Existence for semilinear equations on exterior domains

Joseph A. Iaia ${ }^{\boxtimes}$
University of North Texas, Department of Mathematics, Denton, Texas, USA

Received 9 June 2016, appeared 26 November 2016
Communicated by Gennaro Infante

Abstract

In this paper we study radial solutions of $\Delta u+K(r) f(u)=0$ on the exterior of the ball of radius $R>0$ centered at the origin in \mathbb{R}^{N} where f is odd with $f<0$ on $(0, \beta), f>0$ on (β, ∞), and f superlinear. The function $K(r)$ is assumed to be positive and $K(r) \rightarrow 0$ as $r \rightarrow \infty$. We prove existence of an infinite number of radial solutions with $u \rightarrow 0$ as $r \rightarrow \infty$ when $K(r) \sim r^{-\alpha}$ with $N<\alpha<2(N-1)$.

Keywords: exterior domains, semilinear, superlinear, radial.
2010 Mathematics Subject Classification: 34B40, 35B05.

1 Introduction

In this paper we study radial solutions of:

$$
\begin{gather*}
\Delta u+K(r) f(u)=0 \quad \text { in } \Omega, \tag{1.1}\\
u=0 \quad \text { on } \partial \Omega, \tag{1.2}\\
u \rightarrow 0 \quad \text { as }|x| \rightarrow \infty \tag{1.3}
\end{gather*}
$$

where $x \in \Omega=\mathbb{R}^{N} \backslash B_{R}(0)$ is the complement of the ball of radius $R>0$ centered at the origin.

Since we are interested in radial solutions of (1.1)-(1.3) we assume that $u(x)=u(|x|)=$ $u(r)$ where $x \in \mathbb{R}^{N}$ and $r=|x|=\sqrt{x_{1}^{2}+\cdots+x_{N}^{2}}$ so that u solves:

$$
\begin{gather*}
u^{\prime \prime}(r)+\frac{N-1}{r} u^{\prime}(r)+K(r) f(u(r))=0 \quad \text { on }(R, \infty), \text { where } R>0, \tag{1.4}\\
u(R)=0, \quad u^{\prime}(R)=b>0 . \tag{1.5}
\end{gather*}
$$

Throughout this paper we denote ' as differentiation with respect to r.
We make the following assumptions on f and K. Let f be odd and locally Lipschitz with:

$$
\begin{equation*}
f^{\prime}(0)<0, \exists \beta>0 \text { s.t. } f(u)<0 \text { on }(0, \beta) \text { and } f(u)>0 \text { on }(\beta, \infty) . \tag{H1}
\end{equation*}
$$

[^0]In addition, let:

$$
\begin{equation*}
f(u)=|u|^{p-1} u+g(u) \text {, where } p>1 \text { and } \lim _{|u| \rightarrow \infty} \frac{|g(u)|}{|u|^{p}}=0 \text {. } \tag{H2}
\end{equation*}
$$

Denoting $F(u)=\int_{0}^{u} f(s) d s$ we assume:

$$
\begin{equation*}
\exists \gamma>0 \text { with } 0<\beta<\gamma \text { s.t. } F<0 \text { on }(0, \gamma) \text { and } F>0 \text { on }(\gamma, \infty) . \tag{H3}
\end{equation*}
$$

Further we also assume K and K^{\prime} are continuous on $[R, \infty)$ and:

$$
\begin{align*}
& \qquad K(r)>0, \exists \alpha \in(0,2(N-1)) \text { s.t. } \lim _{r \rightarrow \infty} \frac{r K^{\prime}}{K}=-\alpha \text { and } \tag{H4}\\
& \exists \text { positive } d_{1}, d_{2} \text { s.t. } 2(N-1)+\frac{r K^{\prime}}{K}>0, d_{1} r^{-\alpha} \leq K(r) \leq d_{2} r^{-\alpha} \text { for } r \geq R . \tag{H5}
\end{align*}
$$

Theorem 1.1. Let $N>2$ and $N<\alpha<2(N-1)$. Assuming (H1)-(H5) then for every nonnegative integer n there exists a solution, u_{n}, of (1.4)-(1.5) such that $\lim _{r \rightarrow \infty} u_{n}(r)=0$ and u_{n} has n zeros on (R, ∞).

Note: The model case for this theorem is $f(u)=|u|^{p-1} u-u$ for $p>1$ (and thus $F(u)=$ $\frac{1}{p+1}|u|^{p+1}-\frac{1}{2} u^{2}$) and $K(r)=r^{-\alpha}$ with $N<\alpha<2(N-1)$.

Note: when $\Omega=\mathbb{R}^{N}, K(r) \equiv 1$, and f grows superlinearly at infinity - i.e. $\lim _{u \rightarrow \infty} \frac{f(u)}{u}=$ ∞, then the problem (1.1), (1.3) has been extensively studied [1-3,9,11,13].

Interest in the topic for this paper comes from recent papers $[5,10,12]$ about solutions of semilinear equations on exterior domains. In [5] the authors use variational methods to prove the existence of a positive solution. In this paper we examine a similar differential equation and use ordinary differential equation methods to prove the existence of an infinite number of solutions - one with n zeros for each nonnegative integer n.

In [8] we studied (1.1)-(1.3) under the assumptions (H1)-(H5) with $K(r) \sim r^{-\alpha}$ where $0<\alpha<N$ and $\Omega=\mathbb{R}^{N} \backslash B_{R}(0)$ and (H1)-(H5). In that paper we proved existence of an infinite number of solutions - one with exactly n zeros for each nonnegative integer n such that $u \rightarrow 0$ as $|x| \rightarrow \infty$. In earlier papers [6,7] we have also studied (1.1), (1.3) when $\Omega=\mathbb{R}^{N}$ and $K(r) \equiv 1$ where f is odd, $f<0$ on $(0, \beta), f>0$ on (β, δ), and $f \equiv 0$ on (δ, ∞).

2 Preliminaries

For $R>0$ existence of solutions of (1.4)-(1.5) on a small interval $[R, R+\epsilon)$ with $\epsilon>0$ and continuous dependence of solutions with respect to b follows from the standard existence-uniqueness-continuous dependence theorem of ordinary differential equations [4].

Recall that $K(r)>0, K(r)$ is differentiable, and that $N>2$. We define the "energy" of a solution of (1.4) as follows:

$$
\begin{equation*}
E(r, b)=\frac{1}{2} \frac{u^{\prime 2}(r, b)}{K(r)}+F(u(r, b)) \tag{2.1}
\end{equation*}
$$

where u solves (1.4)-(1.5). Then it is straightforward to show:

$$
\begin{equation*}
E^{\prime}(r, b)=-\frac{u^{\prime 2}}{2 r K}\left(\frac{r K^{\prime}}{K}+2(N-1)\right)=-\frac{u^{\prime 2}}{2 r^{2(N-1)} K^{2}}\left(r^{2(N-1)} K\right)^{\prime} \tag{2.2}
\end{equation*}
$$

Thus we see that $E(r, b)$ is non-increasing precisely when $r^{2(N-1)} \mathrm{K}$ is non-decreasing. In particular, if $K(r)=c_{0} r^{-\alpha}$ with $c_{0}>0$ and $\alpha>0$ then we see $E^{\prime} \leq 0$ if and only if $\alpha \leq 2(N-1)$.

Lemma 2.1. Let u satisfy (1.4)-(1.5) and suppose (H1)-(H5) hold. If $b>0$ and b is sufficiently small then $u(r, b)>0$ for all $r>R$.

Proof. The proof of this lemma is similar to the one we used in [8]. First, we see that if $u^{\prime}(r, b)>0$ for $r \geq R$ then $u(r, b)>0$ for $r>R$ and so we are done in this case. Otherwise, $u(r, b)$ has a first local maximum, M_{b}, with $u^{\prime}(r, b)>0$ on $\left[R, M_{b}\right)$. Thus $u^{\prime}\left(M_{b}, b\right)=0$ and $u^{\prime \prime}\left(M_{b}, b\right) \leq 0$. In fact, $u^{\prime \prime}\left(M_{b}, b\right)<0$ for if $u^{\prime \prime}\left(M_{b}, b\right)=0$ then by uniqueness of solutions of initial value problems this would imply that $u(r, b)$ is constant contradicting that $u^{\prime}(R, b)=$ $b>0$. It then follows that $f\left(u\left(M_{b}, b\right)\right)>0$ and therefore $u\left(M_{b}, b\right)>\beta$. So there is an r_{b} with $R<r_{b}<M_{b}$ such that $u\left(r_{b}, b\right)=\beta$. Next we note that since $N<\alpha<2(N-1)$ then $E^{\prime} \leq 0$ thus:

$$
\begin{equation*}
\frac{1}{2} \frac{u^{\prime 2}(r, b)}{K(r)}+F(u(r, b))=E(r, b) \leq E(R, b)=\frac{1}{2} \frac{b^{2}}{K(R)} \quad \text { for } r \geq R . \tag{2.3}
\end{equation*}
$$

After rewriting (2.3) and using (H5) we obtain:

$$
\begin{equation*}
\frac{\left|u^{\prime}(r, b)\right|}{\sqrt{\frac{b^{2}}{K(R)}-2 F(u(r, b))}} \leq \sqrt{K} \leq \sqrt{d_{2}} r^{-\frac{\alpha}{2}} \quad \text { for } r \geq R \tag{2.4}
\end{equation*}
$$

Integrating (2.4) on (R, r_{b}) where $u^{\prime}>0$ and using (H5) as well as $\alpha>2$ gives:

$$
\begin{aligned}
& \int_{0}^{\beta} \frac{d t}{\sqrt{\frac{b^{2}}{K(R)}-2 F(t)}}=\int_{R}^{r_{b}} \frac{u^{\prime}(r, b) d r}{\sqrt{\frac{b^{2}}{K(R)}-2 F(u(r, b))}} \\
& \leq \int_{R}^{r_{b}} \sqrt{K} d r \leq \int_{R}^{r_{b}} \sqrt{d_{2}} r^{-\frac{\alpha}{2}} d r=\frac{\sqrt{d_{2}}}{\frac{\alpha}{2}-1}\left(R^{1-\frac{\alpha}{2}}-r_{b}^{1-\frac{\alpha}{2}}\right) \text {. }
\end{aligned}
$$

Thus:

$$
\begin{equation*}
\int_{0}^{\beta} \frac{d t}{\sqrt{\frac{b^{2}}{K(R)}-2 F(t)}} \leq \frac{\sqrt{d_{2}}}{\frac{\alpha}{2}-1} R^{1-\frac{\alpha}{2}} \tag{2.5}
\end{equation*}
$$

Next we observe by (H1) and the definition of F that there is a $t_{0}>0$ such that:

$$
\begin{equation*}
\sqrt{\frac{b^{2}}{K(R)}-2 F(t)} \leq \sqrt{\frac{b^{2}}{K(R)}+2\left|f^{\prime}(0)\right| t^{2}} \quad \text { for } 0<t<t_{0}<\beta \tag{2.6}
\end{equation*}
$$

and therefore combining (2.5)-(2.6) gives:

$$
\frac{\sqrt{d_{2}}}{\frac{\alpha}{2}-1} R^{1-\frac{\alpha}{2}} \geq \int_{0}^{\beta} \frac{d t}{\sqrt{\frac{b^{2}}{K(R)}-2 F(t)}} \geq \int_{0}^{t_{0}} \frac{d t}{\sqrt{\frac{b^{2}}{K(R)}+2\left|f^{\prime}(0)\right| t^{2}}} \rightarrow \infty \quad \text { as } b \rightarrow 0^{+} .
$$

This is a contradiction since the left-hand side is bounded but the right-hand side is not. Thus we see that $u(r, b)>0$ if $b>0$ is sufficiently small.

Lemma 2.2. Let u satisfy (1.4)-(1.5) and suppose (H1)-(H5) hold. Then $\max _{[R, 2 R]} u(r, b) \rightarrow \infty$ as $b \rightarrow \infty$.

Proof. Multiplying (1.4) by r^{N-1} and integrating on (R, r) gives:

$$
\begin{equation*}
r^{N-1} u^{\prime}=R^{N-1} b-\int_{R}^{r} t^{N-1} K f(u) d t . \tag{2.7}
\end{equation*}
$$

Now if $u(r, b)$ is uniformly bounded from above on $[R, 2 R]$ for all sufficiently large $b>0$ then since f is continuous there exists $C_{1}>0$ such that $f(u(r, b)) \leq C_{1}$ on $[R, 2 R]$ for all sufficiently large $b>0$. Recalling (H5), that $\alpha>N>2$, and estimating in (2.7) we see that:

$$
\begin{equation*}
r^{N-1} u^{\prime} \geq R^{N-1} b-\frac{C_{1} d_{2} r^{N-\alpha}}{N-\alpha} \quad \text { on }[R, 2 R] . \tag{2.8}
\end{equation*}
$$

Dividing (2.8) by r^{N-1}, integrating on $[R, 2 R]$, and recalling $u(R, b)=0$ gives:

$$
u(2 R, b) \geq \frac{b R\left[1-(2)^{2-N}\right]}{N-2}-\frac{C_{1} d_{2} R^{2-\alpha}\left(1-2^{2-\alpha}\right)}{(\alpha-2)(N-\alpha)} \rightarrow \infty \quad \text { as } b \rightarrow \infty .
$$

Hence we obtain a contradiction since we assumed that $u(r, b)$ was uniformly bounded from above on $[R, 2 R]$. This completes the proof of the lemma.

Lemma 2.3. Let u satisfy (1.4)-(1.5) and suppose (H1)-(H5) hold. Then $u(r, b)$ has a local maximum on (R, ∞) if $b>0$ is sufficiently large.

Proof. We begin by making the following change of variables:

$$
\begin{equation*}
u(r, b)=w\left(r^{2-N}, b\right) \tag{2.9}
\end{equation*}
$$

Then it is straightforward to show using (1.4)-(1.5):

$$
\begin{align*}
& w^{\prime \prime}(t, b)+h(t) f(w(t, b))=0 \quad \text { for } 0<t<R^{2-N} \tag{2.10}\\
& w\left(R^{2-N}, b\right)=0, \quad w^{\prime}\left(R^{2-N}, b\right)=-\frac{b R^{N-1}}{N-2}<0 \tag{2.11}
\end{align*}
$$

where:

$$
\begin{equation*}
h(t)=t^{\frac{2(N-1)}{2-N}} K\left(t^{\frac{1}{2-N}}\right) . \tag{2.12}
\end{equation*}
$$

Since $T(r)=r^{2(N-1)} K(r)$ is increasing by (H5) we see that $h(t)=T\left(t^{\frac{1}{2-N}}\right)$ is decreasing since $N>2$. Thus:

$$
\begin{equation*}
h^{\prime}(t)<0 \text { on }\left(0, R^{2-N}\right] \text { and by (H5) } h(t) \sim \frac{1}{t^{q}} \text { for small positive } t \text { where } q=\frac{2(N-1)-\alpha}{N-2} . \tag{2.13}
\end{equation*}
$$

We note since $N<\alpha<2(N-1)$ it follows that $0<q<1$ and thus $h(t)$ is integrable on ($0, R^{2-N}$].

Suppose now that $u(r, b)$ does not have a local maximum on $[R, \infty)$ for sufficiently large b. Then $u^{\prime}(r, b)>0$ for $r \geq R$ and so we see that $\max _{[R, 2 R]} u(r, b)=u(2 R, b)=\min _{[2 R, \infty)} u(r, b)$. From this and Lemma 2.2 it follows that $\min _{[2 R, \infty)} u(r, b) \rightarrow \infty$ as $b \rightarrow \infty$ hence from (2.9) we see that:

$$
\begin{equation*}
\min _{\left(0,(2 R)^{2-N]}\right.} w(t, b) \rightarrow \infty \quad \text { as } b \rightarrow \infty . \tag{2.14}
\end{equation*}
$$

In addition, $u^{\prime}(r, b)>0$ on $[R, \infty)$ so from (2.9) we see $w^{\prime}(t, b)<0$ on $\left(0, R^{2-N}\right]$. Next we define:

$$
\begin{equation*}
C(b)=\frac{1}{2} \min _{\left(0,(2 R)^{2-N}\right]} h(t) \frac{f(w(t, b))}{w(t, b)} . \tag{2.15}
\end{equation*}
$$

It follows from (2.14) and (H2) that $\min _{\left(0,(2 R)^{2-N}\right]} \frac{f(w(t, b))}{w(t, b)} \rightarrow \infty$ as $b \rightarrow \infty$. In addition, since $h^{\prime}(t)<0$ on $\left(0, R^{2-N}\right]$ then we see:

$$
\begin{equation*}
C(b) \geq \frac{1}{2} h\left((2 R)^{2-N}\right) \min _{\left(0,(2 R)^{2-N}\right]} \frac{f(w(t, b))}{w(t, b)} \rightarrow \infty \text { as } b \rightarrow \infty . \tag{2.16}
\end{equation*}
$$

Now we let $y(t)$ be the solution of:

$$
\begin{equation*}
y^{\prime \prime}+C(b) y=0 \tag{2.17}
\end{equation*}
$$

such that:

$$
\begin{equation*}
y\left((2 R)^{2-N}\right)=w\left((2 R)^{2-N}, b\right)>0 \text { and } y^{\prime}\left((2 R)^{2-N}\right)=w^{\prime}\left((2 R)^{2-N}, b\right)<0 . \tag{2.18}
\end{equation*}
$$

Multiplying (2.17) by w, multiplying (2.10) by y, and subtracting gives:

$$
\begin{equation*}
\left(y w^{\prime}-w y^{\prime}\right)^{\prime}+\left(h(t) \frac{f(w)}{w}-C(b)\right) w y=0 \tag{2.19}
\end{equation*}
$$

Now it is well-known that the general nontrivial solution of equation (2.17) is $y(t)=$ $c_{1} \sin \left(\sqrt{C(b)}\left(t-c_{2}\right)\right)$ for some constants $c_{1} \neq 0$ and c_{2}. Thus any interval of length $\frac{\pi}{\sqrt{C(b)}}$ contains a zero of $y(t)$. Since $C(b) \rightarrow \infty$ as $b \rightarrow \infty$ (by (2.16)) it follows that if b is sufficiently large then $y(t)$ has a zero on $\left(\frac{1}{2}(2 R)^{2-N},(2 R)^{2-N}\right)$. In particular, since $y\left((2 R)^{2-N}\right)=$ $w\left((2 R)^{2-N}, b\right)>0$ and $y^{\prime}\left((2 R)^{2-N}\right)=w^{\prime}\left((2 R)^{2-N}, b\right)<0$ it follows that there is an m_{b} with $\frac{1}{2}(2 R)^{2-N}<m_{b}<(2 R)^{2-N}$ such that $y(t)$ has a local maximum at $m_{b}, y^{\prime}(t)<0$ on $\left(m_{b},(2 R)^{2-N}\right]$, and $y(t)>0$ on $\left(m_{b},(2 R)^{2-N}\right)$.

We claim now that $w(t, b)$ has a local maximum on $\left(\frac{1}{2}(2 R)^{2-N},(2 R)^{2-N}\right)$. So suppose by way of contradiction that this is not the case. Then $w^{\prime}(t, b)<0$ on $\left(\frac{1}{2}(2 R)^{2-N},(2 R)^{2-N}\right)$ and since $w\left((2 R)^{2-N}, b\right)>0$ then $w(t, b)>0$ on $\left(\frac{1}{2}(2 R)^{2-N},(2 R)^{2-N}\right)$. Next integrating (2.19) on $\left(m_{b},(2 R)^{2-N}\right)$ and using (2.18) gives:

$$
\begin{equation*}
-y\left(m_{b}\right) w^{\prime}\left(m_{b}, b\right)+\int_{m_{b}}^{(2 R)^{2-N}}\left(h(t) \frac{f(w)}{w}-C(b)\right) w y d t=0 \tag{2.20}
\end{equation*}
$$

By definition of $C(b)$ in (2.15) it follows that $h(t) \frac{f(w)}{w}-C(b)>0$ on $\left(m_{b},(2 R)^{2-N}\right)$. Also since $y>0$ and $w>0$ on $\left(m_{b},(2 R)^{2-N}\right)$, we see that the integral in (2.20) is positive. In addition, $y\left(m_{b}\right)>0$ thus we see from (2.20) that $w^{\prime}\left(m_{b}, b\right)>0$ but this contradicts our assumption that $w^{\prime}(t, b)<0$ on $\left(\frac{1}{2}(2 R)^{2-N},(2 R)^{2-N}\right)$. Thus $w(t, b)$ has a local maximum, Q_{b}, such that $Q_{b} \in\left(\frac{1}{2}(2 R)^{2-N},(2 R)^{2-N}\right)$ with $w^{\prime}(t, b)<0$ on $\left(Q_{b},(2 R)^{2-N}\right)$ and consequently by (2.9) it follows that $u(r, b)$ has a local maximum at $M_{b}=Q_{b}^{\frac{1}{2-N}} \in(R, \infty)$ and $u^{\prime}(r, b)>0$ on $\left[R, M_{b}\right)$ if $b>0$ is sufficiently large. This completes the proof.

Lemma 2.4. Let u satisfy (1.4)-(1.5) and suppose (H1)-(H5) hold. Then $\lim _{b \rightarrow \infty} u\left(M_{b}, b\right)=\infty$ and $\lim _{b \rightarrow \infty} M_{b}=R$.

Proof. Integrating (2.10) and using (2.11) on $\left(Q_{b}, R^{2-N}\right)$ gives:

$$
\begin{equation*}
\frac{b R^{N-1}}{N-2}+\int_{Q_{b}}^{R^{2-N}} h(t) f(w(t, b)) d t=0 . \tag{2.21}
\end{equation*}
$$

If the $u\left(M_{b}, b\right)$ are uniformly bounded by some constant C_{2} for all sufficiently large b then the same is true for $w\left(Q_{b}, b\right)$ and therefore $f(w(t, b))$ is uniformly bounded on $\left(Q_{b}, R^{2-N}\right) \subset$ $\left(0, R^{2-N}\right)$. Now recall from (2.13) that h is integrable on $\left(0, R^{2-N}\right)$. Thus the integral term in (2.21) is uniformly bounded whereas $\frac{b R^{N-1}}{N-2} \rightarrow \infty$ as $b \rightarrow \infty$ which contradicts (2.21). Thus we see that $u\left(M_{b}, b\right) \rightarrow \infty$ as $b \rightarrow \infty$. This completes the first part of the proof.

Next a straightforward computation using (2.10) shows:

$$
\begin{equation*}
\left(\frac{1}{2} \frac{w^{\prime 2}}{h(t)}+F(w)\right)^{\prime}=-\frac{w^{\prime 2} h^{\prime}}{h^{2}} \geq 0 \text { since } h^{\prime}(t)<0 \text { on }\left(0, R^{2-N}\right] . \tag{2.22}
\end{equation*}
$$

Therefore we have:

$$
\begin{equation*}
\frac{1}{2} \frac{w^{\prime 2}(t, b)}{h(t)}+F(w(t, b)) \geq F\left(w\left(Q_{b}, b\right)\right) \quad \text { for } Q_{b} \leq t \leq R^{2-N} \tag{2.23}
\end{equation*}
$$

After rewriting (2.23), recalling that $w^{\prime}<0$ on $\left(Q_{b}, R^{2-N}\right)$, and integrating on (Q_{b}, R^{2-N}) we obtain:

$$
\begin{align*}
\int_{0}^{w\left(Q_{b}, b\right)} \frac{d t}{\sqrt{2} \sqrt{F\left(w\left(Q_{b}, b\right)\right)-F(t)}} & =\int_{Q_{b}}^{R^{2-N}} \frac{\left|w^{\prime}(t, b)\right| d t}{\sqrt{2} \sqrt{F\left(w\left(Q_{b}, b\right)\right)-F(w(t, b))}} \\
& \geq \int_{Q_{b}}^{R^{2-N}} \sqrt{h(t)} d t . \tag{2.24}
\end{align*}
$$

Now we will show $\int_{0}^{w\left(Q_{b}, b\right)} \frac{d t}{\sqrt{2} \sqrt{F\left(w\left(Q_{b}, b\right)\right)-F(t)}} \rightarrow 0$ as $b \rightarrow \infty$. Proceeding as we did in [8] it follows from (H2) that $f(x) \geq \frac{1}{2} x^{p}$ for large x and thus for x sufficiently large we have $\min _{\left[\frac{1}{2} x, x\right]} f \geq \frac{1}{2^{p+1}} x^{p}$. Therefore since $p>1$ we see that:

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{x}{\min _{\left[\frac{1}{2} x, x\right]} f}=0 . \tag{2.25}
\end{equation*}
$$

In particular, since we saw $u\left(M_{b}, b\right) \rightarrow \infty$ as $b \rightarrow \infty$ from the first part of this proof it follows from (2.9) that $w\left(Q_{b}, b\right) \rightarrow \infty$ as $b \rightarrow \infty$ and:

$$
\begin{equation*}
\frac{w\left(Q_{b}, b\right)}{S_{b}} \rightarrow 0 \quad \text { as } b \rightarrow \infty \tag{2.26}
\end{equation*}
$$

where:

$$
\begin{equation*}
S_{b}=\min _{\left[\frac{1}{2} w\left(Q_{b}, b\right), w\left(Q_{b}, b\right)\right]} f . \tag{2.27}
\end{equation*}
$$

We now divide the domain of the integral on the left-hand side of (2.24) into ($\left.0, w\left(Q_{b}, b\right) / 2\right)$) and $\left(w\left(Q_{b}, b\right) / 2, w\left(Q_{b}, b\right)\right)$ and then show that each of these integrals goes to 0 as $b \rightarrow \infty$. First let $w\left(Q_{b}, b\right) / 2 \leq t \leq w\left(Q_{b}, b\right)$. By (2.27) and the mean value theorem there exists a C_{3} with $w\left(Q_{b}, b\right) / 2 \leq C_{3} \leq w\left(Q_{b}, b\right)$ such that:

$$
\begin{equation*}
F\left(w\left(Q_{b}, b\right)\right)-F(t)=f\left(C_{3}\right)\left(w\left(Q_{b}, b\right)-t\right) \geq S_{b}\left(w\left(Q_{b}, b\right)-t\right) . \tag{2.28}
\end{equation*}
$$

Hence by (2.26) and (2.28):

$$
\begin{align*}
& \int_{w\left(Q_{b}, b\right) / 2}^{w\left(Q_{b}, b\right)} \frac{d t}{\sqrt{2} \sqrt{F\left(w\left(Q_{b}, b\right)\right)-F(t)}} \\
& \quad \leq \int_{w\left(Q_{b}, b\right) / 2}^{w\left(Q_{b}, b\right)} \frac{d t}{\sqrt{2 S_{b}} \sqrt{w\left(Q_{b}, b\right)-t}}=\sqrt{\frac{w\left(Q_{b}, b\right)}{S_{b}}} \rightarrow 0 \quad \text { as } b \rightarrow \infty \tag{2.29}
\end{align*}
$$

Next when $0 \leq t \leq w\left(Q_{b}, b\right) / 2$ and b is sufficiently large we have $F(t) \leq F\left(w\left(Q_{b}, b\right) / 2\right)$. By (2.27) and the mean value theorem there exists a C_{4} with $w\left(Q_{b}, b\right) / 2 \leq C_{4} \leq w\left(Q_{b}, b\right)$ such that:

$$
\begin{align*}
F\left(w\left(Q_{b}, b\right)\right)-F(t) & \geq F\left(w\left(Q_{b}, b\right)\right)-F\left(w\left(Q_{b}, b\right) / 2\right)=f\left(C_{4}\right) w\left(Q_{b}, b\right) / 2 \\
& \geq S_{b} w\left(Q_{b}, b\right) / 2 \tag{2.30}
\end{align*}
$$

Thus by (2.26) and (2.30):

$$
\begin{align*}
\int_{0}^{w\left(Q_{b}, b\right) / 2} \frac{d t}{\sqrt{2} \sqrt{F\left(w\left(Q_{b}, b\right)\right)-F(t)}} & \leq \frac{w\left(Q_{b}, b\right) / 2}{\sqrt{2} \sqrt{F\left(w\left(Q_{b}, b\right)\right)-F\left(w\left(Q_{b}, b\right) / 2\right)}} \\
& \leq \frac{1}{2} \sqrt{\frac{w\left(Q_{b}, b\right)}{S_{b}}} \rightarrow 0 \quad \text { as } b \rightarrow \infty \tag{2.31}
\end{align*}
$$

Combining (2.29)-(2.31) we see that the left-hand side of (2.24) goes to 0 as $b \rightarrow \infty$. Thus the right-hand side of (2.24) must also go to zero and thus $Q_{b} \rightarrow R^{2-N}$ as $b \rightarrow \infty$. Since $Q_{b}=M_{b}^{2-N}$ (as we saw in Lemma 2.3 this implies $M_{b} \rightarrow R$ as $b \rightarrow \infty$. This completes the proof.

Lemma 2.5. Let u satisfy (1.4)-(1.5) and suppose (H1)-(H5) hold. If $b>0$ is sufficiently large then $u(r, b)$ has an arbitrarily large number of zeros for $r>R$.

Proof. Let:

$$
v_{\lambda}(r, b)=\lambda^{-\frac{2}{p-1}} u\left(M_{b}+\frac{r}{\lambda}, b\right)
$$

where:

$$
\lambda^{\frac{2}{p-1}}=u\left(M_{b}, b\right)
$$

and M_{b} is the local maximum that we have shown to exist by Lemma 2.4. Then:

$$
\begin{gathered}
v_{\lambda}^{\prime \prime}+\frac{N-1}{\lambda M_{b}+r} v_{\lambda}^{\prime}+\lambda^{\frac{-2 p}{p-1}} K\left(M_{b}+\frac{r}{\lambda}\right) f\left(\lambda^{\frac{2}{p-1}} v_{\lambda}\right)=0 \\
v_{\lambda}(0)=1, \quad v_{\lambda}^{\prime}(0)=0
\end{gathered}
$$

From Lemma 2.4 we see that as $b \rightarrow \infty$ then $\lambda^{\frac{2}{p-1}}=u\left(M_{b}, b\right) \rightarrow \infty$.
Now we let:

$$
\begin{equation*}
E_{\lambda}=\frac{1}{2} \frac{v_{\lambda}^{\prime 2}}{K\left(M_{b}+\frac{r}{\lambda}\right)}+\frac{F\left(\lambda^{\frac{2}{p-1}} v_{\lambda}\right)}{\lambda^{\frac{2(p+1)}{p-1}}} \tag{2.32}
\end{equation*}
$$

It is straightforward to show that:

$$
E_{\lambda}^{\prime}=\left(\frac{1}{2} \frac{v_{\lambda}^{\prime 2}}{K\left(M_{b}+\frac{r}{\lambda}\right)}+\frac{F\left(\lambda^{\frac{2}{p-1}} v_{\lambda}\right)}{\lambda^{\frac{2(p+1)}{p-1}}}\right)^{\prime} \leq 0 .
$$

Denoting $G(u)=\int_{0}^{u} g(u)$ then from (H2)-(H3) we see $F(u)=\frac{1}{p+1}|u|^{p+1}+G(u)$ where $\frac{G(u)}{|u|^{p+1}} \rightarrow 0$ as $|u| \rightarrow \infty$. Then for $r>0$:

$$
\begin{align*}
& \frac{1}{2} \frac{v_{\lambda}^{\prime 2}}{K\left(M_{b}+\frac{r}{\lambda}\right)}+\frac{1}{p+1}\left|v_{\lambda}\right|^{p+1}+\frac{G\left(\lambda^{\frac{2}{p-1}} v_{\lambda}\right)}{\lambda^{\frac{2(p+1)}{p-1}}}=\frac{1}{2} \frac{v_{\lambda}^{\prime 2}}{K\left(M_{b}+\frac{r}{\lambda}\right)}+\frac{F\left(\lambda^{\frac{2}{p-1}} v_{\lambda}\right)}{\lambda^{\frac{2(p+1)}{p-1}}} \tag{2.33}\\
& \quad=E_{\lambda}(r) \leq E_{\lambda}(0)=\frac{F\left(\lambda^{\frac{2}{p-1}}\right)}{\lambda^{\frac{2 p+1)}{p-1}}} \leq \frac{1}{p+1}+\frac{G\left(\lambda^{\frac{2}{p-1}}\right)}{\lambda^{\frac{2(p+1)}{p-1}}} . \tag{2.34}
\end{align*}
$$

Since $\frac{G(u)}{|u|^{p+1}} \rightarrow 0$ as $|u| \rightarrow \infty$ it follows that the right-hand side of (2.34) is bounded for large λ and also since $\frac{G(u)}{\mid u u^{p+1}} \rightarrow 0$ as $|u| \rightarrow \infty$ it follows that there is a constant G_{0} such that $|G(u)| \leq$ $\frac{1}{2(p+1)}|u|^{p+1}+G_{0}$ for all u. Therefore it follows from (2.33)-(2.34) that v_{λ} and v_{λ}^{\prime} are uniformly bounded and so by the Arzelà-Ascoli theorem there is a subsequence (again labeled v_{λ}) such that $v_{\lambda} \rightarrow v$ uniformly on compact subsets of $[0, \infty)$ where v satisfies:

$$
\begin{aligned}
v^{\prime \prime}+K(R)|v|^{p-1} v & =0 \\
v(0)=1, \quad v^{\prime}(0) & =0 .
\end{aligned}
$$

Now it is straightforward to show that v has an infinite number of zeros on $[0, \infty)$ and thus given n then v_{λ} has at least n zeros for large enough λ so that u has at least n zeros for large enough b. This completes the proof.

Lemma 2.6. Solutions of (2.10)-(2.11) with (H1)-(H5) depend continuously on the parameter b.
Proof. Let $a_{1}, a_{2} \in \mathbb{R}$ and suppose $a_{1} \leq a \leq a_{2}$. It is straightforward to show that if $w^{\prime \prime}+$ $h(t) f(w)=0$ on $\left(0, R_{0}\right)$ with $w\left(R_{0}\right)=0$ and $w^{\prime}\left(R_{0}\right)=a$ where $R_{0}>0$ then:

$$
\begin{equation*}
w(t)=a\left(R_{0}-t\right)-\int_{t}^{R_{0}} \int_{s}^{R_{0}} h(x) f(w(x)) d x d s \tag{2.35}
\end{equation*}
$$

It follows from (2.22) that:

$$
F(w(t)) \leq \frac{1}{2} \frac{w^{\prime 2}(t)}{h(t)}+F(w(t)) \leq \frac{1}{2} \frac{a^{2}}{h\left(R_{0}\right)} \quad \text { on }\left(t, R_{0}\right) .
$$

Since $F(w) \rightarrow \infty$ as $|w| \rightarrow \infty$ by (H2)-(H3) we see that there is a constant C_{5} such that $|w(t)| \leq C_{5}$ for all $t \in\left[0, R_{0}\right]$ and for all a where $a_{1} \leq a \leq a_{2}$. Therefore there is a constant C_{6} such that $|f(w(t))| \leq C_{6}$ for all $t \in\left[0, R_{0}\right]$ and for all a where $a_{1} \leq a \leq a_{2}$. Also since $h(t) \sim \frac{1}{t \emptyset}$ with $0<q<1$ (by (2.12)) there is a $C_{7}>0$ such that:

$$
\int_{s}^{R_{0}} h(x) d x \leq C_{7} \quad \text { for } 0 \leq s \leq R_{0} .
$$

Thus it follows from (2.35) and since h is decreasing that:

$$
\begin{aligned}
|w(t)| & \leq|a| R_{0}+\int_{t}^{R_{0}} \int_{s}^{R_{0}} h(x)|f(w(x))| d x d s \leq|a| R_{0}+\int_{t}^{R_{0}} h(s) d s \int_{t}^{R_{0}}|f(w(x))| d x \\
& \leq|a| R_{0}+\int_{t}^{R_{0}} C_{6} C_{7} \leq|a| R_{0}+C_{6} C_{7} R_{0} \leq\left(\left|a_{1}\right|+\left|a_{2}\right|+C_{6} C_{7}\right) R_{0} \quad \text { on }\left[0, R_{0}\right] .
\end{aligned}
$$

Thus for $B=\left(\left|a_{1}\right|+\left|a_{2}\right|+C_{6} C_{7}\right) R_{0}$ we see that $|w(t)| \leq B$ on $\left[0, R_{0}\right]$ for all a with $a_{1} \leq a \leq a_{2}$.

So now suppose w_{1} and w_{2} are solutions of (2.10) with $w_{1}\left(R_{0}\right)=w_{2}\left(R_{0}\right)=0, w_{1}^{\prime}\left(R_{0}\right)=a_{1}$, and $w_{2}^{\prime}\left(R_{0}\right)=a_{2}$. Then from (2.35):

$$
w_{1}(t)-w_{2}(t)=\left(a_{1}-a_{2}\right)\left(R_{0}-t\right)-\int_{t}^{R_{0}} \int_{s}^{R_{0}} h(x)\left[f\left(w_{1}\right)-f\left(w_{2}\right)\right] d x d s \quad \text { for } 0<t<R_{0}
$$

Since f is locally Lipschitz it follows that on $[0, B]$ there exists a $D>0$ such that $\left|f\left(w_{1}\right)-f\left(w_{2}\right)\right| \leq D\left|w_{1}-w_{2}\right|$ for all $w_{i} \in[0, B]$. Then since $h^{\prime}<0$:

$$
\begin{aligned}
\left|w_{1}(t)-w_{2}(t)\right| & \leq\left|\left(a_{1}-a_{2}\right)\left(R_{0}-t\right)\right|+D \int_{t}^{R_{0}} \int_{s}^{R_{0}} h(x)\left|w_{1}(x)-w_{2}(x)\right| d x d s \\
& \leq\left|\left(a_{1}-a_{2}\right)\left(R_{0}-t\right)\right|+D \int_{t}^{R_{0}} h(s) d s \int_{t}^{R_{0}}\left|w_{1}(x)-w_{2}(x)\right| d x
\end{aligned}
$$

Then for $C_{10}=C_{7} D$ we obtain:

$$
\left|w_{1}(t)-w_{2}(t)\right| \leq\left|a_{1}-a_{2}\right| R_{0}+C_{10} \int_{t}^{R_{0}}\left|w_{1}(x)-w_{2}(x)\right| d x \quad \text { on }\left[0, R_{0}\right]
$$

Then from the usual Gronwall inequality [4] we obtain:

$$
\left|w_{1}(t)-w_{2}(t)\right| \leq\left|a_{1}-a_{2}\right| R_{0} e^{C_{10} R_{0}} \quad \text { on }\left[0, R_{0}\right] .
$$

Thus we obtain continuous dependence on $\left[0, R_{0}\right]$. Thus if a_{1} is sufficiently close to a_{2} then w_{1} is close to w_{2} on all on $\left[0, R_{0}\right]$.

Lemma 2.7. Suppose (H1)-(H5) hold. If $u\left(r, b_{n}\right)$ is a solution of (1.4)-(1.5) that has n zeros on (R, ∞) and $\lim _{r \rightarrow \infty} u\left(r, b_{n}\right)=0$ then if b is sufficiently close to b_{n} then $u(r, b)$ has at most $n+1$ zeros on (R, ∞).
Proof. We do the proof in the case $n=0$. The proof for the other cases is similar. Suppose $u\left(r, b_{0}\right) \rightarrow 0$ as $r \rightarrow \infty$ and $u\left(r, b_{0}\right)$ is a positive solution of (1.4)-(1.5). Suppose now that b is close to b_{0} and $u(r, b)$ has a first zero, $z_{b}>R$. We want to show that there is not a second zero $z_{2, b}>z_{b}$. So suppose there is. Then there is a local minimum, m_{b}, such that $z_{b}<m_{b}<z_{2, b}$ such that $u^{\prime} \leq 0$ on $\left(z_{b}, m_{b}\right)$ and since $E^{\prime} \leq 0$ then $F\left(u\left(m_{b}, b\right)\right)=E\left(m_{b}\right) \geq E\left(z_{2, b}\right) \geq 0$ so that $u\left(m_{b}, b\right) \leq-\gamma$. Then there is a p_{b} and q_{b} with $z_{b}<p_{b}<q_{b}<m_{b}<z_{2, b}$ such that $u\left(p_{b}, b\right)=-\frac{3 \beta+\gamma}{4}$ and $u\left(q_{b}, b\right)=-\frac{\beta+\gamma}{2}$. Returning to (2.4), integrating on $\left[p_{b}, q_{b}\right]$ where $u^{\prime}<0$ and recalling that F is even gives:

$$
\begin{align*}
\int_{\frac{3 \beta+\gamma}{4}}^{\frac{\beta+\gamma}{2}} \frac{d t}{\sqrt{\frac{b^{2}}{K(R)}-2 F(t)}} & =\int_{p_{b}}^{q_{b}} \frac{-u^{\prime}(r, b) d r}{\sqrt{\frac{b^{2}}{K(R)}-2 F(u(r, b))}} \leq \int_{p_{b}}^{q_{b}} \sqrt{d_{2}} r^{-\frac{\alpha}{2}} \\
& =\frac{\sqrt{d_{2}}\left(p_{b}^{1-\frac{\alpha}{2}}-q_{b}^{1-\frac{\alpha}{2}}\right)}{\frac{\alpha}{2}-1} \tag{2.36}
\end{align*}
$$

Now as $b \rightarrow b_{0}^{+}$then $z_{b} \rightarrow \infty$ (otherwise a subsequence of z_{b} would converge to some z and $u\left(z, b_{0}\right)=0$ but we know that $u\left(r, b_{0}\right)>0$) and thus $p_{b} \rightarrow \infty$ and $q_{b} \rightarrow \infty$. Therefore the right-hand side of (2.36) goes to 0 as $b \rightarrow b_{0}^{+}$since $\alpha>2$ but the left-hand side goes to the positive constant

$$
\int_{\frac{3 \beta+\gamma}{4}}^{\frac{\beta+\gamma}{2}} \frac{d t}{\sqrt{\frac{b_{0}^{2}}{K(R)}-2 F(t)}}>0 .
$$

Thus we obtain a contradiction so no such $z_{2, b}$ exists. This completes the proof.

3 Proof of Theorem 1.1

By Lemma 2.1 we see that $\{b>0 \mid u(r, b)>0$ for all $r>R\}$ is nonempty and by Lemma 2.5 this set is bounded from above so we define:

$$
0<b_{0}=\sup \{b>0 \mid u(r, b)>0 \text { for all } r>R\}
$$

It follows that $u\left(r, b_{0}\right)>0$ for $r>R$ because if there were a smallest $z>R$ such that $u\left(z, b_{0}\right)=$ 0 then it follows by uniqueness of solutions of initial value problems that $u^{\prime}\left(z, b_{0}\right)<0$ and so $u\left(r, b_{0}\right)<0$ for r slightly larger than z. Then by continuous dependence of solutions on initial conditions, it follows that $u(r, b)$ would get negative for r near z and for slightly smaller $b<b_{0}$ contradicting the definition of b_{0}. Thus $u\left(r, b_{0}\right)>0$ on (R, ∞).

Next we claim $E\left(r, b_{0}\right) \geq 0$ for $r \geq R$. If not then there is an $r_{0}>R$ such that $E\left(r_{0}, b_{0}\right)<0$. Then by continuous dependence on initial conditions it follows that $E\left(r_{0}, b\right)<0$ for b slightly larger than b_{0}. In addition for $b>b_{0}$ then $u(r, b)$ must have a zero so there exists z_{b} such that $u\left(z_{b}, b\right)=0$. It follows that $E\left(z_{b}, b\right) \geq 0$. Since E is nonincreasing we have $E\left(r_{0}, b\right)<0 \leq$ $E\left(z_{b}, b\right)$ so it then follows that $z_{b}<r_{0}$. Thus a subsequence of the z_{b} converges to some z as $b \rightarrow b_{0}$ and since $u(r, b) \rightarrow u\left(r, b_{0}\right)$ uniformly on the compact set $\left[R, r_{0}+1\right]$ it follows that $u\left(z, b_{0}\right)=0$. However, we proved earlier that $u\left(r, b_{0}\right)>0$ and so we obtain a contradiction. Thus it must be that $E\left(r, b_{0}\right) \geq 0$ for all $r \geq R$.

Next we show that $u\left(r, b_{0}\right)$ has a local maximum. So we suppose not. Then $u\left(r, b_{0}\right)$ is increasing for $r \geq R$. Since $F(u(r, b)) \leq \frac{1}{2} \frac{b^{2}}{K(R)}$ it follows that $u(r, b)$ is bounded so then there is an L such that $u\left(r, b_{0}\right) \rightarrow L$ as $r \rightarrow \infty$. Now for $b>b_{0}$ we see that $u(r, b)$ must have a zero, z_{b}, and hence a local maximum, M_{b}, with $R<M_{b}<z_{b}$. Since $E^{\prime} \leq 0$ we have:

$$
\begin{equation*}
0 \leq E\left(z_{b}, b\right) \leq \frac{1}{2} \frac{u^{\prime 2}(r, b)}{K(r)}+F(u(r, b))=E(r) \leq E\left(M_{b}, b\right)=F\left(u\left(M_{b}, b\right)\right) \text { for } M_{b} \leq r \leq z_{b} \tag{3.1}
\end{equation*}
$$

Thus $u\left(M_{b}, b\right) \geq \gamma$ and now rewriting (3.1), using (H5), and integrating on $\left(M_{b}, z_{b}\right)$ we get:

$$
\begin{align*}
& \int_{0}^{\gamma} \frac{d t}{\sqrt{2} \sqrt{F\left(u\left(M_{b}, b\right)\right)-F(t)}} \\
& \leq \int_{0}^{u\left(M_{b}, b\right)} \frac{d t}{\sqrt{2} \sqrt{F\left(u\left(M_{b}, b\right)\right)-F(t)}}=\int_{M_{b}}^{z_{b}} \frac{\left|u^{\prime}(r, b)\right| d r}{\sqrt{2} \sqrt{F\left(u\left(M_{b}, b\right)\right)-F(u(r, b))}} \tag{3.2}\\
& \quad \leq \int_{M_{b}}^{z_{b}} \sqrt{K(r)} d r \leq \int_{M_{b}}^{z_{b}} \sqrt{d_{2}} r^{-\frac{\alpha}{2}} d r=\sqrt{d_{2}}\left(\frac{z_{b}^{1-\frac{\alpha}{2}}-M_{b}^{1-\frac{\alpha}{2}}}{\frac{\alpha}{2}-1}\right) \tag{3.3}
\end{align*}
$$

Now if $M_{b} \rightarrow \infty$ then since $M_{b}<z_{b}$ then also $z_{b} \rightarrow \infty$ and since $\alpha>2$ the right-hand side of (3.3) goes to 0 as $b \rightarrow \infty$.

On the left-hand side we know that the $u\left(M_{b}, b\right)$ are bounded for b near b_{0} because $F\left(u\left(M_{b}, b\right)\right) \leq \frac{1}{2} \frac{b^{2}}{K(R)} \leq \frac{1}{2} \frac{\left(b_{0}+1\right)^{2}}{K(R)}=C_{12}$ for all b near b_{0}. Also from (H3) it follows that there is an $F_{0}>0$ such that $F(u) \geq-F_{0}$ for all u. Thus $F\left(u\left(M_{b}, b\right)\right)-F(t) \leq C_{12}+F_{0}$. This implies the left-hand side (3.2) is bounded from below by a positive constant contradicting that the right-hand side of (3.3) goes to 0 . Thus it must be that the M_{b} are uniformly bounded. Hence a subsequence of them converges to some $M_{b_{0}}$ as $b \rightarrow b_{0}$ and since $u(r, b) \rightarrow u\left(r, b_{0}\right)$ uniformly on $\left[R, M_{b_{0}}+1\right]$ it follows that $u\left(r, b_{0}\right)$ has a local maximum at $M_{b_{0}}$.

Next since $E\left(r, b_{0}\right) \geq 0$ it follows that $u\left(r, b_{0}\right)$ cannot have a positive local minimum $m_{b_{0}}>M_{b_{0}}$ for at such an $m_{b_{0}}$ we would have $F\left(u\left(m_{b_{0}}, b_{0}\right)\right)=E\left(m_{b_{0}}, b_{0}\right) \geq 0$ implying that $u\left(m_{b_{0}}, b_{0}\right) \geq \gamma$. On the other hand, since $m_{b_{0}}$ is a local minimum then $u^{\prime}\left(m_{b_{0}}, b_{0}\right)=0$ and
$u^{\prime \prime}\left(m_{b_{0}}, b_{0}\right) \geq 0$. Thus $f\left(u\left(m_{b_{0}}, b_{0}\right)\right) \leq 0$ which implies $0<u\left(m_{b_{0}}, b_{0}\right) \leq \beta$ which contradicts that $u\left(m_{b_{0}}, b_{0}\right) \geq \gamma$. Thus $u^{\prime}\left(r, b_{0}\right) \leq 0$ for $r>M_{b_{0}}$ and so there exists an $L \geq 0$ such that $\lim _{r \rightarrow \infty} u\left(r, b_{0}\right)=L \geq 0$.

From Lemma 2.6 it follows that $w(t, b) \rightarrow w\left(t, b_{0}\right)$ uniformly on $\left[0, R^{2-N}\right]$. In addition, for $b>b_{0}$ then $w(t, b)$ has a zero, $Z_{b} \in\left[0, R^{2-N}\right]$. Thus the Z_{b} are bounded and so a subsequence of them converges with $Z_{b} \rightarrow Z \geq 0$ as $b \rightarrow b_{0}$. In fact $Z=0$. If not a subsequence converges to a $Z>0$ and $0=w\left(Z_{b}, b\right) \rightarrow w\left(Z, b_{0}\right)$ by Lemma 2.6 but we showed $w\left(t, b_{0}\right)>0$ on $\left(0, R^{2-N}\right)$ earlier in the proof. Thus $Z=0$ and therefore we see by Lemma 2.6 that $0=w\left(Z_{b}, b\right) \rightarrow w\left(0, b_{0}\right)$ hence $w\left(0, b_{0}\right)=0$. Since w is continuous then:

$$
\lim _{t \rightarrow 0^{+}} w\left(t, b_{0}\right)=0 .
$$

Hence it follows from (2.9) that:

$$
\lim _{r \rightarrow \infty} u\left(r, b_{0}\right)=0 .
$$

Thus we have a positive solution of (1.4)-(1.5) such that $\lim _{r \rightarrow \infty} u\left(r, b_{0}\right)=0$.
Next by Lemma 2.7 it follows that

$$
\{b>0 \mid u(r, b) \text { has exactly one zero for } r>R\}
$$

is nonempty and by Lemma 2.5 this set is bounded above. So we let:

$$
b_{1}=\{b>0 \mid u(r, b) \text { has exactly one zero for } r>R\} .
$$

Then as we did above it is possible to show $u\left(r, b_{1}\right)$ is a solution of (1.4)-(1.5) which has exactly one zero for $r>R$ and:

$$
\lim _{r \rightarrow \infty} u\left(r, b_{1}\right)=0 .
$$

Similarly for any nonnegative integer n there is a $b_{n}>b_{n-1}$ such that $u\left(r, b_{n}\right)$ is a solution which has exactly n zeros for $r>R$ and:

$$
\lim _{r \rightarrow \infty} u\left(r, b_{n}\right)=0 .
$$

This completes the proof of Theorem 1.1.

References

[1] H. Berestycki, P. L. Lions, Nonlinear scalar field equations. I, Arch. Rational Mech. Anal. 82(1983), 313-345. MR695535; url
[2] H. Berestycki, P. L. Lions, Nonlinear scalar field equations. II, Arch. Rational Mech. Anal. 82(1983), 347-375. MR695536; url
[3] M. S. Berger, Nonlinearity and functional analysis, Academic Free Press, New York, 1977. MR0488101
[4] G. Birkноғf, G. C. Rota, Ordinary differential equations, Ginn and Company, 1962. MR0138810
[5] R. Dhanya, Q. Morris, R. Shivaji, Existence of positive radial solutions for superlinear, semipositone problems on the exterior of a ball, J. Math. Anal. Appl. 434(2016), No. 2, 1533-1548. MR3415737; url
[6] J. Iaia, H. Warchall, F. B. Weissler, Localized solutions of sublinear elliptic equations: loitering at the hilltop, Rocky Mountain J. Math. 27(1997), No. 4, 1131-1157. MR1627682; url
[7] J. Iaia, Localized solutions of elliptic equations: loitering at the hilltop, Electron. J. Qual. Theory Differ. Equ. 2006, No. 12, 1-15. MR2240714; url
[8] J. IAIA, Existence of solutions of semilinear problems with prescribed number of zeros on exterior domains, J. Math. Anal. Appl. 446(2017), No. 1, 591-604. url
[9] C. K. R. T. Jones, T. Kupper, On the infinitely many solutions of a semilinear elliptic equation, SIAM J. Math. Anal. 17(1986), 803-835. MR846391; url
[10] E. Lee, L. Sankar, R. Shivaji, Positive solutions for infinite semipositone problems on exterior domains, Differential Integral Equations, 24(2011), No. 9-10, 861-875. MR2850369
[11] K. McLeod, W. C. Trox, F. B. Weissler, Radial solutions of $\Delta u+f(u)=0$ with prescribed numbers of zeros, J. Differential Equations 83(1990), No. 2, 368-373. MR1033193; url
[12] L. Sankar, S. Sasi, R. Shivaji, Semipositone problems with falling zeros on exterior domains, J. Math. Anal. Appl. 401(2013), No. 1, 146-153. MR3011255; url
[13] W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55(1977), 149-162. MR0454365

[^0]: ${ }^{\boxtimes}$ Email: iaia@unt.edu

