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Abstract

This note presents some improvement of the stability criteria for conti-
nuous-time neural networks. It is taken into account that the nonlinear func-
tions are bounded and slope restricted. This information allows application of
some earlier results of Halanay and Rasvan (Int. J. Syst. Sci., 1991) on sys-
tems with slope restricted nonlinearities thus improving the results of Noldus
et. al (Int. J. Syst. Sci., 1994). In this way a new frequency domain criterion
for dichotomy and other qualitative behavior is obtained for a system with
several equilibria.
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1 Introduction and problem statement.
State of the art

Neural networks are systems with several equilibrium states. It is exactly this fact
(existence of several equilibria) that grants to the neural networks their computa-
tional and problem solving capabilities. We shall not insist more on these engineer-
ing facts connected with the point of view that a neural network is an associative
memory.

The point of intersection of the (analogue) neural networks (modelled by differ-
ential equations) with the theory of dynamical systems and differential equations
is Liapunov stability of the equilibria. According to the concise but meaningful de-
scription of Noldus et al[1],[2], when the neural network is used as a classification
network, system’s equilibria constitute the ”"prototype” vectors that characterize the
different classes: the i-th class consists of those vectors x which, as an initial state
for network’s dynamics, generate a trajectory converging to the i-th ”prototype”
equilibrium state. When the network is used as an optimizer the equilibria represent
optima.

It is stated in the cited paper that an essential operating condition for a neu-
ral network is that it must be nonoscillatory: each trajectory must converge to
one of the equilibrium states. In fact the qualitative behavior of the neural net-
works as dynamical systems must be viewed within the framework of qualitative
theory of systems with several equilibria. This theory starts from the paper of
Moser{3] and has been developped in a comprehensive way by Yakubovich, Leonov
and their co-workers[4],[5]. Interesting references in the field are also the papers of
V.M.Popov[6],[7] and, in the context of integral and integro-differential equations,
the publications of Corduneanu[8], Halanay[9], Nohel and Shea[10].

Some qualitative concepts are of interest:

19 Dichotomy: all bounded solutions tend to the equilibrium set.
20 Global asymptotics: all solutions tend to the equilibrium set.

3% Gradient-like behavior: the set of equilibria is stable in the sense of Lia-
punov and any solution tends asymptotically to some equilibrium point.

It is dichotomy that signifies genuine nonoscillatory behavior: there may exist
unbounded solutions but no oscillations are allowed. On the other hand it is the
gradient-like behavior that represents the desirable behavior for neural networks.
If the equilibria are isolated (and this is the case with the neural networks) then
global asymptotics and gradient-like behavior are equivalent.

We shall consider here the problem of finding sufficient conditions for gradient-
like behavior for the following model of neural networks[1],[2] :

& o= Az—) bpk(cia) - h, (1)
1

where ¢ (o) are differentiable, slope restricted and bounded. The boundedness
condition is specific for sigmoidal (and other) nonlinearities of the neural networks.

It is a known fact that the main tool for studying the qualitative properties of the
systems with several equilibria is the Liapunov function. The results of [1],[2] are
based on a specifically designed Liapunov function whose coefficients are obtained
by solving Lurie-type equations. Existence of solutions for such equations is ensured
by a frequency domain inequality of Popov type but with a PI multiplier i.e. of the
type 1+ B(iw)~! instead of the usual PD multiplier 1 + 3(iw) . The introduction
of this multiplier has a long history that goes back to Yakubovich[11]; a long list of
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references is given in [12] but even this list is not complete : to mention only the
papers of Noldus[13],[14].

The introduction of the PI multiplier in the multivariable case (with several non-
linear elements) requires some structure restrictions on the linear part. As shown
in [12], a technical assumption allowing stability proof is that of static decoupling
: cfATY; = 0 Vk # j . This assumption does not hold in the case of neural
networks. On the other hand positivity of the Liapunov function is no longer nec-
essary in the analysis of systems with several equilibria. In [1],[2] the background is
given by the papers of La Salle [15],[16] with their ”generalized Liapunov function”
(i.e. nonincreasing along the solutions but not necessarily of definite sign). Within
this framework dichotomy follows almost immediately. Since the nonlinearities are
bounded, boundedness of all solutions is obtained in a trivial way. This enables us
to state that (1) has global asymptotics.

The fact that this stability criterion uses only slope information about the non-
linearities [12] does not allow to make use of the early results of Gelig [17] concerning
systems with bounded nonlinearities. The conditions of Gelig upon the nonlinear
functions, which are of the form

0 (0) — Pror(0)o +Prea <0 )

do not seem of much help to handle the inequalities that may ensure gradient-like
behavior for neural networks.

However, if we assume that the equilibria are isolated - a natural assumption
for neural networks description - then global asymptotics will imply gradient-like
behavior since any trajectory may not approach the stationary set otherwise than
approaching some equilibrium point.

In what follows we shall take the approach of [12] but we shall not assume any
longer that C* A~! B is a diagonal matrix (here B is the matrix with b; as columns
and C is the matrix with ¢; as columns).
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2 Minimality, invariant set and equilibria
We shall assume the following:
i) detA#0

1) (A, B) is a controllable pair and (C*, A) is an observable pair i.e. (A, B,C)
is any minimal realization of T(s) = C*(sI — a)~'B , the matrix transfer
function of the linear part of (1). Remark that the entries of T'(s) are the
transfer functions of various input/output channels vi,;(s) = cj(sI — A)~'b;

i1i) detC*A~'B = detT(0) # 0 ; this assumption ensures controllability of the

pair
A 0 B
@ws = | & o] 0] 3)
provided ((A, B) is controllable;it will be useful in other development also.

Denoting
Y= COl(fla "'agm)v Ek = CZ‘T’ f(y) = 001(901(61)) -"(pm(gm))
then we have the following preliminary result:

Proposition 1 Let z(t) be a solution of (1). Then the pair (z(t),y(t)) defined by

z(t) = Az(t) — Bf(C*xz(t)) — h (4)
y(t) = C*a(t)

is a solution of the system

{ z - /lezf B(diag(py,(&k)))C" 2 (5)

confined to the invariant set
y—C*A™ 2 — (C*A7'B)f(y) —C*A™'h =0 (6)
Conwversely, if (z(t),y(t)) is a solution of (5) satisfying (6) then x(t) defined by
2(t) = AV (=2(t) + B (y(t) + h) (7)
is a solution of (1)

The proof goes as in [12] and we shall omit it.

The equilibria of (1) are defined by
Az — Bf(C*z) —h=0 (8)
while the equilibria of (5) are defined by
Az — B(diag(g),()))C*2 =0, C"z2=0 (9)

what gives z = 0 and y arbitrary. If system (5) is confined to the invariant set (6),
its equilibria are of the form (0,7) where 7 satisfies

- (C*"AT'B)f(§) —~C* AT h =7 - T(0)f(7) - C"A"'h =0 (10)

We may state the following result on equilibria, which is easy to prove.
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Proposition 2 If T is an equilibrium of (1) then (0,C*T) is an equilibrium of
(5) located on (6) i.e.satisfying (10) with § = C*T . Conversely, if (0,7) is an
equilibrium of (5) located on (6) i.e. satisfying (10), then T defined by

=AY (Bf(7) +h) (11)

is an equilibrium of (1).

The proof is in fact straightforward and will be omitted. We shall assume,
additionally, that these equilibria are isolated (a sufficient condition for this would
be analyticity of the functions g (c)).

3 The Popov integral index and the frequency do-
main inequality.Main stability inequality.

To system (5) we shall associate the controlled linear system

{ Z = Az + Bul(t) (12)

y=C"z2

together with the integral index

n(0,T) Z/O [0k (1 (7) + £, cx2(7) (e (7) /g, + x2(7)) + qrpr (7)Ek (7))

_ /0 [u*(T)GE‘lu(TH%u*(ﬂ@(uﬁ‘l)c*z(f)

452 (O +8F)0ulr) + Ju* (Qu(r) + 347 (1)Quir)
+2*(1)CORC* 2(T)]dT (13)

where the diagonal matrices ©, ®, ®,Q are defined by the (up to now) arbitrary
constants 0 > 0,9, , 9, > 0,qx #0 :

O = diag(bs, ...,0m), @= diag(gl, ""fm) etc
Assume that

1v) The arbitrary constants are such that the following frequency domain inequal-
ity holds

OF '+ RO +8F ) + (iw) QT (iw)} + T (~iw)ODT (i) > 0 (14)

where > 0 is understood in the sense of the quadratic forms.

This is exactly the frequency domain inequality for the Popov system (12)-(13).
Since 1) - iii) hold the system is controllable and we may use the Yakubovich-Kalman-
Popov lemma in the controllable case. Along the line of [12] (but without the assump-
tion that C* A~! B is diagonal) we shall have existence of V = diag(y1, ..., Ym), W, P
such that

V2=03 "

PB+WV =1C(I+33 e (15)
PA+ A*P+ WW* = CODC* — 1CQ(C*A™'B)~1C* A~ -
1(A*)—1C(B*(A*)—1C)—1QC*

2
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In order to continue the proof along the line of [12] we shall consider that g
are such that Q(C*A='B)~1 is symmetric. This condition - which had been con-
sidered in [12] as restrictive and replaced by the assumption that Q(C*A~1B)~!
was diagonal - appears as necessary from the symmetry conditions of Yakubovich-
Kalman-Popov lemma for system (12)-(13)(and also from the frequency domain
inequality (14)); it is assumed as fulfilled in [1],[2](worth mentioning also that if
® = 0 then (14) is exactly the frequency domain inequality of [1],[2]).

If symmetry of Q(C*A~1B)~! holds then we may proceed as in [12] and find

T
00, T) = /O Vu(r) + Wz(r)2dr
2 (T)P2(T) +y* (T)QC" A~ B) (" A7 4(T) — y(T))
2 (0)P2(0) 5 (0)Q(C* AT B)HCTAT5(0) — 5y(0)  (16)

where V, W, P are those of (15).
We may take then

u(t) = —(diag(e;,(€x(1))))C"(t) (17)
and proceed along the lines of [12] to obtain the following equality
T
| 1= Vidiag(e &m0 =(r) + W str)Pdr + 2 (D)P(T)
&k (T)
30 (T)QCT AT B) ™ (y(T) — 20747 ;qk L e
m T
== 0 /0 (P& (T) — 2 )(1 = 9,(& (7)) /B1) (ch2())2dr + 2% (0) P(0)
Hroee e e -2 - Y a / (Ndx (1)

where Ek, k = 1,m, are coordinates of some equilibrium point, more precisely, of
7, (0,7) being the equilibrium.

Equality (18) is obtained by equating (16) with what is obtained from (13) with
the choice of w(t) from (17); it is called main stability equality because it leads
after some (tedious but straightforward) manipulation to a Liapunov function in
the sense of La Salle.

4 The Liapunov function and its properties

The main stability equality (18) suggests the following candidate Liapunov function:
1
U(z,y) = 2" Pz + 5y"Q(CTAT'B) " (y —2C" A h qu/ Pr(A)dA

where Ek, k =1, m, are coordinates of some equilibrium point (0,%) located on the
invariant set hence satisfying

7— (C*A™'B)f(7) —C*A™'h =0
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Therefore
U(e,y) = 2 P2~ 5y QUC AT B) My —9) + 5y QUC AT B) T 4+ 4 QD)
—;%/ dwawgw 7QC AT ) - p)
+i5Q(CcratB) }:qg/ w&@;dx+§jmmkgme
and it is obvious that the Liapunov function is
V) = #Pe = =T QCATE =) - [0 - @) ed (19

where the line integral is defined as

ghw QM—Z%/ — or(E))n

Since equality (18) holds modulo any added constant we shall have
/ | = V(diag(py, (€ (r)))C* 2(7) + W*2(r)[Pdr + V(2(T), y(T)) =
729;@/ (6 (7)) = 2 ) (1 = @1 (& (7)) /i) (chz(m)2dr + V(2(0),y(0)) (20)

Equality (20) shows that V(z(¢),y(¢)) is nonincreasing along the solutions of (5)
that are confined to (6) hence along the solutions of (1).

Asknown (Lemma 2.3.1 from [4]) the system would be dichotomic if V(z(t), y(t))
would be constant only along those bounded solutions that are equilibria.

Assume that

0, < pil0) <P, k=T,m (21)

It follows then from (20) that on the set where V(z(t),y(t)) is constant we have
ckz(t) = 0 hence y(t) = const and z(t) is a solution of 2 = Az satisfying C*2(t) =0
; from observability we deduce that z(t) = 0 and this shows that V(z(¢),y(t)) is
constant on equilibria only. System (1) is thus dichotomic or non-oscillatory in the
language of [1],[2]. We may thus state

Theorem 1 Consider system (1) under the assumptions i) — iii) of Section 2. If
there exist the sets of parameters 6y > 0,9, > 0,4k # 0,k = 1,m, such that
(14) holds and Q(C*A~1B)~! is symmetric then system (1) is dichotomic for all
slope restricted nonlinear functions satisfying (21). If additionally, all equilibria are
isolated, then each bounded solution approaches an equilibrium point.

The last statement is easy to prove, while the simple reference to [15](see [1],[2])
is not enough. The argument is as follows: each bounded solution has a non-
empty w — limit set contained in the largest invariant set included in the set where
V(z(t),y(t)) is constant. But this largest invariant set is composed of (isolated)
equilibria only. It follows that the w — limit set is of equilibria only and these
equilibria are isolated. The w — limit set being connected, it is in fact a single
equilibrium point what proves the assertion.
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5 The case of the bounded nonlinearities

We shall assume that (1) has a property of minimal stability i.e.it is internally stable
for a linear function of the class: there exist the numbers ¢; € (fi,@) such that
(A =37 bigic}) is a Hurwitz matrix.

Assume also that the following boundedness condition holds for the nonlineari-
ties:

lok(o) — Gral <my <m (22)

We may re-write (1) as follows:

m

i=(A- Zb#ﬁicf)x - Zbi(@i(cfw) — gicjz) —h (23)
1 1

Let U be the solution of the Liapunov equation
(A— Z bipic;)*U + U(A - Z bigici) = —1 (24)
1 1

and since (A —Y 1" b;pic) is a Hurwitz matrix, U > 0. Taking 2*Uz as a Liapunov
function for (23) and using (22) we obtain ultimate boundedness for the solutions of
(23). Combining ultimate boundedness with boundedness of solutions in bounded
sets of the state space, boundedness of all solutions of (1) is obtained. In fact we
proved

Theorem 2 Consider system (1) under the assumptions of Theorem 1. Assume
additionally that it is minimally stable, the nonlinear functions satisfy (22) and
the equilibria are isolated. Then each solution of (1) approaches asymtotically an
equilibrium state.

6 The case of the neural networks

As in [1],[2] we shall consider the case of the Hopfield-type classification networks
described by

dv, 1 1 < :

&= RoUT a[;(%(?}j) —ui)/Rij + L] i=1n (25)

which is of the type (1) with

n

1,1 1
A= diag(fa(ﬁ +
i 7 =

—))iz1, f(v) = col(pi(vi))isy,
=1 RU
h=—col(I;/Cy)j—,,C* = 1,B = —T'A,T = diag(1/C;)}_,, A = (1/Rij)};—,

Matrix A is the synaptic matrix of the neural network.
It is obvious that A is here a Hurwitz matriz since all physical parameters are
positive; hence we may take ¢; =0 . We have also

T(s)=1(sI —A)"'B=—(sI —A)~'TA

= —(diag((sC; +1/R; + Z(l/Rij))_l)?:ﬂA

Jj=1
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It is easy to check that for usual nonlinear functions of the neural networks -
various sigmoidal functions - we have ¥, = 0,0 <P <400 .By choosing

0 = Cr,qr = 1/Re + ) _(1/Ry;) (26)

j=1

the frequency domain inequality (14) holds provided A = A* i.e.the synaptic matriz
is symmetric. This condition, mentioned also in [1],[2] is quite known in the stability
studies for neural networks and it is a normal design condition since the choice
of the synaptic parameters is controlled by network adjustment in the process of
”learning” .

7 Some conclusions and open problems

The results of this paper allow an embedding of neural network stability analysis in
the more general framework of qualitative theory of systems with several equilibrium
points. The frequency domain criterion is easy to manipulate in applications but
requires a symmetry assumption that is desirable to relax in order to obtain other
stability criteria. This goal is achievable by a suitable choice of the information
about nonlinearities. It is known that these functions are monotone and slope
restricted. All criteria obtained for such functions(e.g.those of Yakubovich, Brockett
and Willems) may show useful in this analysis. Moreover, the associated Liapunov
functions may allow establishing new qualitative behavior in relaxed assumptions
over the system. Remark that these Liapunov functions may be quite different in
comparison with usual energy function of the neural networks.
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