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Abstract. In this paper we study radial solutions of Au + K(r)f(u) = 0 on the exterior
of the ball of radius R > 0 centered at the origin in RN where f is odd with f < 0 on
(0,B), f > 0on (B,), and f superlinear. The function K(r) is assumed to be positive
and K(r) — 0 as r — oo. We prove existence of an infinite number of radial solutions
with 4 — 0 as r — oo when K(r) ~ r * with N < a < 2(N —1).
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1 Introduction

In this paper we study radial solutions of:

Au+K(r)f(u) =0 inQ, (1.1)
u=0 onodQ), (1.2)
u—0 as|x| = o0 (1.3)

where x € Q = RN\ Bg(0) is the complement of the ball of radius R > 0 centered at the
origin.
Since we are interested in radial solutions of (1.1)—(1.3) we assume that u(x) = u(|x|) =

u(r) where x € RN and r = |x|=(/x2 + - - - + x%; so that u solves:

N-1

/!
u"(r) + .

u'(r) + K(r)f(u(r)) =0 on (R,o0), where R >0, (1.4)
u(R) =0, u'(R) =b>0. (1.5)
Throughout this paper we denote ’ as differentiation with respect to r.

We make the following assumptions on f and K. Let f be odd and locally Lipschitz with:

f(0) <0, 38> 0s.t. f(u) <0on (0,8) and f(u) > 0 on (B, o). (H1)
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In addition, let:

f(u) = |u|P"'u+ g(u), where p >1and lim Ol 0. (H2)

jul—eo [u|?

Denoting F(u) = [, f(s) ds we assume:

dy>0with0< B <yst. F<0on (0,7)and F > 0 on (7,0). (H3)

Further we also assume K and K’ are continuous on [R, c0) and:

/

K(r) >0, 3w € (0,2(N —1)) s.t. lim % = —w and (H4)

r—00

!/
3 positive d1,dy s.t. 2(N—1) + % >0, dir* <K(r) <dpr™* forr>R. (H5)

Theorem 1.1. Let N > 2 and N < a < 2(N — 1). Assuming (H1)-(H5) then for every nonnegative
integer n there exists a solution, u,, of (1.4)—(1.5) such that lim,_,c u,,(r) = 0 and u, has n zeros on
(R, 00).

Note: The model case for this theorem is f(u) = |u|P~'u —u for p > 1 (and thus F(u) =
ﬁ\u“’“ — %uz) and K(r) = r*“with N < a <2(N —1).
Note: when Q = RN, K(r) = 1, and f grows superlinearly at infinity — i.e. lim,_,c @ =
oo, then the problem (1.1), (1.3) has been extensively studied [1-3,9,11,13].

Interest in the topic for this paper comes from recent papers [5,10,12] about solutions of
semilinear equations on exterior domains. In [5] the authors use variational methods to prove
the existence of a positive solution. In this paper we examine a similar differential equation
and use ordinary differential equation methods to prove the existence of an infinite number
of solutions — one with n zeros for each nonnegative integer n.

In [8] we studied (1.1)—=(1.3) under the assumptions (H1)-(H5) with K(r) ~ r~* where
0 <a < Nand Q = RN\ Br(0) and (H1)-(H5). In that paper we proved existence of an
infinite number of solutions — one with exactly n zeros for each nonnegative integer n such
that u — 0 as |x| — oo. In earlier papers [6,7] we have also studied (1.1), (1.3) when Q) = RN
and K(r) =1 where fisodd, f <0on (0,8), f >0o0n (B,4), and f =0 on (J,0).

2 Preliminaries

For R > 0 existence of solutions of (1.4)—(1.5) on a small interval [R,R + €) with € > 0 and
continuous dependence of solutions with respect to b follows from the standard existence-
uniqueness-continuous dependence theorem of ordinary differential equations [4].

Recall that K(r) > 0, K(r) is differentiable, and that N > 2. We define the “energy” of a
solution of (1.4) as follows:

1u"?(r,b)

Er ) =3 7%

+F(u(r,b)) @1)



Existence for semilinear equations on exterior domains 3

where u solves (1.4)—(1.5). Then it is straightforward to show:

ey — W2 (K )M g
E'(r,b) = 2rK<K F2AN 1)) =~ (r K) (2.2)

Thus we see that E(r,b) is non-increasing precisely when r2N~1VK is non-decreasing. In
particular, if K(r) = cor~* with ¢g > 0 and & > 0 then we see E’ < 0 if and only if « < 2(N —1).

Lemma 2.1. Let u satisfy (1.4)—(1.5) and suppose (H1)—(H5) hold. If b > 0 and b is sufficiently small
then u(r,b) > 0 forall v > R.

Proof. The proof of this lemma is similar to the one we used in [8]. First, we see that if
u'(r,b) > 0 for r > R then u(r,b) > 0 for r > R and so we are done in this case. Otherwise,
u(r,b) has a first local maximum, M, with u/(r,b) > 0 on [R, M}). Thus u'(M;,b) = 0 and
u"(My,b) < 0. In fact, u”" (M, b) < 0 for if u”(M,,b) = 0 then by uniqueness of solutions of
initial value problems this would imply that u(r,b) is constant contradicting that u’'(R,b) =
b > 0. It then follows that f(u(Mjy,b)) > 0 and therefore u(M;,b) > B. So there is an r, with
R < r, < M, such that u(r,, b) = B. Next we note that since N < &« < 2(N —1) then E' <0
thus:

1u(r,b) 1 b
- = < == > R. .
2 K(r) + F(u(r,b)) = E(r,b) < E(R,D) 3K(R) forr > R (2.3)
After rewriting (2.3) and using (H5) we obtain:
(1, b)|
< VK< \/dyr 2 forr>R. (2.4)

V" — 2F(u(r,b))

Integrating (2.4) on (R, ;) where u’ > 0 and using (H5) as well as « > 2 gives:

(r,b)dr

/\/W /\/b2 — 2F(u(r, b))

Thus:

P Vv x
JA—— Y (2.5)
0

Next we observe by (H1) and the definition of F that there is a ty > 0 such that:

B ey < B o2 for o 2.6
X® (t) < K(R)+|f()|t or0<t<ty<p (2.6)

and therefore combining (2.5)—(2.6) gives:

- Rl—* / \/7 / \/ b2 +2|f/ )2

This is a contradiction since the left-hand side is bounded but the right-hand side is not.
Thus we see that u(r,b) > 0if b > 0 is sufficiently small. O

—~o00 asb—0".
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Lemma 2.2. Let u satisfy (1.4)~(1.5) and suppose (H1)~(H5) hold. Then maxg o) u(r,b) — oo as
b — oo.

Proof. Multiplying (1.4) by rN~! and integrating on (R, ) gives:
PNy — RN—1b—/ NIKF (u) dt. 2.7)
R

Now if u(r,b) is uniformly bounded from above on [R, 2R] for all sufficiently large b > 0 then
since f is continuous there exists C; > 0 such that f(u(r,b)) < C; on [R,2R] for all sufficiently
large b > 0. Recalling (H5), that « > N > 2, and estimating in (2.7) we see that:

Clder_'X

N—1,, N-1
r u >R b—
- N —«u

on [R,2R]. (2.8)

Dividing (2.8) by V™!, integrating on [R,2R], and recalling u(R,b) = 0 gives:

bR[1— (2)*>N]  CidpR* (1 —227%)

H2R/b) = =g (@ —2)(N —a)

— 00 asb — co.

Hence we obtain a contradiction since we assumed that u(r,b) was uniformly bounded from
above on [R,2R]. This completes the proof of the lemma. O

Lemma 2.3. Let u satisfy (1.4)—(1.5) and suppose (H1)—(H5) hold. Then u(r,b) has a local maximum
on (R, o) if b > 0 is sufficiently large.

Proof. We begin by making the following change of variables:
u(r,b) = w(r*N,b). (2.9)

Then it is straightforward to show using (1.4)-(1.5):

w"(t,b) + h(t)f(w(t,b)) =0 for0 <t < R*N, (2.10)
bRN—l
w(R*¥N,b) =0, @' (R*N,b)=— <0 (2.11)
N-2
where: - :
h(t) =t =~ K(t=N). (2.12)

Since T(r) = r*W-VK(r) is increasing by (H5) we see that h(t) = T(tﬁ) is decreasing since

N > 2. Thus:

W (t) < 0on (0,R*N] and by (H5) h(t) ~ th for small positive t where g = Z(NI\I_E%_“. (2.13)
We note since N < a < 2(N —1) it follows that 0 < g < 1 and thus h(t) is integrable on
(0, R2~N].

Suppose now that u(r, b) does not have a local maximum on [R, o0) for sufficiently large b.
Then u/(r,b) > 0 for r > R and so we see that maxg,z) #(7,b) = u(2R,b) = minpg .y u(r, b).
From this and Lemma 2.2 it follows that minpp «) %(r,b) — c0 as b — oo hence from (2.9) we
see that:

min  w(t,b) - co asb — co. (2.14)
(0,(2R)>~N]
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In addition, #/(r,b) > 0 on [R,o0) so from (2.9) we see w'(t,b) < 0 on (0, R>~N]. Next we
define:

min h(t)f(w(tt'b)) (2.15)

1
c) = 2 (0,2R)2N] w(t,b)

It follows from (2.14) and (H2) that ( (mi)r21 . f (;”((tti)b))) — o0 as b — co. In addition, since
0,(2R)2~ ’

W (t) < 0 on (0, R>~N] then we see:

—_

C(b) > gh(2RP™N)  min fm yooasb - oo (2.16)

N

Now we let y(t) be the solution of:
y'+Cbyy=0 (2.17)
such that:
y((2R)>™N) = w((2R)>"N,b) > 0 and y'((2R)>*™N) = w'((2R)*N,b) < 0. (2.18)

Multiplying (2.17) by w, multiplying (2.10) by y, and subtracting gives:
(yw' —wy') + (h(t)f(ww) - C(b)> wy = 0. (2.19)

Now it is well-known that the general nontrivial solution of equation (2.17) is y(t ) =
c1 sin.( C(b)(t —c2)) @
contains a zero of y(t). Since C(b) — o0 as b — oo (by (2.16)) it follows that if b is suffi-
ciently large then y(t) has a zero on (3(2R)?~N, (2R)?>~N). In particular, since y((2R)>"N) =
w((2R)?>"N,b) > 0 and y'((2R)*>"N) = w'((2R)>7N,b) < 0 it follows that there is an m,
with 1(2R)>™N < m;, < (2R)?>7N such that y(t) has a local maximum at m;, y'(f) < 0 on
(my, (2R)?>~N], and y(t) > 0 on (my, (2R)?>~N).

We claim now that w(t,b) has a local maximum on (3(2R)27N, (2R)?~N). So suppose by
way of contradiction that this is not the case. Then w'(t,b) < 0 on (3(2R)>"V, (2R)*>"N) and
since w((2R)*"N,b) > 0 then w(t,b) > 0 on (3(2R)*"N, (2R)*"V). Next integrating (2.19) on
(my, (2R)?>~N) and using (2.18) gives:

(2R)27N
— y(myp)w' (my, b) —|—/ <h(t)f(w) — C(b)) wy dt = 0. (2.20)
my,
By definition of C(b) in (2.15) it follows that h(t)Luz)”) — C(b) > 0 on (my, (2R)>~N). Also since
y > 0and w > 0 on (my, (2R)?>~N), we see that the integral in (2.20) is positive. In addition,
y(mp) > 0 thus we see from (2.20) that w’(my;, b) > 0 but this contradicts our assumption
that w'(t,b) < 0 on (3(2R)*"N, (2R)*"N). Thus w(t,b) has a local maximum, Qy, such that
Qy € (3(2R)>7N, (2R)>"N) with w/(t,b) < 0 on (Qp, (2R)?>N) and consequently by (2.9) it
1

follows that u(r, b) has a local maximum at M, = Q; " € (R, ) and u'(r,b) > 0 on [R, M)
if b > 0 is sufficiently large. This completes the proof. O

Lemma 2.4. Let u satisfy (1.4)—(1.5) and suppose (H1)—(H5) hold. Then limy, o, u(My, b) = co and
limbﬁoo Mb =R
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Proof. Integrating (2.10) and using (2.11) on (Qp, R*~N) gives:

R2—N

N-1
l;\lf_z + /Q h(t) f(w(t, b)) dt = 0. 2.21)

If the u(M,,b) are uniformly bounded by some constant C; for all sufficiently large b then
the same is true for w(Qy, b) and therefore f(w(t,b)) is uniformly bounded on (Qy, RZN) C
(0, R>~N). Now recall from (2.13) that & is integrable on (0, R>~N). Thus the integral term in
(2.21) is uniformly bounded whereas bﬁi? — o0 as b — oo which contradicts (2.21). Thus we

see that u(M,,b) — oo as b — oo. This completes the first part of the proof.

Next a straightforward computation using (2.10) shows:

1 wlZ ! wlzh/ ’ 2N
- = — > i . .
<2h(t) +P(w)> P > 0 since 1'(t) < 0on (0,R“™"] (2.22)
Therefore we have:

1w?(t,b)
2 h(t)

+ F(w(t, b)) > F(w(Qp,b)) for Q, <t < R*N, (2.23)

After rewriting (2.23), recalling that w’ < 0 on (Qp, R>~N), and integrating on (Qp, R>~V) we
obtain:

/ (Qu/b) dt /RZ N W' (t, b)|dt
0 V2/F(w(Qy, b) V2y/F(w(Qp, b)) — F(w(t,b))

h(t) dt. (2.24)

Qub) dt — 0 as b — oo. Proceeding as we did in [8]

V2y/F(w(Qyb)~E(t)
it follows from (H2) that f(x) > JxP for large x and thus for x sufficiently large we have
miny, ) f > 5-7XF. Therefore since p > 1 we see that:

Now we will show fow(

X

In particular, since we saw u(M,, b) — o0 as b — oo from the first part of this proof it follows
from (2.9) that w(Qy,b) — o0 as b — oo and:

w(Qb/ b)

—0 asb— o0 (2.26)
Sp

where:
Sy = min f. (2.27)
[zw(Qb b),w(Qp,b)]
We now divide the domain of the integral on the left-hand side of (2.24) into (0, w(Qy, b)/2))
and (w(Qp,b)/2,w(Qp, b)) and then show that each of these integrals goes to 0 as b — 0.
First let w(Qp, b)/2 < t < w(Qp, b). By (2.27) and the mean value theorem there exists a C3
with w(Qyp, b)/2 < C3 < w(Qp, b) such that:

F(w(Qyp, b)) — F(t) = f(C3)(w(Qyp, b) —t) = Sy (w(Qp,b) —t). (2.28)
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Hence by (2.26) and (2.28):

/ w(Qpb) dt
Qb /2 \/>\/F Qb/ (t)
w(Qp,b)
<[ dt _ QD) L ash e (229)

w(Qp,b)/2 \/2Sb\/w(Qb,b) —t Sp

Next when 0 < t < w(Qy,b)/2 and b is sufficiently large we have F( ) < ( (Qp,b)/2). By
(2.27) and the mean value theorem there exists a C4 with w(Qy,b)/2 < Cy4 < w(Qy,b) such
that:

F(w(Qp, b)) — F(t) > F(w(Qp, b)) — F(w(Qyp,b)/2) = f(Cs)w(Qs, b)/2

> Spw(Qp, b) /2. (2.30)
Thus by (2.26) and (2.30):
/ (Qub)/2 dt (Qbr )
0 V2/F(w(Qs, b) \[\/F w(Qp, b)) — F(w(Qp, b)/2)
< % w(%:,) —0 asb — oo. (2.31)

Combining (2.29)-(2.31) we see that the left-hand side of (2.24) goes to 0 as b — oo. Thus
the right-hand side of (2.24) must also go to zero and thus Q, — R?>N as b — oo. Since
Qy = M}~V (as we saw in Lemma 2.3 this implies M, — R as b — co. This completes the
proof. O

Lemma 2.5. Let u satisfy (1.4)—(1.5) and suppose (H1)—(H5) hold. If b > 0 is sufficiently large then
u(r,b) has an arbitrarily large number of zeros for r > R.

Proof. Let:

vp(r,b) = A_%u(Mb 41

At

where: ,

AP = u(My,b)

and M, is the local maximum that we have shown to exist by Lemma 2.4. Then:

N-1 2
2 p—1 -1 =
v +/\Mb UA—FA K(Mb+/\>f(/\ﬁ v)) =0,

From Lemma 2.4 we see that as b — co then A7T = u(Mp,b) — oo.
Now we let:

E, =

1
= : 2.32
2K(My+ %) T (2:32)

It is straightforward to show that:
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Denoting G(u) = [, ¢(u) then from (H2)-(H3) we see F(u) = ﬁ\u“’“ + G(u) where
S 0 as ]u\ — o0. Then for r > 0:
JulPt
1o 0,741 GA7Toy) 1 o? . F(APToy) 233)
2K(My+5) " p+1? N T 2K(My+ %) TR '
2 2
= =y
_E() <Ey0) = TWTD) o 1 G (2.34)

e E SR

p—1

Since S — 0 as || — oo it follows that the right-hand side of (2.34) is bounded for large A

‘ |p+1
and also since |G‘(p +)1 — 0 as |u| — oo it follows that there is a constant Gy such that |G(u)| <

(p ) |u|P*1 + Gy for all u. Therefore it follows from (2.33)—(2.34) that v, and o/ ’, are uniformly

bounded and so by the Arzela—Ascoli theorem there is a subsequence (again labeled v,) such
that vy, — v uniformly on compact subsets of [0, o) where v satisfies:

v + K(R)|o|P'o =0

v(0) =1, v'(0) = 0.

Now it is straightforward to show that v has an infinite number of zeros on [0, o) and thus
given n then v, has at least n zeros for large enough A so that u has at least n zeros for large
enough b. This completes the proof. O

Lemma 2.6. Solutions of (2.10)—(2.11) with (H1)-(HS5) depend continuously on the parameter b.
Proof. Let aj,a; € R and suppose a1 < a < ap. It is straightforward to show that if w” +
h(t)f(w) = 0on (0,Ry) with w(Ryp) = 0 and w'(Rp) = a where Ry > 0 then:

w(t) =a(Ro—t) — /RO/RO )) dx ds. (2.35)

It follows from (2.22) that:

612
F(u(t)) < 5 i+ F@() < 3aes on (4 Ro).

S
~
N

—~

—

~—

—_

Since F(w) — o0 as |w| — oo by (H2)-(H3) we see that there is a constant Cs such that
|w(t)| < Cs for all t € [0, Rg] and for all a where a; < a < a;. Therefore there is a constant Cg
such that |f(w(t))| < Ce for all t € [0, Ro] and for all a where a; < a < ap. Also since h(t) ~ &
with 0 < g <1 (by (2.12)) there is a C; > 0 such that:

/SROh(x)dx < C; for0<s <R
Thus it follows from (2.35) and since / is decreasing that:
0 |<ya|RO+/ / x))|dxds < |a |R0+/ ds/°|f(w(x))|dx
< |alRo +/t CoCr < [alRo + CsCrRo < (|a1| + 2] + C6C7) Ro on [0, Ro.

Thus for B = (|a1| + |az| + C6C7) R we see that |w(t)| < Bon [0, Ro] for all a with a; < a < aj.
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So now suppose w; and w; are solutions of (2.10) with w;(Ro) = w2(Rg) = 0, wj(Ro) = ay,
and w)(Ro) = az. Then from (2.35):

Ry [Ro
w1 (t) —wy(t) = (a3 —az)(Ro — t) —/t /S h(x)[f(w1) — f(wz)]dxds for 0 <t < Ro.

Since f is locally Lipschitz it follows that on [0,B] there exists a D > 0 such that
|f(w1) — f(w2)| < D]wy — wy| for all w; € [0, B]. Then since i’ < 0:

n(6) = wa(0)] < (o1 = a2} (Ro = 0] +D [ [ h)fun(3) — )] s
Ro
< |(ag —a2)(Ro—t) ]—i—D/ ds/ |y (x) — wy(x)| dx.

Then for C1g = C;D we obtain:

Ro
|wy () —wo(t)| < |a1 — a2|Ro + Clo/t |wy(x) —wy(x)|dx  on [0,Rg.
Then from the usual Gronwall inequality [4] we obtain:
[y (t) — wa(t)| < |a; — az|Roe“*R0  on [0, Ry].

Thus we obtain continuous dependence on [0, Ry]. Thus if a; is sufficiently close to a, then w;
is close to w; on all on [0, Ry]. O

Lemma 2.7. Suppose (H1)—(H5) hold. If u(r,b,) is a solution of (1.4)—(1.5) that has n zeros on
(R, 00) and lim,_,o u(r, by) = 0 then if b is sufficiently close to b, then u(r,b) has at most n + 1 zeros
n (R, c0).

Proof. We do the proof in the case n = 0. The proof for the other cases is similar. Suppose
u(r,bp) — 0 as r — co and u(r, by) is a positive solution of (1.4)—(1.5). Suppose now that b is
close to by and u(r, b) has a first zero, z;, > R. We want to show that there is not a second zero
Zpp > Zp. SO suppose there is. Then there is a local minimum, m;, such that z, < m;, < zy
such that 4’ < 0 on (zp,m;) and since E' < 0 then F(u(my, b)) = E(my) > E(zp5) > 0 so
that u(myp, b) < —v. Then there is a p, and g, with z, < p, < q, < m, < zy) such that

u(pp, b) = ﬁ+7 and u(qp, b) = —ﬁ%. Returning to (2.4), integrating on [py, 4] where u’ < 0
and recalling that F is even gives:
/ﬁ? dt B /% —u'(r,b) dr / Jaart
B SR oF(y Im B oF(u(r,b)) I
tOVE® R(R)
1—a 1_¢a

_\/E(Pb L=, 2) (2.36)
= - .

Now as b — by then z, — oo (otherwise a subsequence of z, would converge to some z
and u(z,by) = 0 but we know that u(r,by) > 0) and thus p, — oo and g, — oo. Therefore the
right-hand side of (2.36) goes to 0 as b — bo+ since « > 2 but the left-hand side goes to the
positive constant

B+
e dt
[
KR 2F(t)

Thus we obtain a contradiction so no such z; ;, exists. This completes the proof. O
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3 Proof of Theorem 1.1

By Lemma 2.1 we see that {b > 0 | u(r,b) > 0 for all r > R} is nonempty and by Lemma 2.5
this set is bounded from above so we define:

0 < by=sup{b>0]u(r,b) >0forall ¥ > R}.

It follows that u(r,by) > 0 for r > R because if there were a smallest z > R such that u(z, by) =
0 then it follows by uniqueness of solutions of initial value problems that u'(z,by) < 0 and
so u(r,bg) < 0 for r slightly larger than z. Then by continuous dependence of solutions on
initial conditions, it follows that u(r, b) would get negative for r near z and for slightly smaller
b < by contradicting the definition of by. Thus u(r,by) > 0 on (R, o).

Next we claim E(r,bg) > 0 for r > R. If not then there is an ry > R such that E(ry, by) < 0.
Then by continuous dependence on initial conditions it follows that E(ro, b) < 0 for b slightly
larger than by. In addition for b > by then u(r,b) must have a zero so there exists z; such that
u(zp,b) = 0. It follows that E(z,b) > 0. Since E is nonincreasing we have E(rg,b) < 0 <
E(zp,b) so it then follows that z, < r9. Thus a subsequence of the z;, converges to some z as
b — by and since u(r,b) — u(r,byp) uniformly on the compact set [R,rg + 1] it follows that
u(z,by) = 0. However, we proved earlier that u(r,by) > 0 and so we obtain a contradiction.
Thus it must be that E(r,by) > 0 for all r > R.

Next we show that u(r,bg) has a local maximum. So we suppose not. Then u(r,by) is
increasing for r > R. Since F(u(r,b)) < 3 I(’ 7y it follows that u(r,b) is bounded so then there

is an L such that u(r,by) — L as r — oo. Now for b > by we see that u(r, b) must have a zero,
zp, and hence a local maximum, M, with R < M, < z,. Since E’ < 0 we have:

0 < E(Zb/b) < %H/;(((:,)b) —f-F(M(T‘, b)) = E(T") < E(Mb/b) = F(M(Mb/b)) for Mb <r< Zp. (31)

Thus u(Mj,b) > 7 and now rewriting (3.1), using (H5), and integrating on (M, z,) we get:

/7 dt
0 V2/F(u(My, b)) — F(t)

u(My,b) dt |/ (r, b)l dr
S A N Tk Bl I o B

1-2 1-2
Zp Zp L B Zb 2 _Mb 2
< /Mb \/K(r)dr < /Mb Vdor 2 dr = \/d, (s — . (3.3)

Now if M}, — co then since M} < z; then also z, — oo and since a > 2 the right-hand side of
(3.3) goes to 0 as b — oo.
On the left-hand side we know that the u(M,,b) are bounded for b near by because

F(u(My, b)) < ;K?;) < %(blg&l))z = Cjp for all b near by. Also from (H3) it follows that
there is an Fy > 0 such that F(u) > —F for all u. Thus F(u(M,,b)) — F(t) < Ci2 + Fy. This
implies the left-hand side (3.2) is bounded from below by a positive constant contradicting
that the right-hand side of (3.3) goes to 0. Thus it must be that the M}, are uniformly bounded.
Hence a subsequence of them converges to some M;, as b — by and since u(r,b) — u(r,bp)
uniformly on [R, My, + 1] it follows that u(r, by) has a local maximum at Mj,.

Next since E(r,bp) > 0 it follows that u(r,by) cannot have a positive local minimum
my, > My, for at such an my, we would have F(u(my,, by)) = E(mp, bg) > 0 implying that
u(mpy,,by) > 7. On the other hand, since my, is a local minimum then u'(my, by) = 0 and
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u"" (mp,, bo) > 0. Thus f(u(mp,, by)) < 0 which implies 0 < u(my,, bg) < B which contradicts
that u(my,, bo) > . Thus u'(r,bg) < 0 for r > M, and so there exists an L > 0 such that
lim, o (7, byg) = L > 0.

From Lemma 2.6 it follows that w(t,b) — w(t, bp) uniformly on [0, R>~N]. In addition, for
b > by then w(t,b) has a zero, Z; € [0, R*~N]. Thus the Z, are bounded and so a subsequence
of them converges with Z, — Z > 0 as b — by. In fact Z = 0. If not a subsequence
converges toa Z > 0 and 0 = w(Z, b) — w(Z,by) by Lemma 2.6 but we showed w(t,by) > 0
on (0,R?7N) earlier in the proof. Thus Z = 0 and therefore we see by Lemma 2.6 that
0 = w(Zy,b) — w(0,by) hence w(0,by) = 0. Since w is continuous then:

lim w(t, bo) =0.

t—0t

Hence it follows from (2.9) that:
lim u(r, by) = 0.

r—00

Thus we have a positive solution of (1.4)—(1.5) such that lim, .« u(7, by) = 0.

Next by Lemma 2.7 it follows that
{b > 0| u(r,b) has exactly one zero for r > R}
is nonempty and by Lemma 2.5 this set is bounded above. So we let:
by = {b > 0| u(r,b) has exactly one zero for r > R}.

Then as we did above it is possible to show u(r, b;) is a solution of (1.4)—(1.5) which has exactly
one zero for r > R and:
lim u(r,by) = 0.

r—00

Similarly for any nonnegative integer n there is a b, > b,_; such that u(r,b,) is a solution
which has exactly n zeros for r > R and:

lim u(r,b,) = 0.

r—»00

This completes the proof of Theorem 1.1. O
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