
HALF–LINEAR DISCRETE OSCILLATION THEORY
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ABSTRACT. Oscillatory properties of the second order half-linear difference equation

∆(rk|∆yk|
α−2∆yk) + pk|yk+1|

α−2
yk+1 = 0,

where α > 1, are investigated. A particular attention is devoted to the connection with
oscillation theory of its continuous counterpart, half–linear differential equation and
also with the theory of linear differential and linear difference equations. We present
not only the overview of the existing results but we also establish new oscillation and
nonoscillation criteria.

1. INTRODUCTION

The aim of this contribution is to present a survey of the recent results of the oscil-
lation theory of the second order half–linear difference equation

∆(rkΦ(∆yk)) + pkΦ(yk+1) = 0, (1)

where pk and rk are real-valued sequences with rk 6= 0 and Φ(y) := |y|α−1 sgn y =
|y|α−2y,Φ(0) = 0, with α > 1. We will discuss the application of various methods in
the oscillation theory of (1) which come from theory of linear differential equations. It
is known, see [15], that the basic oscillatory properties of half–linear difference equa-
tion (1) (≡ HL∆E) are essentially the same as those of the linear difference equation
(≡ L∆E)

∆(rk∆yk) + pkyk+1 = 0, (2)

which is the special case of (1) for α = 2. Moreover, there exists a considerable
similarity between the theories of difference and differential equations. This means
that in this connection we are also interested in the second order half–linear differential
equation (≡ HLDE)

(r(t)Φ(y′))′ + p(t)Φ(y) = 0, (3)
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which was very frequently investigated in the last years, see e.g. [9, 2, 3, 4, 5, 7,
8, 10, 11, 12], and its special case, namely the well–known Sturm–Liouville linear
differential equation (≡ LDE)

(r(t)y′)′ + p(t)y = 0, (4)

where the functions r and p are mostly considered to be continuous with r(t) > 0. Note
that a natural requirement for the sequence rk in (1), (2) is only to be nonzero. There
exist several viewpoints which provide an explanation of this discrepancy between the
continuous and the discrete cases, see e.g. [1]. It seems to be natural to require the
assumption rk 6= 0 also for equation (1).

Thus, our approach to the investigating of the qualitative properties of (1) can look
as follows:

LDE
HL

−−−→ HLDE

∆





y





y
∆

L∆E
HL

−−−→ HL∆E,

HL ≡ generalization in a half–linear sense,

∆ ≡ discretization,

which means that we motivate ourselves by the linear continuous theory that offers
many interesting topics for the discretization and the extension to the half–linear dis-
crete case. This approach brings two types of interesting problems:

1) The first type relates to the discretization. The techniques of proofs that are
needed in the discrete case are often different from the continuous case and also more
complicated. This is due to the absence of the chain rule for the difference of the com-
posite sequences and also due to some other specific properties of difference calculus.

2) The second type of problems is related to the extension to the half–linear case
(both, continuous and discrete). There exist certain limitations in the use of the lin-
ear approach to the investigating of half–linear equations. These limitations are first
of all the absence of transformation theory similar to that for linear equations or the
impossibility of the extension of the so–called Casoratian to the half–linear discrete
case. Casoratian is the discrete counterpart of Wronskian from the theory of linear
differential equations.

Being motivated by the linear continuous case, we will show that one can extend
some basic methods and results of oscillation theory of (4) to equation (1). In partic-
ular, this is the discrete half–linear version of the so called Roundabout theorem, see
Section 2, which provides not only the Sturm type separation and comparison theorems
but also two important tools for the investigating of oscillation and nonoscillation of
(1). These methods are the Riccati technique and the variational principle, see Sec-
tion 3. The reciprocity principle is also available in the oscillation theory of (1) and
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it is discussed in Section 3. Sections 4 and 5 contain an application of these methods,
namely oscillation and nonoscillation criteria for (1).

At the end of this introductory section we recall some important concepts with some
comments.

Definition 1. An interval (m,m + 1] is said to contain the generalized zero of a solu-
tion y of (1), if ym 6= 0 and rmymym+1 ≤ 0.

Definition 2. A nontrivial solution of (1) is called oscillatory if it has infinitely many
generalized zeros. In view of the fact that Sturm type Separation Theorem extends
to (1) (this follows from Theorem 1 – hereafter mentioned), we have the following
equivalence: Any solution of (1) is oscillatory if and only if every solution of (1) is
oscillatory. Hence we can speak about oscillation or nonoscillation of equation (1).

Note that authors who studied equation (2) with similar definition of generalized
zero as above (but with the assumption ymym+1 ≤ 0 instead of rmymym+1 ≤ 0 – this
lead to the Hartman’s definition of the so called node, had problems with Sturmian
theory since there exist simple examples such as the Fibonacci recurrence relation,
where one solution seems to be oscillatory while another is nonoscillatory. This fact
does not occur in the continuous case and our definition of generalized zero brings
these exceptional cases into the general theory. On the other hand, it is obvious that
the presence of the sequence rk in Definition 1 is the result of the assumption rk 6= 0
for equation (2) (or for (1)). Note that we cannot rewrite the Fibonacci equation into
the self–adjoint form (2) with a positive rk.

2. ROUNDABOUT THEOREM

In this section we present the half–linear discrete version of the so called Round-
about Theorem (for its linear continuous and discrete version see e.g. [14] and [1],
respectively, the proofs of some (nontrivial) parts of its half–linear continuous version
can be found in [8, 12]) that is of the basic importance in the oscillation theory of
(1). This theorem shows the connections between such concepts as disconjugacy of
(1), existence of a solution of the generalized Riccati difference equation and positive
definiteness of certain functional (see Definition 3 below), and therefore it provides
powerful tools (see Section 3) for the investigation of oscillatory properties of equa-
tion (1). Note that by the term generalized Riccati difference equation we mean the
following equation

∆wk + pk + S(wk, rk) = 0, (5)

or, equivalently,

wk+1 = −pk + S̄(wk, rk),
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where

S(wk, rk) = wk

(

1 −
rk

Φ(Φ−1(rk) + Φ−1(wk))

)

, (6)

S̄(wk, rk) = wk−S(wk, rk) and the function Φ−1 being the inverse of Φ, i.e., Φ−1(x) =
|x|β−1 sgnx, where β is the conjugate number of α, i.e., 1/α+ 1/β = 1. Equation (5)
is related to (1) by the Riccati type substitution

wk =
rkΦ(∆yk)

yk

.

Now we define and recall some important concepts

Definition 3. Equation (1) is said to be disconjugate on [m,n] provided any solution
of this equation has at most one generalized zero on (m,n + 1] and the solution ỹ
satisfying ỹm = 0 has no generalized zeros on (m,n + 1]. Define a class U of the so
called admissible sequences by

U = {ξ | ξ : [m,n+ 2] −→ R such that ξm = ξn+1 = 0}.

Then define an ‘α-degree” functional F on U by

F(ξ;m,n) =
n
∑

k=m

[rk|∆ξk|
α − pk|ξk+1|

α].

We say F is positive definite on U provided F(ξ) ≥ 0 for all ξ ∈ U and F(ξ) = 0 if
and only if ξ = 0.

Theorem 1 (Roundabout Theorem, [15]). The following statements are equivalent:

(i) Equation (1) is disconjugate on [m,n].
(ii) Equation (1) has a solution y without generalized zeros on [m,n + 1].

(iii) The generalized Riccati difference equation (5) has a solution wk on [m,n] with
rk + wk > 0.

(iv) F is positive definite on U .

Proof. The proof of this theorem can be found in [15]. Note only that we use here the
usual “roundabout method” that (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i) and for the proof of the
implication (iii) ⇒ (iv) we use the generalized Picone identity.

3. METHODS OF HALF–LINEAR DISCRETE OSCILLATION THEORY

In this section we describe three methods which are available in the oscillation the-
ory of (1).

The first method is the so called Riccati technique. This method uses the following
idea: Suppose (by contradiction) that equation (1) is nonoscillatory, i.e., there exists
a solution yk without generalized zeros (for k sufficiently large) and therefore there
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exists a solution of equation (5) with rk + wk > 0 according to Theorem 1 and vice
versa, the existence of a solution of (5) with rk + wk > 0 in a neighborhood of in-
finity guarantees nonoscillation of (1). Actually, according to the following lemma,
for nonoscillation of (1), it is sufficient to find a solution of the generalized Riccati
difference inequality

∆wk + pk + S(wk, rk) ≤ 0 (7)

satisfying rk + wk > 0. However, this is not included in the Roundabout Theorem.

Lemma 1 ([6]). Equation (1) is nonoscillatory if and only if there exists a sequence
wk satisfying the inequality (7) with rk + wk > 0 for k ≥ m with suitable m ∈ N.

Another method is the variational principle which is based on the following fact.
Equation (1) is nonoscillatory if and only if the functional F is positive definite on
the class U . But (1) is nonoscillatory if and only if it is disconjugate on a certain
half–bounded discrete interval and therefore we have the equivalence (i) ⇔ (iv) from
Theorem 1.

The third method which is available in the half–linear discrete oscillation theory
is the reciprocity principle. Here we suppose that rk > 0, pk > 0. If we denote
uk = rkΦ(∆yk), where y is a solution of (1) then (as one can easily verify) uk satisfies
the reciprocal equation

∆(p1−β
k Φβ(∆uk)) + r1−β

k+1Φβ(uk+1) = 0, (8)

where Φβ(x) = |x|β−2x and β is the conjugate number of α, i.e., 1/α + 1/β = 1.
Conversely, if yk = p1−β

k−1Φβ(∆uk−1), where uk is a solution of (8), then yk solves
the original equation (1). Since the discrete version of the Rolle mean value theorem
holds, we have the following equivalence: (1) is oscillatory [nonoscillatory] if and only
if (8) is oscillatory [nonoscillatory]. Indeed, if yk is an oscillatory solution of (1) then
its difference and hence also uk = rkΦ(∆yk) oscillates. Conversely, if uk oscillates
then yk = p1−β

k−1Φβ(∆uk−1) oscillates as well.

Remark 1. Note that important concept of the oscillation theory of linear difference
equations is the concept of recessive solution (the so called principal solution in the
“continuous terminology”). Since the construction of principal solution and its ap-
plication in oscillation theory of (3) has been already successfully made, see e.g.
[2, 3, 7, 13], we would like to construct the recessive solution of half-linear differ-
ence equation and possibly apply it in oscillation theory of (1).

4. OSCILLATION CRITERIA

In this section we present some already existing oscillation criteria for (1), where
rk > 0 for large k. We will also give one new criterion and mention some comments
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on the proofs and related open problems. The following notation will be used

Pk =
k
∑

pj, P̃k =
∞
∑

j=k

pj, Rk =
k
∑

r1−β
j , R̃k =

∞
∑

j=k

r1−β
j , (9)

β is the conjugate number of α, i.e., 1/α + 1/β = 1.
We start with the half–linear version of well–known criterion.

Theorem 2 (Leighton-Wintner type oscillation criterion, [15]). Suppose that

R∞ = ∞ (10)

P∞ = ∞. (11)

Then (1) is oscillatory.

Proof. This statement is proved via the variational principle. Note only that according
to Theorem 1, it is sufficient to find for any K ≥ m a sequence y satisfying yk = 0 for
k ≤ K and k ≥ N + 1, where N > K, such that

F(y,K,N) =
N
∑

k=K

[rk|∆yk|
α − pk|yk+1|

α] ≤ 0.

Remark 2. In order to compare the similarity between some qualitative properties of
our equation (1) and of the above mentioned equations we present here also the suffi-
cient conditions of the same type for equations (2), (4) and (3), respectively. They are
∑∞ r−1

j = ∞ =
∑∞ pk,

∫∞
r−1(t)dt = ∞ =

∫∞
p(t)dt and

∫∞
r1−β(t)dt = ∞ =

∫∞
p(t)dt, respectively.

In the case when

lim
k→∞

k
∑

pj is convergent, (12)

we can use the following criterion which is also proved via the variational principle.

Theorem 3 (Hinton-Lewis type oscillation criterion, [15]). Suppose that the conditi-
ons (10) and (12) hold and

lim
k→∞

Rα−1
k P̃k > 1. (13)

Then (1) is oscillatory.

Remark 3. In the above criteria, equation (1) is essentially viewed as a perturbation of
the nonoscillatory equation

∆(rkΦ(∆yk)) = 0.
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In the continuous case it is known (see e.g. [4, 5, 11]) that one can investigate equation
(3) not as a perturbation of the nonoscillatory equation

(r(t)Φ(y′))′ = 0

but as a perturbation of a more general equation

(r(t)Φ(y′))′ + p̃(t)Φ(y) = 0,

for example, of the generalized Euler equation

(r(t)Φ(y′))′ + λt−αΦ(y) = 0,

where λ = ((α− 1)/α)α is the so–called critical constant. We conjecture that it is pos-
sible to prove some stronger criteria for (1), e.g., the assumption (13) can be replaced
by the weaker one

lim inf
k→∞

Rα−1
k P̃k >

1

α

(

α− 1

α

)α−1

(14)

(note we know that lim in Theorem 3 can be replaced by lim inf). From many other
open problems we mention here e.g. the following: What are the additional conditions
guaranteeing oscillation of (1) if (14) does not hold? Such types of criteria for equation
(3) (with r(t) ≡ 1) are presented in [9]. See also Remark 6 for some other relates
problems.

The next criterion is the “complementary” case of Hinton–Lewis type criterion – in
the sense of the following convergence

∞
∑

r1−β
j <∞. (15)

Here we suppose not only rk > 0 but also pk > 0 for large k.

Theorem 4. Suppose that (15) holds and

lim
k→∞

R̃α−1
k+1Pk > 1. (16)

Then (1) is oscillatory.

Proof. We will use the reciprocity principle. From (16) one can observe that
∞
∑

p
(1−β)(1−α)
j =

∞
∑

pj = ∞.

Therefore according to Theorem 3, equation (8) is oscillatory if

lim
k→∞

(

k
∑

p
(1−β)(1−α)
j

)β−1(
∞
∑

j=k

r1−β
j+1

)

> 1,

which is equivalent to (16). From here (1) is also oscillatory.
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5. NONOSCILLATION CRITERIA

This section contains nonoscillation criteria for (1), where, again, it is supposed
rk > 0 for large k. The first two are already proved “nonoscillatory supplements” of
the meanwhile unproved Theorem 3 (but with (14) instead of (13)). Criteria that are
included in Theorems 8 – 11 are new, some of them even in the linear case. Note we
still use notation (9).

We start with the half–linear discrete version of quite well–known criterion for equa-
tion (4). The proof of this theorem is based on the variational principle. Note that the
discrete “half–linear” version of a Wirtinger type inequality is used there.

Theorem 5 ([6]). Suppose that (10) holds,
∑∞ p+

j <∞, p+ := max{0, p} and

ϕN :=

(

sup
k≥N

Rk

Rk−1

)α(α−1)

<∞, ψN := sup
k≥N

(

rk

rk−1

)1−β

<∞.

Further suppose that

0 < lim sup
N→∞

(1 + ψN )α−1ϕN =: Ψ <∞. (17)

If

lim sup
k→∞

Rα−1
k−1

∞
∑

j=k

p+
j <

1

αµα−1

(

α− 1

α

)α−1
1

Ψ
, (18)

where

µ :=











supt>s>0
1

t−s

[

Φ−1
(

tα−sp

α(t−s)

)

− s
]

, α ≥ 2,

supt>s>0
1

t−s

[

t− Φ−1
(

tα−sα

α(t−s)

)]

, α ≤ 2,

then (1) is nonoscillatory.

The Riccati technique is used in the proof of the following theorem. More precisely,
we use Lemma 1.

Theorem 6 ([6]). Suppose that (10) and (12) hold and

lim
k→∞

r1−β
k

Rk−1

= 0. (19)

If

lim sup
k→∞

Rα−1
k−1 P̃k <

1

α

(

α− 1

α

)α−1

(20)
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and

lim inf
k→∞

Rα−1
k−1 P̃k > −

2α− 1

α

(

α− 1

α

)α−1

(21)

then (1) is nonoscillatory.

Remark 4. 1) The above two criteria are not in fact completely the supplements of
Theorem 3 (with (14)) since in contrast to the linear cases and half–linear continu-
ous case we require additional restrictions on the sequence rk, namely (17) and (19).
However, we have an open problem in this connection: Is there really a need of these
additional conditions?

2) We can see that the use of the different methods gives the different results in this
case. The condition (17) is weaker than (19) but the constant at the right–hand side of
(18) is less than constant in (20).

The following theorem complements the previous statement in the sense of the
“complementary” case (15).

Theorem 7 ([6]). Suppose that (15) holds and

lim
k→∞

r1−β
k

R̃k

= 0. (22)

If

lim sup
k→∞

R̃α−1
k Pk−1 <

1

α

(

α− 1

α

)α−1

and

lim inf
k→∞

R̃α−1
k Pk−1 > −

2α− 1

α

(

α− 1

α

)α−1

(23)

then (1) is nonoscillatory.

Next, denote by θ(C [0]) the greatest root of the equation

|x|
1

β + x + C [0] = 0,

for certain C [0] which will be determined by the next statement and set Ak = Rα−1
k−1 P̃k.

In the case when (21) does not hold, we can use the following criterion which com-
pletes Theorem 6.

Theorem 8. Suppose that (10), (12) and (19) hold. If

lim sup
k→∞

Ak <
[

θ
(

lim inf
k→∞

Ak

)]
1

β

− θ
(

lim inf
k→∞

Ak

)
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and

−∞ < lim inf
k→∞

Ak ≤ −
2α− 1

α

(

α− 1

α

)α−1

then (1) is nonoscillatory.

Proof. The proof is similar to that of the continuous case, see [9].

Remark 5. It is clear that by the same way as above one can show there exists similar
complementary case (i.e., when (23) fails to hold) also for Theorem 7.

The following statement is essentially a generalization of the criterion presented in
[16] and at the same time the discretization of the criterion presented in [9]. First we
introduce some notation. Set

Bk = R−1
k−1

k−1
∑

(

Rα
j−1pj

)

.

Let

λ(α) = x[0] +
2α− 1

α

(

α− 1

α

)α−1

,

where x[0] is the least root of equation

(α− 1)|x|β + αx+
2α− 1

α

(

α− 1

α

)α−1

= 0. (24)

Theorem 9. Suppose that (10), (12) and (19) hold. If

lim sup
k→∞

Bk <

(

α− 1

α

)α

(25)

and

lim inf
k→∞

Bk > λ(α), (26)

then (1) is nonoscillatory.

Proof. We show that the generalized Riccati difference inequality (7) has a solution w
with rk + wk > 0 in a neighbourhood of infinity. Set

wk = R1−α
k−1 (C − Bk).

By the Lagrange mean value theorem we have

∆R1−α
k−1 = (1 − α)r1−β

k η−α
k

and
∆Rα

k−1 = αr1−β
k µα−1

k ,

where ηk and µk, respectively, are between Rk−1 and Rk. Similarly,

wk

[

Φ(Φ−1(rk) + Φ−1(wk)) − rk

]

= (α− 1)|ξk|
α−2|wk|

β,
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where ξk is between Φ−1(rk) and Φ−1(rk) + Φ−1(wk), hence

rβ−1
k − |wk|

β−1 ≤ ξk ≤ rβ−1
k + |wk|

β−1.

Let

C =
2α− 1

α

(

α− 1

α

)α−1

.

Then

|wk|

rk

=

∣

∣R1−α
k−1 (C −Bk)

∣

∣

rk

=

(

r1−β
k

Rk−1

)α−1

|C − Bk| → 0

as k → ∞ according to (19) and hence rk + wk = rk(1 + wk/rk) > 0 for large k.
Further, assumptions (25) and (26) imply the existence of ε1 > 0 such that

λ(α) + ε1 < Bk <

(

α− 1

α

)α

− ε1

for k sufficiently large, say k ≥ K1. From here,

λ(α) − C + ε1 = x[0] < Bk − C < x̄[0] − ε̄1, (27)

where x̄[0] = − ((α− 1)/α)α−1 is the greatest root of equation (24). Therefore, from
(27) it follows that there exists ε2 > 0 such that

(α− 1)|Bk − C|β + α(Bk − C) + C + ε2 < 0

for k ≥ K1, and, finally, this implies the existence of ε > 0 such that

(α− 1)|C − Bk|
β(1 + ε) − (α− 1)C(1 − ε) + αBk(1 + ε sgnBk) < 0.

Multiplying this inequality by r1−β
k R−α

k−1 we obtain

(α− 1)r1−β
k R−α

k−1|C − Bk|
β(1 + ε) − (α− 1)r1−β

k CR−α
k−1(1 − ε) +

+ αr1−β
k BkR

−α
k−1(1 + ε sgnBk) < 0 (28)

for k ≥ K1. We can suppose that ε is at the same time such that we may add the term
pk − pk(1 − ε sgn pk) to the left–hand side of (28).

Now, for a given ε > 0 there exists K2 ∈ N such that we have rk > |wk|,
(

Rk−1

ηk

)α

> 1 − ε, (sgn pk)

(

Rk−1

Rk

)α

> (sgn pk)(1 − ε sgn pk),

(sgnBk)(1 + ε sgnBk) > (sgnBk)

(

µk

Rk

)α

=
(sgnBk)R

α
k−1µ

α−1
k

Rα
kR

α−1
k−1

and
|ξk|

α−2rβ−1
k

(Φ−1(rk) + Φ−1(wk))α−1
<

(1 + Φ−1(|wk|/rk))
α−2

(1 + Φ−1(wk/rk))
α−1 < 1 + ε
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for k ≥ K2. Using the above estimates, we obtain from (28)

0 > (α− 1)r1−β
k R−α

k−1|C − Bk|
β(1 + ε) −

−(α− 1)r1−β
k CR−α

k−1(1 − ε) +

+αr1−β
k BkR

−α
k−1(1 + ε sgnBk) + pk − pk(1 − ε sgn pk)

> −(α− 1)r1−β
k Cη−α

k − pk

R2α
k−1

Rα
k−1R

α
k

+

+
αr1−β

k µα−1
k Bk

Rα−1
k−1R

α
k

+ pk +

+
(α− 1)R−α

k−1|C − Bk|
β|ξk|

α−2

(Φ−1(rk) + Φ−1(wk))α−1

= ∆wk + pk +
(α− 1)|ξk|

α−2|wk|
β

(Φ−1(rk) + Φ−1(wk))
α−1

= ∆wk + pk + wk

(

1 −
rk

(Φ−1(rk) + Φ−1(wk))α−1

)

,

which means that inequality (7) has a solution w with rk +wk > 0 in a neighbourhood
of infinity and hence equation (1) is nonoscillatory by Lemma 1.

Denote

B̃k = R̃−1
k

∞
∑

k

(

R̃α
j pj

)

.

The following statement complements the previous one in the sense of the “comple-
mentary” case (15).

Theorem 10. Suppose that (15) and (22) hold. If

lim sup
k→∞

B̃k <

(

α− 1

α

)α

(29)

and

lim inf
k→∞

B̃k > λ(α), (30)

then (1) is nonoscillatory.

Proof. One can show by the similar way as in the proof of the previous theorem that
under the assumptions (15), (22), (29) and (30) the sequence

wk = −
(

R̃1−α
k

)(

C − B̃k

)

,

where C = 2α−1
α

(

α−1
α

)α−1
, solves the inequality (7) with rk + wk > 0.
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Remark 6. Being motivated by the half–linear continuous case, see [9, 2, 10], we
conjecture that one can prove oscillatory supplements of the above criteria, namely
lim infk→∞Bk >

(

α−1
α

)α
or lim infk→∞ B̃k >

(

α−1
α

)α
with appropriate additional

conditions. Similarly as in the case of sequence Rα−1
k P̃k, see Remark 3, we can look

for further oscillation criteria containing also sequence Bk. For such types of criteria
for equation (3) see [9].

Denote Λ(C [1]) the greatest root of equation

(α− 1)|x|β + αx+ C [1] = 0

and Γ(C [2]) the greatest root of equation

(α− 1)|x|β − (α− 1)x+ C [2] = 0

for certain C [1] and C [2] which are determined by the following statement that com-
pletes Theorem 9 in the case when (26) fails to hold.

Theorem 11. Suppose that (10), (12) and (19) hold. If

lim sup
k→∞

Bk < lim inf
k→∞

Bk + Γ
(

lim inf
k→∞

Bk

)

+ Λ
[

lim inf
k→∞

Bk + Γ
(

lim inf
k→∞

Bk

)]

and

−∞ < lim inf
k→∞

Bk ≤ λ(α),

then (1) is nonoscillatory.

Proof. The proof is similar to that of the continuous case, see [9].

Remark 7. By the same way as above one can show that there exists similar comple-
mentary case (i.e., when (30) fails to hold) also for Theorem 10.

Remark 8. Under the assumption r1−β
k → ∞ as k → ∞, the condition (19) can be

replaced by more simple (but stronger) one, namely limk→∞ rk+1/rk = 1 in all above
criteria where is presented. Similarly in the case when (15) holds we can suppose the
same condition instead of (22).
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