
Electronic Journal of Qualitative Theory of Differential Equations

Proc. 8th Coll. QTDE, 2008, No. 17 1-7;

http://www.math.u-szeged.hu/ejqtde/

Stability of positive solutions of local partial differential
equations with a nonlinear integral delay term1

Alexander V. Rezounenko

Department of Mechanics and Mathematics, Kharkov University,
4, Svobody Sqr., Kharkov, 61077, Ukraine

E-mail: rezounenko@univer.kharkov.ua

Abstract. Stability properties of positive stationary solutions to local
partial differential equations with delay are studied. The results are ap-
plied to equations with not necessarily convex (concave) nonlinearities,
for example, to the diffusive Nicholson’s blowflies equation.

Key words : Partial functional differential equation, delay equation,
positive stationary solution.

2000 Mathematics Subject Classification : 35R10, 35B35, 35K55

1. Introduction

Stability properties of stationary solutions play a central role in the qualitative
analysis of differential equations. There are many methods and approaches developed
for different types of differential equations (ordinary, partial, delay and mixed). For
more details on delay equations we refer to the classical monographs [9, 5, 24, 11].

This note is inspired by the work [7] where authors study the stability proper-
ties of positive stationary solutions to semi-linear delay partial differential equations
(P.D.E.s) (see [7] for the history of the problem and references). In [7] authors start
with a result for a general convex (concave) delay term and then present a more
detailed analysis for the case of discrete delays. Taking into account that in some
cases (see e.g. [14, 15, 16]) for partial differential equations the distributed delay
has some essential advantages, we present in this note a slight generalization of the
general result given in [7] and then study a wide class of partial differential eqautions
(P.D.E.s), including equations with a distributed delay. In a sense, this note is a sup-
plement of the results in [7]. Another motivation is to extend the technics to cover
the case of non-convex (non-concave) nonlinearities to treat the diffusive Nicholson’s
blowflies equation (see e.g. [17, 19]).

Consider the following semi-linear partial differential equation with local (in space
variable) delay term (we use the notations of [7])

∂

∂t
u(t, x) − ∆u(t, x) + d · u(t, x) = f(ut(x)), t > 0, x ∈ Ω, d ≥ 0, (1)

with the Dirichlet boundary condition

u(t, x) = 0, t ≥ 0, x ∈ ∂Ω (2)

1This paper is in final form and no version of it is submitted for publication elsewhere.
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and the initial condition

u(θ, x) = ϕ(θ, x), (θ, x) ∈ [−r, 0] × Ω, (3)

where Ω is a bounded domain in Rn with a smooth boundary (see e.g. [12]). In [7]
the constant d = 0. As usually for delay equations [8], we denote by ut the function
of θ ∈ [−r, 0] by the formula ut ≡ ut(θ) ≡ u(t+ θ).

The property of the nonlinear function f : C([−r, 0];R) → R will be given below.
As in [7] we denote by · the embedding · : R → C([−r, 0];R) as

a(θ) ≡ a, for all θ ∈ [−r, 0], a ∈ R.

The C2 function U : Ω → R is called a positive stationary solution of (1)-(3) if

∆U(x) − d · U(x) + f(U(x)) = 0, x ∈ Ω, (4)

U(x) = 0, x ∈ ∂Ω, U(x) > 0, x ∈ Ω. (5)

The linearisation of (1)-(3) around U reads

∂

∂t
w(t, x) − ∆w(t, x) + d · w(t, x) = Df(U(x)) · [wt(x)], t > 0, x ∈ Ω, (6)

where Df(U(x)) is the Fréchet derivative of f at U(x).
The characteristic equation is given as

∆v(x) − d · v(x) +Df(U(x)) · [eλ·v(x)] = λv(x), x ∈ Ω. (7)

Denote the dominant characteristic root of (7) by Λ, i.e. there exists a function V (x)
satisfying the Dichichlet boundary condition such that

∆V (x) − d · V (x) +Df(U(x)) · [eΛ·V (x)] = ΛV (x), x ∈ Ω (8)

and for all solutions (λ, v) of (7) one has Reλ ≤ ReΛ. To get the stability of U(x)
by the principle of the linearized stability one needs ReΛ < 0. In the case ReΛ > 0
the solution U(x) is unstable.

As in [7], we assume

Λ ∈ R and V (x) > 0, x ∈ Ω. (H)

This assumption is satisfied, for example, for positive semigroups (see [6] for more
details and for delay equations [6, Section 6 of Chapter VI]).

Now we present a slight generalization of theorem 2.1 [7] to cover the case of
non-increasing and non-convex (non-concave) nonlinearities.

Theorem 1. Assume (H) is satisfied. Consider a positive stationary solution U(x)
and denote smax ≡ max{U(x), x ∈ Ω}. Consider the following conditions

1) the function f is increasing on [0, smax] i.e. Df(a) · [ϕ] ≥ 0 for all a ∈ [0, smax]
and ϕ ∈ C([−r, 0];R), ϕ ≥ 0;

2) the function h(a) ≡ f(a) is C2 function h : R → R and satisfies
3a) h(0) ≥ 0 and h′(a) < h′(0) for all a ∈ (0, smax]
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or
3b) h(0) ≤ 0 and h′(a) > h′(0) for all a ∈ (0, smax].
Then in the case 1),2),3a) the positive stationary solution U(x) is stable while in

the case 1),2),3b) the solution U(x) is unstable.

Proof follows the line of arguments given in theorem 2.1 [7]. We indicate the
moments where the proofs differ. Consider the function

g(a) ≡ Df(a) · [a] − f(a). (9)

In the case 1),2),3a), we need the property g(a) < 0 for all a ∈ (0, smax]. Using
g(a) = ah′(a) − h(a), we get g′(a) = h′′(a). Hence g(a) = g(0) +

∫ a
0
h′′(s)ds =

g(0) + h′(a) − h′(0). The last property, g(0) = −h(0) and 3a) imply g(a) < 0 for all
a ∈ (0, smax]. The same arguments give the property g(a) > 0 for all a ∈ (0, smax] in
the case 1),2),3b). The rest of the proof follows the proof of theorem 2.1 [7] (see page
4 in [7]).

2. Partial differential equations with an integral delay term

Consider the semi-linear partial differential equation (1) with local (in space vari-
able) and distributed (in time variable) nonlinear delay term of the form

f(ϕ) =
∫

0

−r
b(ϕ(θ)) · dη(θ), ϕ ∈ C([−r, 0];R), (10)

where η : [−r, 0] → R is of bounded variation.
So equation (1) takes the form (as before d ≥ 0)

∂

∂t
u(t, x) − ∆u(t, x) + d · u(t, x) =

∫

0

−r
b(u(t+ θ, x)) · dη(θ), t > 0, x ∈ Ω. (11)

We assume that

Iξ ≡
∫

0

−r
dη(θ) 6= 0 (12)

and

0 ≤
∫

0

−r
eγθ dη(θ) ≤ Iξ for all γ ≥ 0. (13)

Remark 1. Assumption (13) is satisfied, for example, for any non-decreasing η,
so dη(θ) ≥ 0.

We also assume that function b in (10), (11) is a C2 function b : R→ R, satisfying
the property (c.f. 3a) in theorem 1)

b(a) ≥ 0 for all a ≥ 0 and b′(a) < b′(0) for all a > 0. (14)

Now we prove the following

Theorem 2. Assume (H) is satisfied. Let the function η : [−r, 0] → R be
of bounded variation and satisfy (12), (13) and function b satisfy (14). Then any
positive stationary solution U(x) of (11),(2),(3) is stable.
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Remark 2. Since in (10), (11) we use the Stiltjes integral, we may treat the
cases of discrete, distributed and mixed discrete-distributed delays. In this connection
it is interesting to compare our assumptions with the ones of part (ii) in [7, theorem
3.1] where a discrete delay is considered. It is easy to see that for the equation (11)
our assumption

∫

0

−r e
γθ dη(θ) ≤ Iξ for all γ ≥ 0 (see (13)) together with b(a) ≥ 0

(see (14)) are less restrictive than the corresponding assumption ∂`F (a) ≥ 0 for
` = 1, ..., k, a ≥ 0 in [7, theorem 3.1].

Proof of theorem 2. One can check that the Fréchet derivative of f at U(x) reads

Df(U(x)) · [ψ] =
∫

0

−r
b′(U(x)) · ψ(θ) · dη(θ). (15)

Hence equation (8) takes the form

∆V (x) − d · V (x) + b′(U(x))V (x) ·
∫

0

−r
eΛθdη(θ) = ΛV (x), x ∈ Ω. (16)

Our goal is to show that Λ < 0.
We multiply (16) by U(x) and add (4), multiplied by −V (x). Integration over Ω,

using the symmetric Green formula, gives

∫

Ω

b′(U(x))V (x)U(x) dx ·
∫

0

−r
eΛθdη(θ) −

∫

Ω

b(U(x))V (x) dx · Iξ = Λ
∫

Ω

U(x)V (x) dx.

Using Iξ 6= 0 (see (12)), one can write

∫

Ω

b′(U(x))V (x)U(x) dx · IξI
−1

ξ

∫

0

−r
eΛθdη(θ) −

∫

Ω

b(U(x))V (x) dx · IξI
−1

ξ

∫

0

−r
eΛθdη(θ)

+
∫

Ω

b(U(x))V (x) dx · Iξ ·
[

I−1

ξ

∫

0

−r
eΛθdη(θ) − 1

]

= Λ
∫

Ω

U(x)V (x) dx. (17)

The function g(a) (see (9)) reads

g(a) =
∫

0

−r
ab′(a)dη(θ) −

∫

0

−r
b(a)dη(θ) = [ab′(a) − b(a)] · Iξ, (18)

so we can rewrite (17) as

∫

Ω

g(U(x))V (x) dx · I−1

ξ ·
∫

0

−r
eΛθdη(θ) +

∫

Ω

b(U(x))V (x) dx ·
[
∫

0

−r
eΛθdη(θ) − Iξ

]

= Λ
∫

Ω

U(x)V (x) dx. (19)

In our case the function h(a) = b(a) · Iξ, so h′′(a) = b′′(a) · Iξ and g(a) = [−b(0) +
b′(a)− b′(0)] · Iξ. As in the proof of theorem 1, property (14) and (18) imply g(a) < 0
for all a > 0 (since Iξ > 0).

Finally, if we assume that Λ ≥ 0, then taking into account I−1

ξ ·
∫

0

−r e
Λθdη(θ) ≥ 0

(by assumption (13)), b(U(x)) ≥ 0 (by (14)),
[

∫

0

−r e
Λθdη(θ) − Iξ

]

≤ 0 (by (13)), we
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conclude that the left hand side of (19) is strictly negative. Hence so for the right
hand side, which is a contradiction. Hence Λ < 0. Now we may apply the classical
principle of linearized stability (for the delay case see e.g. [24, theorem 4.1, p.123])
to get the stability of U. The proof is complete.

The diffusive Nicholson’s blowflies equation (see e.g. [17, 19] and also [14, 15]) is
the equation (11) with the nonlinear (birth) function b(s) = αs ·e−βs, where α, β > 0.

6

-

b(s)

s0

One can easily check that such function b is neither convex nor concave, which
implies the same for h(a) ≡ f(a). Hence in this case one cannot apply the results
of [7]. On the other hand, b does satisfy property (14) and as a result we have
conditions on the function η (see (12), (13)) when one may apply theorem 2 to the
diffusive Nicholson’s blowflies equation with a distributed delay.

Remark 3. For the diffusive Nicholson’s blowflies equation it is natural to take
a differentiable η such that dη(θ) = ξ(θ) dθ with ξ(θ) ≥ 0, ξ 6≡ 0 (c.f. [14, 15])) so
the properties (12), (13) are satisfied.
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