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Abstract.

In this paper we prove sufficient conditions for the existence of global solutions
of nonlinear functional-differential evolution equations whose linear parts are infin-

itesimal generators of strongly continuous and analytic semigroups. We apply the

obtained results to a diffusion problem.
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1. Introduction

Integral inequalities play an important role in the study of asymptotic behavior
of integral and differential equations. In the paper [11] a singular version of the
Bihari nonlinear integral inequality (see [1]) is proved. Some modifications of this
inequality are applied in the study of the existence of global solutions of semili-
near evolution equations and their stability properties in the papers [7, 11, 12, 13,
14] These results are closed to the results obtained in the paper [4] by using a
comparison method. In the paper [15] the following delay system is studied:

(1) ẋ(t) = Ax(t) + f(t, x(t), xt), t = 0,

x(t) = Φ(t), t ∈ 〈−r, 0〉,

where x(t) ∈ X (X is a Banach space), xt ∈ C := C(〈−r, 0〉, X), xt(Θ) =
x(t+ Θ), r 5 Θ 5 0,Φ ∈ C, ||u|| = sup−r5Θ50 ||u(Θ)||, u ∈ C.

Using the technique of integral inequalities sufficient conditions for the existence
of global mild solutions of this problem are proved. This problem is studied also in
the paper [19] by applying a result on linear integral inequality with singular kernel,
where it is assumed that the map f(t, u, v) is linearly bounded in the variables u, v.
Our conditions on the map f are more general. In the last section we apply our
results to a diffusion problem which is a modification of the problem for differential
equations of diffusion type without a delay, studied in the paper [8], to a similar
problem for functional-differential equations.
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2. On the existence of global solutions

Let {S(t)}t∈R+ , S(t) ∈ L := L(X,X) be a strongly continuous semigroup (see
e. g. [2, 10, 15, 16])

and

Ax := limt→0+

1

t
[S(t)x− x], x ∈ D(A)

be generator of the semigroup
We denote S(t) := eAt. By [16, Theorem 2. 2], or [2, p. 22] there exist constants

M = 1, α = 0 such that

(2) ||eAt||L 5 Meαt, t = 0.

By a mild solution of the initial value problem (1) on an interval 〈−r, T ), T > 0
we mean a continuous function x ∈ C(〈−r, T ), X) satisfying

x(t) = eAtΦ(0) +

∫ t

0

eA(t−s)f(s, x(s), xs)ds, 0 5 t < T,

x(t) = Φ(t), −r 5 t 5 0,

We assume that the mapping f : R+ ×X × C 7→ X satisfies the conditions:
(H1) There exist continuous, nonnegative functions F1(t), F2(t), t = 0 and con-

tinuous, positive, nondecreasing functions ω1, ω2 : R+ → R+ such that

||f(t, x, y)|| 5 F1(t)ω1(||x||) + F2(t)ω2(||y||C)

for all t ∈ R+, x ∈ X, y ∈ C,

(H2)
∫ ∞

0

dσ

ω1(σ) + ω2(σ)
= ∞,

In the paper [15] we have assumed the condition (H2) with ω1 = ω2.

Definition. A solution x : 〈0, T ) → X of the equations (1) is called nonextend-
able, if either 0 < T < ∞and then lim supt→T− ||x(t)|| = ∞, or T = ∞. In the
second case the solution is called global.

We do not study the problem of the existence of solutions of the problem (1).
In the papers [18, 19] the problem of the existence of maximal and noncontinuable
(nonextendable) solutions for functional-differential equations with the right-hand
sides of the form f(t, xt) is studied.

The following theorem is proved in the paper [15].

THEOREM 1 ([15, Theorem 1]). Let A : D(A) → X be the infinitesimal genera-
tor of a strongly continuous semigroup {eAt}t=0 and the condition (H1), (H2) with

ω := ω1 = ω2, be satisfied. Then any nonextendable solution x : 〈0, T ) → X of the
initial value problem (1) is global.
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Theorem 2. Let the assumptions of Theorem 1 be fulfilled, where the condition
(H2) is with ω1 6= ω2, i. e.

∫ ∞

0

dσ

ω1(σ) + ω2(σ)
= ∞.

Then any nonextendable solution x : 〈0, T ) → X of the initial value problem (1) is
global.

If we put F = max{F1, F2}, ω = ω1 +ω2 then we obtain the assertion of theorem
2 as a consequence of Theorem 1. The formulation of Theorem 2 has a reason
because the variables y, z of the mapping f(t, y, z) belong to different spaces and
the appearance of different functions ω1, ω2 in the condition (H2) is natural.

Before giving an example of different functions ω1, ω2 satisfying the condition
(H2), let us recall a useful result by A. Constantin [3] (see also [4, Lemma 1]).

Proposition. Let ω ∈ C(R+, (0,∞)) be nondecreasing and
∫ ∞

0
ds

ω(s)
= ∞, then

∫ ∞

0
ds

s+ω(s) = ∞.

Example. Let ω1(u) := u, ω2(u) be a continuous, nondecreasing, positive func-
tion such that

∫ ∞

0
ds

ω2(s)
= ∞. Then the condition (H2) is satisfied.

Now let us consider the case when the operator A : D(A) ⊆ X → X is sectorial.
Consider the initial value problem (1) in the form

(6) ẋ(t) + Ax(t) = f(t, x(t), xt), t = 0,

x(t) = Φ(t), t ∈ 〈−r, 0〉, r > 0

in accordance with the books [6, 7] and some other books and papers dealing with
the problem, where the linear part of the equation is a sectorial operator.The
definition of the sectorial operator can be found i. e. in [7]. By [7, Theorem 1.3.4]
if A is sectorial then −A is the infinitesimal generator of an analytic semigroup
{e−A}t=0 (analytic means that t 7→ e−Atx is an analytic function on (0,∞) for any

x ∈ X.)
If A is sectorial on X and Reσ(A) > 0 and α ∈ 〈0, 1) then one can define the

operator

A−α :=
1

Γ(α)

∫ ∞

0

tα−1e−Atdt,

where Γ(α) is the Eulerian gamma function evaluated at α. The operator A−α is
bounded linear operator on X which is one-to-one and one can define Aα as the
inverse of A−α and we define A0 = I. The operator Aα is closed and densely defined.

If A is sectorial on X then there is an a ∈ R such that A1 = A + aI has
Reσ(A1) > 0 and thus the power Aα

1 is defined. If we define Xα = D(Aα
1 ) and

||x||α := ||Aα
1x||, x ∈ Xα then (Xα, || . ||α) is a Banach space and there are constants

M = 1, γ > 0 such that the following holds:

(7) ||e−Atx||α 5 Me−γt||x||α,

(8) ||e−Atx||α 5 Mt−αe−γt||x||
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for all t > 0, x ∈ Xα, (see [6, Theorem 1.5.4], or [10, Proposition 2.1.1]).
By a mild solution of the initial value problem (6)on the interval 〈−r, T ) we

mean a continuous function x : 〈0, T ) → Xα for which the function

f( . , x( .), x.) : 〈−r, T ) → X, t 7→ f(t, x(t), xt)

is continuous, where
f : R+ ×Xα × Cα → X

(Cα := C(〈−r, 0), Xα) with the norm ||Φ||α := sup−r5Θ50||Φ(Θ)||α) and

x(t) = e−AtΦ(0) +

∫ t

0

e−A(t−s)f(s, x(s), xs)ds, t ∈ 〈0, T ),

x(t) = Φ(t), t ∈ 〈−r, 0〉.

We assume

(G1)
||f(t, x, y)|| 5 F1(t)ω1(||x||α) + F2(t)ω2(||y||Cα

)

for all t = 0, x ∈ Xα, y ∈ Cα, where F1(t), F2(t) and ω1, ω2 are as above.

(G2)
∫ ∞

0

τ q−1dτ

ω1(τ)q + ω2(τ)q
= ∞,

where q = q(ε) = 1
β

+ ε, ε > 0, β = 1 − α.

The definition of nonextendable and global solution is the same as for the
initial value problem (1). In the paper [15] the following theorem is proved.

THEOREM 3 ([15, Theorem 3]). Let the conditions (G1) and (G2) with ω1 = ω2

be fulfilled and the inequalities (7), (8) hold. Then any nonextendable solution
x : 〈0, T ) → X of the initial value problem (6) is global.

We shall prove the following theorem.

THEOREM 4. Let the conditions (G1) and (G2) with ω1 6= ω2, be fulfilled, i. e.

∫ ∞

0

τ q−1dτ

ω1(τ)q + ω2(τ)q
= ∞

and the conditions (7), (8) hold. Then any nonextendable solution x : 〈0, T ) → Xα

of the initial value problem (6) is global.

Proof. Let x : 〈0, T ) → Xα be a nonextendable solution with 0 < T < ∞. Then
limt→T− ||x(t)||α = ∞.

||x(t)||α 5 ||e−AtΦ(0)||α +

∫ t

0

||eA(t−s)f(s, x(s), xs)||αds.

Applying the property of f and the inequalities (7), (8) we obtain

||x(t)||α 5 Me−γt||Φ(0)||α +M

∫ t

0

(t− s)−αe−γs||f(s, x(s), xs)||ds 5
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5 Me−γt||Φ(0)||α +M

∫ t

0

(t− s)−αe−γs[F1(s)ω1(||x(s)||α) + F2(s)ω2(||xs||Cα
)]ds.

Now we shall apply a desingularization method developed in the paper [11] for
integral inequalities with singular kernels.

Let β = 1 − α = 1
1+z

, z > 0, p = 1+z+ε
z+ε

, q = q(ε) = 1 + z + ε = 1
β

+ ε, ε > 0 then
1
p

+ 1
q

= 1 and using the Hölder inequality we obtain

∫ t

0

(t− s)−αF1(s)ω1(||x(s)||α)ds 5

5

(
∫

(t− s)−αpeps

)
1
p

(
∫ t

0

F1(s)e−qsω1(||x(s)||α)qds

)

1
q

.

Analogously for the second integral. Since

∫ t

0

(t− s)−αpepsds = ept

∫ t

0

τ−αpe−pτdτ < Qept,

where Q = Γ(1−αp)
p1−αp (αp = z(1+z+ε)

(1+z)(z+ε)
) 6= 1). If we denote

a = QeT , Ci(t) = Fi(t)
q,

we obtain
||x(t)||α 5 M ||Φ(0)||α+

+

(
∫ t

0

C1(s)ω1(||x(s)||α)qds

)

1
q

+

(
∫ t

0

C2(s)ω2(||xs||Cα
)q

)

1
q

.

Applying the inequality (A+B +C)q 5 3q−1(Aq +Bq +Cq), A, B, C = 0 we have

(*) ||x(t)||qα 5 a+

∫ t

0

D1(s)ω1(||x(s)||α)qds+

∫ t

0

D2(s)ω2(||xs||Cα))
qds,

where a = 3q−1 (M ||Φ(0)||α)
q
, Di = 3q−1Ci, i = 1, 2. Now we can proceed as in the

proof of [15, Theorem 3]. If we denote the right-hand side of the inequality (*) by
g(t) then

||x(t)||qα 5 g(t).

Without loss of generality we can choose M = 1 so large that ||Φ(t)||C 5 a. Then
we have

||xt||
q
Cα

= max{||Φ||qC , sup
05τ5t

||x(τ)||q} 5 max{a, g(t)} = g(t).

Now one can proceed in the same way as in the proof of [15, Theorem 3] to obtain

lim sup
t→T−

Λ(||x(t)||qα) = lim sup
t→T−

∫ ||x(t)||qα

0

dσ

ω(σ
1
q )

=
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=

∫ ∞

0

dσ

ω(σ
1
q )

= q

∫ ∞

0

τ q−1dτ

ω(τ)
= ∞,

where ω = ω
q
1 + ω

q
2. The contradiction.

Remark: If we put ω = ω
q
1+ωq

2 , F1 = D1, F2 = D2 in the condition (G1)(see the
proof of Theorem 4) we obtain Theorem 4 as a consequence of Theorem 3. However
the proof of Theorem 4 says us why this function has the form ω = ω

q
1 + ω

q
2, if the

condition (G1) is formulated with different functions ω1, ω2. The case of the strongly
continuous semigroup, considered above is more clear. We remark that the variables
y, z of the mapping f(t, y, z) belong to different spaces.

Example:
Let

ω1(u) = u, ω2(u) = u
q−1

q (1 + ln(1 + u))
1
q .

Then
∫ ∞

0

σq−1dσ

ω1(σ)q + ω2(σ)q
=

∫ ∞

0

dσ

σ + 1 + ln(1 + σ)
=

∫ ∞

1

dτ

τ + ln τ
= ∞

and thus the condition (G2) is satisfied.

4. Application: Boundary value problem
for a delay system of parabolic equations

The following application of our results concerning differential equations, whose
linear parts are represented by sectorial operators, is motivated by the paper [8],
where some stability results for systems of differential equations studied below,
however without delay, are proved. We also use some notations from this paper.
In the paper [9] there are many nice examples for equations, whose linear parts are
represented by continuous semigroups. It would be possible to apply our results
from the first part of this paper to this type of equations but we concentrate to the
following application only.

Consider the following delay system of parabolic equations with homogeneous
Neumann boundary conditions:

∂u(t, x)

∂t
= D∆u(t, x) + f(t, u(t, x), ut), t = 0, u ∈ Rn, x ∈ Ω ⊂ RN a bounded set,

∂u

∂η
= 0, x ∈ ∂Ω,

(9) u(t, x) = Φ(t, x), −r 5 t 5 0, x ∈ Ω,

∂Φ

∂η
= 0, x ∈ ∂Ω,

where ut ∈ C = C(〈−r, 0〉 × Ω, Rn), ut(Θ, x) = u(t + Θ, x), N = 1, 2, or 3, D =
diag{d1, d2, . . . , dn} is a diagonal matrix, di > 0, i = 1, 2, . . . , n,

Let
X =  L2(Ω) := L2(Ω, R), A : D(A) ⊂ X → X, Aφ = −∆φ,
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D(A) = {φ ∈ H2(Ω, R) :
∂φ

∂η
= 0, on ∂Ω},

H2 := H2(Ω, R) := W 2,2(Ω, R) is the Sobolev space of g ∈ L2(Ω, R) possessing
distributional derivatives Djg(x)of order 5 2 with the norm

||g||H2 =
∑

05|j|52

(
∫

Ω

||Djg(x)||2dx

)
1
2

,

j = (j1, j2, . . . , N)), |j| = j1 + j2 + · · · + jN .

This system, however without delay, is studied in the paper [8] and the approach
we are using in the following considerations also comes from this paper.

The operator A has eigenvaues

0 = λ1 < λ2 < · · · < λk → ∞

with the property that λj has finite multiplicity γj (which equals to the dimen-
sion of the corresponding eigenspace). Further, there is a complete set {Φj,k} of
eigenvectors of A. This yields that if x ∈ D(A) then

Ax =

∞
∑

j=1

λj

γj
∑

k=1

〈x,Φj,k〉Φj,k =

∞
∑

j=1

λjEjx,

where 〈 . , . 〉 is the inner product in X and

Ejx =

γj
∑

k=1

〈x,Φj,k〉Φj,k.

The family {Ej} is a family of complete orthonormal projections in X and

x =

∞
∑

j=1

Ejx, x ∈ X.

The operator −A generates an analytic semigroup {e−At}t=0 defined by

e−Atx = E1x+

∞
∑

j=2

e−λjtEjx.

For a > 0, A1 = A+ aI, 0 < α < 1 the fractional space

Xα = D(Aα
1 ) = {x ∈ X :

∞
∑

j=1

(λj + a)2α||Ejx||
2 <∞}

is defined and

Aα
1 x =

∞
∑

j=1

(λj + a)αEjx.
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Let

Z = L2(Ω, Rn) = Xn = X ×X × · · · ×X, C := C(Ω, Rn) = C(Ω)n

with the usual norms.
Define

AD : D(AD) ⊂ Z → Z, ADψ = −D∆ψ = DAψ,

where

D(AD) = {φ ∈ H2(Ω, Rn) :
∂φ

∂η
= 0, on∂Ω},

−AD is sectorial with the fractional power

Zα = D(Aα
D1) = Xα × . . .Xα = [Xα]n, AD1 = AD + aI,

||z||α = ||Aα
D1z||, z ∈ Zα,

Aα
D1z =

∞
∑

j=1

Dα(λj + a)αPjz,

Dα = diag{dα
1 , d

α
2 , . . . , d

α
n}, Pj = diag{Ej, Ej, . . . , Ej}, n× nmatrix.

The operator generates the analytic semigroup {e−ADt}t=0,, where

e−ADtz = P1z +
∞
∑

j=2

e−λjDtPjz, z ∈ Z.

The family {Pj} is a family of orthonormal projections in Z which is complete and
therefore

z =
∞
∑

j=1

||Pjz, ||z|| =
∞
∑

j=1

||Pjz||
2, ||z||α =

∞
∑

j=1

||Pjz||
2
α,

For 3
4 < α < 1 the following inequalities holds:

||e−ADtz||α 5 M ||z||α, = 0,

||e−ADtz||α 5 Mt−α||z||, t > 0

([6, Theorem 1.6.1]) and the inclusions

Zα ⊂ C(Ω, Rn), Zα ⊂ Lp(Ω, Rn), p = 2

are continuous (see [6]).
The abstract formulation of the problem:

ż + ADy = g(t, z, zt), t = 0,

z(t) = Φ(t), −r 5 t 5 0, z ∈ Zα,

z(x)(t) = z(t, x), z(x)t(Θ) = y(t+ Θ, x),

g : R+ × Zα × Cα → Y, g(t, z, y) = f(t, z(x), y(x)t), x ∈ Ω, y(x) ∈ Cα.
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From the continuous inclusion Zα ⊂ C(Ω)n it follows that there exists l > 1 such
that

sup
x∈Ω

||z(x)||Rn 5 l||z||α, z ∈ Zα.

If we assume
f(t, z, y) = f1(t, z) + f2(t, y)

and
||f1(t, z)|| 5 F1(t)ω1(||z||), ||f2(t, y)|| 5 F2(t)ω2(||y||C),

then
g1(t, z) = f1(t, z(x)), g2(t, y) = f2(t, y)

and

(11) ||g1(t, z)|| 5 F1(t)ω1(l||z||α) 5 F1(t)ω1(k||z||α),

(12) ||g2(t, y)|| 5 F2(t)ω2(Rl||y||Cα
) 5 F2(t)ω2(k||y||Cα

)

where k = max{l, Rl}. If we assume

∫ ∞

0

τ q−1dσ

ω(σ)
= ∞,

where ω = ω
q
1 + ω

q
2, q = 1

β
+ ε then also

∫ ∞

0

τ q−1dσ

ω(kσ)
= ∞,

and Theorem 4 yields that the solution x(t) of the boundary value problem has the
property that if 0 < T < ∞ then limt→T− ||x(t)||α < ∞ i. e. any nonextendable
solution of the boundary value problem is global.

We have proved the following theorem.

Theorem 5. Let the operator A be as above and assume that the mapping f from
the right-hand side of the diffusion equation has the form f(t, z, y) = f1(t, z) +
f2(t, y) and the following conditions are satisfied:

(1)
||f1(t, z)|| 5 F1(t)ω1(||z||),

||f2(t, y)|| 5 F2(t)ω2(||y||C),

for t = 0, (z, y) ∈ Rn × C(〈−r, 0〉 × Ω, Rn), where ω1, ω2 : 〈0,∞) → (0,∞)
are continuous, positive and nondecreasing functions on R+.

(2)
∫ ∞

0

τ q−1dτ

ω1(τ)q + ω2(τ)q
= ∞,

where q = 1
β

+ ε, ε > 0, 3
4 < α = 1 − β < 1.

Then any nonextendable solution of the boundary value problem (9) is global.
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14. M. Medveď, On the existence of global solutions of evolution equations, Demonstratio Math.

XXXVII (2004), 871-882.
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