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Abstract. In this article, we investigate the boundary-value problem

{x”(t) +h(t)f(x(t) =0, te[01],
x(0) = px'(0), x(1) = x(1),

where B > 0, 7 € (0,1), f € C([0,00),[0,00)) is nondecreasing, and importantly h
changes sign on [0,1]. By the Guo—Krasnosel’skii fixed-point theorem in a cone, the
existence of positive solutions is obtained via a special cone in terms of superlinear or
sublinear behavior of f.
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1 Introduction

For the first time Liu [7] considered the existence of positive solutions to the following second-
order three-point boundary value problems

{x”(t) + AR f(x(H)) =0, telo1], 1)
x(0) =0, x(1)=1dx(n),

where A is a positive parameter, 1 € (0,1), f € C([0,00),[0,c0)) is nondecreasing, € (0,1)
and h(t) is continuous and especially changes sign on [0,1] which is different from the non-
negative assumption in most of these studies.

Karaca [4] studied the problems with more general boundary conditions

{x”(t)+h(t)f(x(t)):O, te0,1], 12)
ax(0) = Bx'(0), x(1) = dx(n),
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whereax >0, >0, a +8>0with0 < <1, f,hasin (1.1).

The authors of [4,7] showed the existence of at least one positive solution by applying the
fixed-point theorem in a cone. Similar methods for a different problem are in [9]. Let E be
a Banach space, the nonempty subset P is called a cone in E if it is a closed convex set and
satisfies the properties that Ax € P for any A > 0, x € P and that £x € P implies x = 0 (the
zero element in E) (see [3]).

In [4] the author denoted

Cy10,1] = {x e C[0,1] : trerhi)’rll]x(t) >0, and ax(0) = Bx'(0), x(1) = 5x(17)}

and defined
P = {x € CJ[0,1] : x(t) is concave on [0, ] and convex on [17,1]} .

In fact, P is not a cone since it is not a closed set in C[0, 1]. For example, for n > 3 let

t+1, 0<t<i
() = 141, Lor<]
6+ G-t +2 3<t=y
2_, L<i<,
1, 0<t<},
xo(t) =43(G3—-t)+3 s<t<3,
-4 I<t<l

Obviously, x, € P fora = =1, 6 = 1/2 and x, — xp in C[0, 1] since {x,(t)} uniformly
converges to xo(f) on [0,1]. But xg ¢ P because xp(0) = 1 # 0 = x((0). However the
conclusions in [4] are actually true only if ax(0) = Bx’(0) is removed in Cg [0, 1] which is not
needed in the proof of [4, Lemma 2.2] by using of the concavity.

A question is whether one can have boundary condition x(1) = dx(y) with § <
(B+1)/(B+1) in problem (1.2) with a« = 1, which is the necessary condition when f > 0.
We only consider one (less complicated) special case § = 1. If & = 0, the corresponding linear
problem for g € C[0,1] will be

x"(t)+g¢(t) =0, te][0,1],
¥(0) =0, x(1) = x(n),
which is a resonance problem. So it is acceptable that « > 0 and may be supposed to be

« = 1. For that reason, we investigate the existence of positive solutions to the three-point
boundary-value problem

(1.3)

{x“(t) +h(t)f(x(t)) =0, te]0,1], (1.4)

x(0) = px'(0), x(1) = x(n),

where B > 0, 7 € (0,1), f € C([0,00),[0,00)), h(t) is continuous and is sign changing on
[0,1]. The existence of positive solutions is obtained via a special cone (see (2.5)) in terms
of superlinear or sublinear behavior of f by the Guo-Krasnosel’skii fixed-point theorem in a
cone. The ideas here are similar to the papers [4,7] and [9], but note that the signs on & are
opposite to those in [4,7]. Other relevant research can be seen in [1,2,5,8,10].
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2 Preliminaries

We will use the following assumptions.

(H1) h : [0,1] — R is continuous and such that h(t) < 0, t € [0,5]; h(t) > 0, t € [y,1].
Moreover, h(t) does not vanish identically on any subinterval of [0, 1].

(H2) f € C([0,00),]0,00)) is continuous and nondecreasing.

(Hs) There exists a constant T € (127,1) such that Aph(t — pt) + h(t) > 0 for ¢ € [0,7] and
p =21, where

2.1)

Remark 2.1. The following example indicates that (H3) is reasonable. If we take = 1/5,
T=4/5€(3/51),p =3 and

ht) = t—1/5, t e [0,1/5],
1 (125/2)(t—1/5), te (1/51],

then
~ [2/125, p=1/5,
1/150, B =0.

It is easy to see for t € [0,1/5] that Aph(t — pt) + h(t) = 8(1/5—1t) > 0 when g = 1/5 and
Aph(t —pt) +h(t) = (11/4)(1/5—1t) > 0 when g = 0.

Lemma 2.2. For g € C[0,1],

= t 1
{ (1)+5(0) =0, te01], )
x(0) = px'(0),  x(1) = x(1)
has the unique solution
1 B 1 ¢ 1
x(t) = [ Gilts)g()ds+ 17— [ Gl 9)g)ds + 1 [ Giln,5)g(s)ds,
0 1—-7nJo 1-7nJo
where
1_tsl OSSStS]-/ 1_/ OSSS s
Gty =170 Galns) =4 " 7
(1—-s)t, 0<t<s<1, 1-s, n<s<1.
Proof. By Taylor expansion we have
t t
x(t) = ag+art + / (t —s)x""(s)ds = ag + ait — / (t —s)g(s)ds (2.3)
0 0

and
x(0) =ap, x(1) =ag+a; — /01(1 —s)g(s)ds,

() = a0+ avy [y~ 9)g(s)ds, (0) = an
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The boundary conditions imply that a9 = fa; and

ap+ay — /01(1 —s)g(s)ds = ag + a1y — /07](17 —s)g(s)ds,

thus
1
o= [ - 9s(eds - = [y - 9s(e)ds
1
w =t [ =95 [ -9
It follows from (2.3) that
1
x) = 250 [=s)gos = EE0 M= s)gonds = [[ 6= 9)g(s)as

= (14 B2 Lot s Mg - B0 [0 sjgeas

1 1-17

+ /Ot(l — t)sg(s)ds — /Ot(l —s)ig(s)ds

= [a-spgst [ B s)g(s)as
t o=

+ /017(,8 +st)g(s)ds + /Ot(l —t)sg(s)ds
= [ a2 ([ a-nges+ [f0 o)

+ 1;7 </07](1 —1)sg(s)ds + /;(1 — s)ng(s)ds)

- /01 Gi(t,s)g(s)ds + 1517 /01 Ga(1,s)g(s)ds + 1j]7 /01 Gi1(1,s)g(s)ds,

and hence the proof is complete.

For t,s € [0,1] let

G(t,5) = Galt,3) + £ P SGa9) + 4 ! SG1,9).

Lemma 2.3. If s; € [0, 7] and s, € [n, T], then
Gi(n,s2) > AGi(17,81), G(t,82) > AG(t, 1), Vit € [0,1],
where T and A are as in (Hj).

Proof. In the case whether f =0 or 8 # 0,

Gi(n,52)  (1-s)p _ 1—-7)yp 1-7
Gi1(1,51) B (1—1n)s1) = (1—1n)y) = 1y > A.

(2.4)
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When B # 0,
G(t,s)  Gilt,s2) +%G2( ,52) + 15 G1 (77, 52)
G t,S1) G1(t,51) + %Gz(q,sﬂ + 1j’7G1(17,Sl)
- %Gz(ﬂ,sz)
Gi(t,s1) + %Gz( :$1) + 1, G1(77,51)
y £ (1=s2)(1-7)
(1—s1)+ 5 (1 =) + 75 (1 —s1)
B(1—s2) pl—1) _pA-71)(A—1).
(1+8Eha-s) 1+ 2+p—n '
when =0,
G(t,s2)  Gits2) + 15Gi(1,52) 5 G1(1,52)
G trsl) G1(t,S1) + ﬁ(;q(ﬂ,sl) - G](l‘,S1 +ﬁG1(ﬂ,Sl)
- 15 G1(1,52) _ 1556117, 52)
(1=s)t+5Gi(n,51)  (1—s1)+ 15Gi(n,51)
_ e =m=s) (-1
T l4ghs(l-n) T 14y
Thus the proof is finished. O

In C[0, 1] with the norm |[|x|| = maxc (o] |x(¢)| for x € C[0, 1], denote

X = {x € C[0,1] : trer}é,rlll x(t) >0, and x(0) < x(7), x(1) = x(iy)} ,

P = {x € X : x(t) is convex on [0,7] and is concave on [1,1]}. (2.5)
Obviously, P is a cone in C[0, 1].
Lemma 2.4. If x € P, then x(t) < x(17) = min¢, 1 x(t) for t € [0,77].
Lemma 2.5. If x € P, then

1

-7 1+7
x(t) > 20=p) 7],

|x|| forte [T, 5
where T is as in (Hz).
Proof. By Lemma 2.4 we have |[|x|| = max;c, 1) x(#) and denote

p=sup{¢ € [n,1] : x(¢) = [|lx|[}-

Notice that x(t) is concave on [1,1]. For t € [, n),

x(p) —x(n) o x(p) — x(t)
p—n o p—t
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and

x(t) > (t — U)x(l“‘) i (,u — t)x(ﬂ) > -1 ” ” -7 HxH
=T H—=1
fort € (u,1],

x(t) —x() o x(1) —x(p)

t—pu 1—u
and (= )x() + (1= )x(n) _ 1t t
—p)x(1) + (1 —t)x(u — -1
> > = R —
x(t) 2 = > gl = (1= = ) sl
Therefore,
. t—ny t—ng
> Y S I
x(t) > mm{1 _17,1 1 _17} | x]], vt e [n,1]
and hence
. [Tt—7m 1 1+t
> R
w2 min{ 720, =T bl = g =l vee [6 05
since [, 3] C [5,1]. O

Lemma 2.6. Suppose that (H1)—(H3) are satisfied. If x € P, then

/OT G(Ls)h(s)f(x(s))ds >0 (Ve [0,1]) and /0 Gi(1,5)h(s)f(x(s))ds >0,
where T is as in (Hz).

Proof. For s € [y,7] let s = T —pz, here p = (T —1#)/n, then z € [0,5]. By Lemma 2.3,
Lemma 2.4, (H;) and (H3), we have

| Gt syr)fx(s)ds = p [ (e~ peih(r — p2)f(x(x — p2)z
> Ap /0” G(t 2)h(t — p2) f(x(t — pz))dz
> ap [ Glt,2h(x — p2)f(x(2))z
>~ [ Gt )z = ~ [ Gt 9h(s)flx(s)ds

and hence .
/0 G(t,5)h(s) f(x(s))ds > 0.

By the same way, the other inequality holds. O

3 Main results
For x € P define the operator T as the following:
1
(T)(8) = [ Glt,s)n(s)f (x(s))ds, (3.1)

where G(t,s) is in (2.4).
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Lemma 3.1. If (H1)—(H3) are satisfied, then T : P — P is completely continuous, where P is the cone
defined by (2.5) in C[0,1].

Proof. If x € P, it is clear that (Tx)(t) is continuous on [0, 1] and for t € [0, 1],

T 1
(Tx)(t) :/0 G(t,s)h(s)f(x(s))ds%—/r G(t,s)h(s)f(x(s))ds > 0
by Lemma 2.6. Moreover, direct calculations by virtue of (2.4), (3.1) and Lemma 2.6 yield
)0 = 12 [ Gun s+ L [ Galy 50616 ds = (To))
(T3~ (T)0) = 1 [ Gal ) x(9)ds
1

- m( /0 G (17, 8)h(s) f(x(s))ds + / 1 Gr(17,9)8(s)f (x(5))ds) > 0,

Meanwhile (Tx)"(t) = —h(t)f(x(t)) > 0 for t € [0,5] and (Tx)"(t) < 0 for t € [y,1], i.e.,
(Tx)(t) is convex on [0,7] and is concave on |1, 1] respectively. These mean that T : P — P.
At last, we know that T is completely continuous from the Arzela—Ascoli theorem. O

It follows from Lemma 2.2 that there exists a positive solution to (1.4) if and only if T has
a fixed point in P. In order to prove the existence of positive solution we need the following
Guo-Krasnosel’skif fixed point theorem in the cone [3,6].

Lemma 3.2. Let E be a Banach space and P be a cone in E. Suppose that ()1 and (), are bounded open
sets in E with 0 € Qg and Q1 C Op. If T : PN (O\Q1) — P is a completely continuous operator
and satisfies either

(i) ||Tx|| < ||x|| for x € PNoy and || Tx| > ||x]|| for x € P N 3IQYy; or
(ii) || Tx|| > ||x|| for x € PN Oy and || Tx|| < ||x|| for x € P N0y,
then T has a fixed point in P N (Q\Oy).

Theorem 3.3. Suppose that (Hy)—(H3) are satisfied. If

lir(r)1+f(u)/u =0, (3.2)
lim f(u)/u = oo, (3.3)

then (1.4) has at least one positive solution.

Proof. Let P and T be respectively as (2.5) and (3.1).
By (3.2) there exists r; > 0 such that f(u) < eju for u € [0,r1], where &1 > 0 satisfies

1
€1 max/ G(t,s)h(s)ds < 1. (34)
tef0,1] Jy
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Denote (01 = {x € C[0,1] : ||x]]| < 71} and hence from (H;) and (3.4) we have that
Vx € PNoQ)y,

(Tx)(t):/o'"c(t $)h +/ (t,)h(s) f(x(s))ds
< /1G(t s)h(s)f(x(s))ds §81/7] G(t,5)h(s)x(s)ds

<£1||x||/ (t,s)h(s)ds < ry, t€10,1],
that is, || Tx|| < ||x]||.
By (3.3) there exists Ry > 0 such that f(u) > Aju for u > Ry, where A > 0 satisfies

AT T G n(s)ds > 1 3.5
—_— t, > 1. .
o=y e (t,5)h(s)ds (35)

Denote (), = {x € C[0,1] : ||x]| < Ry}, where

_ 2(1—1n)
R; = max {271, Ri————= T 1 [ (3.6)
and hence by Lemma 2.5 and (3.6) we have that Vx € PN d()y,
1- 147
> = > . .
X(1) 2 5 )H x|| = ( U)Rl R, forte [T, . } (3.7)

Consequently, it follows from Lemma 2.6, (3.7) and (3.5) that Vx € P N 0d(Y,,

Il = max (G5 6)) + [ Glos)he)s (x(6))s )
> max /1 G(t,5)h(s)f(x(s))ds > max /(HT)/ZG(t,s)h(s)f(x(s))ds

te[01] Jt te[0,1] Jr

(147)/2
> max/ G(t,s)h(s)A1x(s)ds
te[01] Jt

> AT T G ) h(s)ds >
> Mgy lelmas [ Gl s)h(s)ds > ]

By Lemma 3.1 and Lemma 3.2 T has at least one fixed point in P N (Q,\ Q1) which is the
positive solution to (1.4). O

Theorem 3.4. Suppose that (Hi)—(H3) are satisfied. If

1ir61+f(u)/u = oo, (3.8)
Jim )/ =, 39

then (1.4) has at least one positive solution.

Proof. Let P and T be respectively as (2.5) and (3.1).
By (3.8) there exists , > 0 such that f(u) > Ayu for u € [0, 2|, where A, > 0 satisfies

1-7 D2 o h(s)ds > 1 3.10
L t > 1. .
T trén[oaﬁ/f (t,5)h(s)ds (3.10)
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Denote (1 = {x € C[0,1] : ||x|| < 72} and hence from Lemma 2.6 and Lemma 2.5 we have
that Vx € PN aQ)y,

T = max </TG(t s +/ (t,5)h (s))ds)

(1+7)
> max /1G(t,s)h(s)f(x(s))ds > max/1+ /ZG(t,s)h(s)f(x(s))ds

te[0,1] Jr te[01] Jt

(1471)/2
> max / G(t,5)h(s) Aox(s)ds
te[0,1] Jr

> A 1 (1+r)/2Gt Heds >
27—(1)Hthe[o1]/ (t,s)h(s)ds > ||x|.

By (3.9) there exists R, > 0 such that f(u) < eu foru > Ry, where €5 > 0 satisfies

1
€ max/ G(t,s)h(s)ds < 1. (3.11)
tel0,1] Jy

If f is bounded, then there exists a constant M > 0 such that f(u) < M for u > 0 and
denote Oy = {x € C[0,1] : ||x|]| < Ry} in this case, where

1
R; = max {ZrZ,M max / G(t,s)h(s)ds} , (3.12)
te[0,1] /7y

and hence from (H;) and (3.12) we have that Vx € P N dQ),,

(Tx)(b) :/O"G(t s)h +/ (t,5)h(s) f(x(s))ds
1 1
g/ﬂ G(t,5)h(s) f(x(s))ds §Mtr€n[3>1<]/ﬂ G(t,s)h(s)ds < R,,  te0,1],

that is, ||Tx|| < ||x]|.
For the case when f is unbounded, take R, = max{2r;, Ry} and thus f(u) < f(Ry) for
u € [0, Ry] by the monotonicity of f. Therefore from (H;) and (3.11) we have that Vx € P N0y,

(12)(0) = [ Glo,h(s)F(x(5) + [ Glt5)h(s) () s
< / LGt s)h(s)f(x(s))ds < F(Ra) max / "Gt )h(s)ds
1

te[0,1] Jy

1
< g7R; max / G(t,s)h(s)ds < Ry, te0,1],
te0,1] Jy
which implies || Tx|| < ||x|| also.
By Lemma 3.1 and Lemma 3.2 T has at least one fixed point in P N (Q,\Q;) which is the
positive solution to (1.4). O
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