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Abstract

In this paper the problem of stability of the zero solution of singu-
larly perturbed system of linear differential equation with state delays
is investigated.

We show that if the zero solution of reduced subsystem and the one
of the fast subsystem are exponentially stable, then the zero solution
of the given singularly perturbed system of differential equations is
also exponentially stable.

Estimates of the block components of the fundamental matrix so-
lution are derived. These estimates are used to obtain asymptotic
expansions on unbounded interval for the solutions of this class of
singularly perturbed systems.
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1 Problem formulation

Consider the singularly perturbed system of functional differential equations

@(t) = Luws + Liays
ey(t) = Loy + Loy (1.1)
where z € R™,y € R™ ¢ > 0 is a small parameter;
0
Ljz, = Z A Dji(s)x(t + s)ds

—Tp

0
Ljoye = ZAjzy — ep) + Dija(s)y(t + es)ds

—Hm
7 = 1,2,Ajk are constant matrices with apropriate dimensions Dj.(-) are
integral matrix valued functions and 0 = 79 < 7 < ... < 7,0 = po < p1 <
o < -

) Ly Ly
Setting L. =
& e ( 1y Ly
in a compact form as:

) z = < :Z ) the system (1.1) may be written

Z(t) = Lezt.

It is known (see [3], [4]) that the exponential stability of the zero solution of
the system (1.1) is equivalent with the fact that the roots of the equation

det(\ — L.(eN1)) =0
are located in the half plane Re()\) < 0.

Usually this condition is difficult to be check when the system is of high
dimension.

The goal of this paper is to provide some sufficient conditions assuring the
exponential stability for the system of type (1.1).

Such conditions are expressed in term of exponential stability of the zero
solution of some subsystems of lower dimensions not depending upon small
parameter €.

Taking ¢ = 0 in (1.1) we obtain:

@(t) = Luz+ Liy(t)
0 = L21{Et+L22y(t) (12)

where

~ m . 0
ng = ZA;Q + DjQ(S)dS,j = 1, 2.
1=0

— i,
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Assuming that the matrix Loy is invertible, we may associate the following
“reduced subsystem” :

2(t) = Ly, (1.3)
with
Lz, = Z:[Aix(t —-7)+ OT D, (s)x(t + s)ds] (1.4)

Al = At — LyoLyt Al i = 0,1, ....p,  D,(s) = Dy1(s) — L1y Lyy Doy (s).
Sometimes (1.3) will be called “slow subsystem” associated to (1.1).
Also, we associate the so called “fast subsystem” or “boundary layer subsys-
tem”:
y'(o) = Ly, (1.5)
with . .
Lyys = 21432?/(0’ — i) + Das(s)y(o + s)ds

— i,

where o = é

In this paper we show that the exponential stability of the zero solution of
the slow subsystem (1.3) and the one of the fast subsystem (1.5) implies the
exponential stability of the zero solution of the system (1.1) for arbitrary
€ > 0 small enough.

Our result extends to the class of systems of functional differential equations
with state delays of type (1.1) the well known result of Klimusev-Krasovski
[6].

Systems of differential equations of type (1.1) withm = 0,p = 1 and D,(s) =
0 were considered in [5], where asymptotic structure of solutions was studied.

In [2] the system (1.1) with p = 0 was considered and the separation of time
scales was proposed.

2 The main result

We make the following assumptions:

H;) The roots of the equation

m A 0
det[ N, — > Abe M — Dyy(s)eMds] = 0 (2.1)
i=0

— i,
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are located in the half plane Re(\) < —v; < 0 for some positive constant ;.
H,) The roots of the equation

p . 0
det | M, — > Ale™ — / D, (s)D,(s)e*ds| =0 (2.2)
=0

—Tp

are located in the half plane Re(\) < —v, < 0 for some positive constant ;.
Remark:

a) Under the assumption H;) it follows that A = 0 is not a root of the
equation (2.1) and hence the matrix Lgs is invertible.

Thus the matrices A’ 7 =0,1,...,p and D,(s) are well defined.

b) If 0 < af < 4 there exists By > 1 such that the solutions of the system
(1.5) satisfy:

[y(a)] < Bre™*7||yoll (2.3)

for all o > 0; [|yol| = supse|—p,,0 ¥ ()]

¢) If 0 < a;. < 7, there exists 3. > 1 such that for any solutions of the system
(1.3) we have

|2(t)] < Bre™ " |xol], (V) t = 0. (2.4)

The main result of this paper is:

Theorem 2.1 Under the assumptions Hy ), Hy) there exists g > 0 such that
for arbitrary € € (0,gq) the zero solution of the system (1.1) is exponentially
stable.

Q1(t,e) Dia(t,e)
(I)21 (t, 8) (I)QQ (t, 8)
triz solution, we have

Moreover, if ( ) 1s the partition of the fundamental ma-
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[P (t,e)] < fre

|D1a(t,e)] < eBe~1®

o1 (t,6)] < Poe™

|Dgs(t,e)] < Bale % +ee ™), (V)t >0,e € (0,e)

aj, 05,7 = 1,2 are positive constants which depend by oy, o, By, By, Tespec-
tively.

Proof:

Let ®,(t) be the fundamental matrix solution of the reduced system (1.3)
and @ (o) be the fundamental matrix solution of the fast system (1.5).

It is easy to see that t — ®;(% is the fundamental matrix solution of the

System

x(t, e
bet ( y(t e

8y(t> = ngyt,t Z 0.

~— —

) be a solution of the system (1.1) with the initial conditions:

z(s,e) = 0,—7,<s<0
y(s,e) = 0,—epm <s<0.

Using the variation of constants formula we obtain:

6.2 = @()y(0) + 2 [ 0 (=)L (2

(t,e) = )+ / (t — 8) Lioysds + / B, (t — 8) Lo Ly Loraryds(2.6)

Further we write:
t
/Oq)r(t—s)Luysds = Z/ D, ( VAL (s — ey, €)ds
0
+ / O,(t—s) [ Dis(0)y(s + 0, £)dods
—Hm
= Z/ )ALy(s — e, €)ds
+ / / ,(t — 5)D1a(B)y(s + 20, )dsdf (2.7)
m J 6
m ¢ '
= Z/ O, (t — s —epi)Aly(s, e)ds
i=0 "0
t 10
n / / O, (t — 5+ 0) D1o(0)dBy(s, £)ds.
0 J—pum
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Substituting (2.5) in (2.7) we get:
m t A
S [ @t = s = e Atgy(s, )ds
=070

=3 [t = s =m0y

+= Z/ P, (t—s _€MZ>A12/0 q)f< )Lmyadads (2.8)
Applying Fubini theorem we have:
/<I> (t—s—epi)Al, dods
- / / O, (t — o — guz)Aucpf( )daL21:csds (2.9)
On the other hand:
%/: P (t—0— 5Nz)A12q)f(U — S)da

t—s

= / T D(t—s—c0 —eu) ALy ®(o)do
0

— ®,(t — S)A§2/O Os(0) + Wit s,¢)
where
Uit 5,6) = /Oo[ér(t s — o —epg) — B, (t — 8)] AL, @ (0)do
0

— [Oo D, (t — s —c0 — ;)AL ®s(0)do.

—S
5

Based on (2.3) and (2.4) we deduce:
[Ty(t, 5,)] < Brle™™ 5 + eem (7))

a;>0,0>0j=12
It is easy to check that

/OO ®s(0)do = — Ly
0

Finally we obtain
t t ~ o~
/ (br(t — S)ng’yst = — / (I)T(t - 8)L12L2_21L21{L'8d8 (210)
0 0

t t
+ /\Ilo(t,s,z—:)dsy(())+/ Uy(t, s,e)Loxsds
0 0
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where
|\I’0<t7 S,E)’ 506*01(15—3)670{22

|\I’2<t75,8>’ < BQ(GQQ(—ES) _'_gefcu(tfs)).

IN

Substituting (2.10) into (2.6) we get

x(t,e) = @,.(t)z(0) + /Ot Wy (t,s,e)dsy(0) + /Ot Uy (t, s,e) Loy xsds.

Directly

. I .
2(t,2)] < Foe™(12(0)| + ely(O)]) + B [ (7% o+ ee™ )| Lyyads.
By standard techniques in singular perturbation theory [8], [1] we obtain that

there exists g > 0 such that for arbitrary 0 < £ < gq we have

|z (t,e)] < Bre™ ' (|z(0)] + |y (0))). (2.11)
Using (2.11) in (2.5) we deduce

ly(t,€) < Bae™ 25|y (0)] + Bye= " (|2(0)] + e[y (0)]). (2.12)

From (2.11) and (2.12) we conclude that the zero solution of the system
(1.1) is exponentially stable. The estimates of the block components of the
fundamental matrix solution follows from (2.11) and (2.12) taking z(0) =
I,,,y(0) = 0 and z(0) = 0,y(0) = I,,, respectively. Thus the proof is
complete.

3 Asymptotic expansions

Let us consider system (1.1) with D;,(6) = 0 for all § < 0.
Based on the result of Theorem 2.1 we have:

Theorem 3.1 Under the assumptions Hy — Hy the block components of the
fundamental matriz solutions of the system (1.1) have the following asymp-
totic structure:

By (t,e) = D,(t) +edyi(t,¢)
~ o~ ~ t A
(I)lz(t, 8) = —€q)r(t)L12L521 + €q)12(g, 8) + €2(I)12<t, 8)

~ ~ t A
@21(t, 6) = —L521L21<q)r)t + (I)21<g, 5) + 8(1)21(t, 5)

t A
(I)22<t,€) = ¢f<g>+€q)22<t,€)
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where

Be=% Wt >0
Be‘d" Yo >0,

@)t €)]

<
[@ji(0,)] <

a, a, B, B being positive constants not depending upon €,t, 0.

The asymptotic formulae in Theorem 3.1 allow us to obtain the asymptotic
structure of the solutions of a singularly perturbed affine system of functional
differential equations:

@(t) = Lz + Ly + f(t)
ej(t) = Lo+ Loy, +g(t) t>0

where f(-), g(+) are integrable functions.
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