
|∇uε|2dx +

t2

2

∫
R3

V(x)u2
ε dx +

t4

4

∫
R3
|∇(u2

ε )|2dx

+
bt4

4

(∫
R3
|∇uε|2dx

)2

− t12

12

∫
R3
|uε|12dx− µtp+1

p + 1

∫
R3
|uε|p+1dx

≤ t2

2

∫
R3
|∇uε|2dx +

t2

2

∫
R3

V(x)u2
ε dx +

t4

4

∫
R3
|∇(u2

ε )|2dx

+
bt4

4

(∫
R3
|∇uε|2dx

)2

− t12

12

∫
R3
|uε|12dx

≤ t2 +
t4

2
(S

3
2 + 1) +

bt4

4
− t12

12
S

3
2 , (3.8)

which means that t2 + t4

2 (S
3
2 + 1) + bt4

4 ≥
t12

12 S
3
2 . Thus, there exists t2 > 0 small such that

tε ≤ t2 < 1 for all ε ∈ (0, ε2). It follows from (V), (3.3), (3.4) and (3.7) that there exists
ε1 ∈ (0, ε2) such that

I(tuε) =
t2

2

∫
R3
|∇uε|2dx +

t2

2

∫
R3

V(x)u2
ε dx +

t4

4

∫
R3
|∇(u2

ε )|2dx

+
bt4

4

(∫
R3
|∇uε|2dx

)2

− t12

12

∫
R3
|uε|12dx− µtp+1

p + 1

∫
R3
|uε|p+1dx

≥ t4

4

∫
R3
|∇(u2

ε )|2dx− t12

12

∫
R3
|uε|12dx− µtp+1

p + 1

∫
R3
|uε|p+1dx

≥ t4

4
S

3
2 − µ

p + 1
tp+1ε

12−p
8 − t12

12
S

3
2 .

Let k := max0≤t≤1
( 1

4 t4 − 1
12 t12) S

3
2 . Then k > 0. We can find a small ε0 < ε1 with µ

11 ε
12−p

8 ≤ k
2

for all ε ∈ (0, ε0). Therefore,

I(tεuε) ≥ max
0≤t≤1

{
1
4

S
3
2 t4 − µ

p + 1
ε

12−p
8 tp+1 − 1

12
t12S

3
2

}
≥ k

2
. (3.9)
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Combining (3.9) with (3.8) yields that

0 <
k
2
≤ I(tεuε) ≤ t2

ε +

(
1
2
(S

3
2 + 1) +

b
4

)
t4
ε −

1
12

S
3
2 t12

ε ,

which implies that there exists a t1 > 0 such that tε ≥ t1 for all ε ∈ (0, ε0). Hence our claim is
true.

For any ε ∈ (0, ε0), applying (3.3)–(3.7) again, we have

I(tεuε) =
t2
ε

2

∫
R3
|∇uε|2dx +

t2
ε

2

∫
R3

V(x)u2
ε dx +

t4
ε

4

∫
R3
|∇(u2

ε )|2dx

+
bt4

ε

4

(∫
R3
|∇uε|2dx

)2

− t12
ε

12

∫
R3
|uε|12dx− µtp+1

ε

p + 1

∫
R3
|uε|p+1dx

≤ t2
2
2

∫
R3
|∇uε|2dx +

t2
2
2

∫
R3

V(x)u2
ε dx +

t4
ε

4

∫
R3
|∇(u2

ε )|2dx

+
bt4

ε

4

(∫
R3
|∇uε|2dx

)2

− t12
ε

12

∫
R3
|uε|12dx−

µtp+1
1

p + 1

∫
R3
|uε|p+1dx

≤ t2
2
2

O
(
ε

1
4 | ln ε|

)
+

t2
2
2
|V|∞O

(
ε

1
4
)
+

t4
ε

4

[
S

3
2 + O

(
ε

3
2
)]

+
bt4

ε

4

[
O
(
ε

1
4 | ln ε|

)]2
− t12

ε

12

[
S

3
2 + O

(
ε

3
2
)]
− CO

(
ε

12−p
8
)

≤ 1
6

S
3
2 + C

[
O
(
ε

1
4 | ln ε|

)
−O

(
ε

12−p
8
)]

≤ 1
6

S
3
2 .

Hence we can find a small ε̄ > 0 such that

sup
t≥0

J( f−1(tuε̄)) = sup
t≥0

I(tuε̄) = I(tε̄uε̄) ≤
1
6

S
3
2 .

Moreover, we conclude from (3.8) that J( f−1(tuε̄)) = I(tuε̄) → −∞ as t → +∞, which shows
that there exists a t̄ > 0 such that J( f−1(t̄uε̄)) < 0. Let γ̄(t) = f−1(tt̄uε̄). Then γ̄ ∈ Γ and for
any µ > 0,

c ≤ max
0≤t≤1

J(γ̄(t)) <
1
6

S
3
2 .

Secondly, we consider the other case 1 < p ≤ 9. Now, we rewrite the functional I as Iµ. Let
u0 ∈ C∞

0 (RN) with u0 6= 0 and define tµ > 0 such that Iµ(tµu0) = supt≥0 Iµ(tu0). We claim that
tµ → 0 as µ → +∞. Indeed, if the assertion does not hold, then there exists a constant t0 > 0
and a sequence {µn} such that µn → +∞ and tµn ≥ t0 for all n. Without loss of generality, we
assume that µn ≥ 1 for all n. Let tn = tµn and I1 = Iµ|µ=1. Then 0 ≤ Iµn(tnu0) ≤ I1(tnu0) for
all n, which implies that tn is bounded from above. Moreover, we have

Iµn(tnu0) =
t2
n
2

∫
R3
|∇u0|2dx +

t2
n
2

∫
RN

V(x)u2
0dx +

t4
n
4

∫
RN
|∇(u2

0)|2dx

+
bt4

n
4

(∫
R3
|∇u0|2dx

)2

− t12
n

12

∫
R3
|u0|12dx− µntp+1

n

p + 1

∫
R3
|u0|p+1dx
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≤ t2
n
2

∫
R3
|∇u0|2dx +

t2
n
2

∫
R3

V(x)u2
0dx +

t4
n
4

∫
R3
|∇(u2

0)|2dx

+
bt4

n
4

(∫
R3
|∇u0|2dx

)2

− µntp+1
n

p + 1

∫
R3
|u0|p+1dx

≤ C− µntp+1
n

p + 1

∫
R3
|u0|p+1dx → −∞, as n→ ∞,

which contradicts Iµn(tnu0) ≥ 0. Hence the claim holds. Since tµ → 0 as µ→ +∞ and

Iµ(tµu0) ≤
t2
µ

2

∫
R3
|∇u0|2dx +

t2
µ

2

∫
R3

V(x)u2
0dx +

t4
µ

4

∫
R3
|∇(u2

0)|2dx,

we have Iµ(tµu0) → 0 as µ → +∞ and hence there exists a µ∗ > 0 such that supt≥0 Iµ(tu0) <
1
6 S

3
2 for all µ > µ∗. This implies that c < 1

6 S
3
2 for all µ > µ∗. The proof is completed.

Recall that, for any c ∈ R, we say {un} is a (C)c sequence of J if J(un) → c and
(1 + ‖un‖)J′(un)→ 0 as n→ ∞. In order to obtain the existence of ground state solutions, we
need to study some behaviors of a (C)c sequence of J carefully.

Lemma 3.2. Let c ∈ R and {un} ⊂ X be a (C)c sequence of J. Then {Φ(un)} is bounded, where Φ
is defined in (2.7). In particular, {un} is bounded in H1(R3).

Proof. Let wn = f (un)
f ′(un)

. Then Lemma 2.1 (3) and (4) imply that

∇wn =

(
1 +

2 f 2(un)

1 + 2 f 2(un)

)
∇un.

Hence, 〈J′(un), wn〉 → 0 as n→ ∞.
Define two real functions g(t) = |t|10t + µ|t|p−1t and G(t) =

∫ t
0 g(s)ds. Then there exists a

constant λ ∈ (4, 12) such that

lim
|t|→0

tg(t)− λG(t)
t2 = 0 and lim

|t|→∞

tg(t)− λG(t)
tλ

= +∞.

Therefore, there exists r > 0 such that

tg(t)− λG(t) ≥ 0, ∀ |t| ≥ r. (3.10)

Moreover, for any ε > 0, there exists a positive constant C(ε) such that

|tg(t)− λG(t)| ≤ ε|t|2 + C(ε)|t|12, ∀ t ∈ R. (3.11)

Then it can be deduced from (3.10) that

c + o(1) = J(un)−
1
λ
〈J′(un), wn〉

=
1
2

∫
R3
|∇un|2dx− 1

λ

∫
R3

(
1 +

2 f 2(un)

1 + 2 f 2(un)

)
|∇un|2dx +

(
1
2
− 1

λ

)∫
R3

V(x) f 2(un)dx

+

(
b
4
− b

λ

)(∫
R3
( f ′(un)|∇un|)2dx

)2

+
∫
| f (un)|>r

[
1
λ

g( f (un)) f (un)− G( f (un))

]
dx

+
∫
| f (un)|≤r

[
1
λ

g( f (un)) f (un)− G( f (un))

]
dx
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≥
(

1
2
− 2

λ

) ∫
R3
|∇un|2dx + 2

(
1
4
− 1

2λ

) ∫
R3

V(x) f 2(un)dx

+
∫
| f (un)|≤r

[
1
λ

g( f (un)) f (un)− G( f (un))

]
dx. (3.12)

From (3.11), there exists a constant M > V0 such that∣∣∣∣ 1
λ

tg(t)− G(t)
∣∣∣∣ ≤ (1

4
− 1

2λ

)
M|t|2, ∀ |t| ≤ r, (3.13)

where V0 is the number given in the condition (V). Let A = {x ∈ R3 : V(x) ≤ M}. Then it
follows from condition (V) that meas(A) < ∞. By (3.13) and condition (V), we have(

1
4
− 1

2λ

) ∫
R3

V(x) f 2(un)dx +
∫
| f (un)|≤r

[
1
λ

g( f (un)) f (un)− G( f (un))

]
dx

≥
(

1
4
− 1

2λ

) ∫
{| f (un)|≤r}

(V(x)−M) f 2(un)dx

≥
(

1
4
− 1

2λ

) ∫
{| f (un)|≤r,V(x)≤M}

(V(x)−M)r2dx

≥
(

1
4
− 1

2λ

)
·meas

(
A∩ {x ∈ RN : | f (un)| ≤ r}

)
· (V0 −M)r2

≥
(

1
4
− 1

2λ

)
·meas (A) · (V0 −M)r2.

This combining with (3.12) implies that(
1
2
− 1

λ

) ∫
R3
|∇un|2dx +

(
1
4
− 1

2λ

) ∫
R3

V(x) f 2(un)dx

≤
(

1
4
− 1

2λ

)
·meas (A) · (M−V0)r2 + c + o(1).

which means that ∫
RN

[
|∇un|2 + V(x) f 2(x)

]
dx < +∞. (3.14)

In particular, by Lemma 2.1 (6) and (3.14), we have∫
R3
|un|2dx =

∫
{|un|≤1}

|un|2dx +
∫
{|un|>1}

|un|2dx

≤ C1

∫
R3

V(x) f 2(un)dx +
∫

R3
|un|6dx

≤ C1

∫
R3

V(x) f 2(un)dx + C2

(∫
R3
|∇un|2dx

)3

< +∞,

which together with (3.14) implies that {un} is bounded in H1(RN). The proof is completed.

Lemma 3.3. Let {un} ⊂ X be a (C)c sequence of J. If c < 1
6 S

3
2 , then there exist R, ξ > 0 and a

sequence {yn} ⊂ R3 such that

lim sup
n→∞

∫
BR(yn)

f 2(un)dx ≥ ξ.
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Proof. Arguing by contradiction, we suppose that the conclusion is not true, i.e.,

lim sup
n→∞

∫
BR(yn)

f 2(un)dx = 0.

Then Lion’s concentration compactness principle (Lemma 1.21 in [22]) implies that

f (un)→ 0, in Ls(R3) for all s ∈ (2, 6). (3.15)

By Lemma 2.1 (4), Lemma 3.2 and the interpolation, we have∫
R3
| f (un)|s → 0, ∀ s ∈ (2, 12). (3.16)

In view of Lemma 3.2, passing to a subsequence, we may assume that∫
R3

(
1 +

2 f 2(un)

1 + 2 f 2(un)

)
|∇un|2dx +

∫
R3

V(x) f 2(un)dx + b
[∫

R3
( f ′(un)|∇un|)2dx

]2

→ B (3.17)

and ∫
R3
| f (un)|12dx → D. (3.18)

It follows from the definition of S that

S
(∫

R3
| f (un)|12dx

) 1
3

≤
∫

R3
|∇ f 2(un)|2dx =

∫
R3

4 f 2(un)

1 + 2 f 2(un)
|∇un|2dx

≤
∫

R3

(
1 +

2 f 2(un)

1 + 2 f 2(un)

)
|∇un|2dx

+
∫

R3
V(x) f 2(un)dx + b

[∫
R3
( f ′(un)|∇un|)2dx

]2

,

which combining with (3.17) and (3.18) yields that SD
1
3 ≤ B. In addition, from (3.16), (3.17)

and (3.18) we have
0 = lim

n→∞
〈J′(un), wn〉 = B− D,

where wn = f (un)
f ′(un)

. Hence, B = D ≥ S
3
2 . Moreover, we deduce that

c = lim
n→∞

J(un)

= lim
n→∞

(
1
2

∫
R3
|∇un|2dx +

1
2

∫
R3

V(x) f 2(un)dx +
b
4

(∫
R3
( f ′(un)|∇un|)2dx

)2
)

+ lim
n→∞

(
− 1

12

∫
R3
| f (un)|12dx− µ

p + 1

∫
RN
| f (un)|p+1dx

)
≥ lim

n→∞

(
1
4

∫
R3
(1 +

2 f 2(un)

1 + 2 f 2(un)
)|∇un|2dx +

1
4

∫
R3

V(x)u2
ndx
)

+ lim
n→∞

(
b
4

(∫
R3
( f ′(un)|∇un|)2dx

)2

− 1
12

∫
R3
| f (un)|12dx

)

=

(
1
4
− 1

12

)
D

≥ 1
6

S
3
2 ,

which contradicts c < 1
6 S

3
2 . The proof is completed.
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In what follows, we shall give the proof of Theorem 1.3 and Theorem 1.4. Since the proofs
of them are similar, we just give the details of Theorem 1.3.

Proof of Theorem 1.3. Let c be the mountain pass level given in (2.6). From Lemma 2.2, Lemma
2.3 and the mountain pass theorem (see e.g. Theorem 3 in [20]), the functional J has a (C)c

sequence {un} ⊂ X. In view of Lemma 3.2, we may assume that un ⇀ u in H1(R3) and
f (un) ⇀ f (u) in X, which implies that un → u in Ls

loc(R
3) for 2 < s < 6 and f (un)→ f (u) in

Ls
loc(R

3) for 2 < s < 12. Hence 〈J′(un), ϕ〉 → 〈J′(u), ϕ〉 = 0 for any ϕ ∈ C∞
0 (R3), that is, u is a

weak solution of (2.4). Moreover, since the embedding X ↪→ L2(R3) is compact for 2 ≤ s < 6,
we get f (un) → f (u) in L2(R3) for 2 ≤ s < 6. We conclude from Lemma 3.1 (i) that c < 1

6 S
3
2

for p = 10, µ > 0. By Lemma 3.3, there exists a constant ξ > 0 such that∫
R3

f 2(u) = lim
n→∞

∫
R3

f 2(un) ≥ ξ,

which shows that u is a nontrivial solution of problem (2.4). Hence u = f (v) is a nontrivial
solution of problem (1.1). Finally, letting d = inf{J(u) : u ∈ X, u 6= 0, J′(u) = 0}, we know
that d is achieved by the lower semi-continuity. The proof is completed.
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