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NEW RESULTS FOR TIME REVERSED SYMPLECTIC DYNAMIC

SYSTEMS AND QUADRATIC FUNCTIONALS

ROMAN ŠIMON HILSCHER AND PETR ZEMÁNEK∗

Abstract. In this paper, we examine time scale symplectic (or Hamiltonian) systems
and the associated quadratic functionals which contain a forward shift in the time vari-
able. Such systems and functionals have a close connection to Jacobi systems for calculus
of variations and optimal control problems on time scales. Our results, among which we
consider the Reid roundabout theorem, generalize the corresponding classical theory for
time reversed discrete symplectic systems, as well as they complete the recently developed
theory of time scale symplectic systems.

1. Introduction

Time scale symplectic (or Hamiltonian) systems constitute a basis for the study of
Jacobi equations arising in the optimal control theory [4, 13, 16] as well as for generaliza-
tions of Sturm–Liouville differential and difference equations [1,14]. In such optimization
problems, the second variation is a quadratic functional whose definiteness indicates the
potential optimality of a given candidate, along which the functional is evaluated. Tradi-
tionally, two types of optimal control problems are studied in the literature, see e.g. [11,16].
The first problem has the form

minimize F(x, u) := K(x(a), x(b)) +

∫

b

a

L(t, xσ(t), u(t)) ∆t (C)

subject to x ∈ C1
prd on [a, b]T, u ∈ Cprd on [a, ρ(b)]T, and

x∆(t) = f(t, xσ(t), u(t)), t ∈ [a, ρ(b)]T,

ϕ(x(a), x(b)) = 0,

while the second one is

minimize F(x, u) := K(x(a), x(b)) +

∫

b

a

L(t, x(t), u(t)) ∆t (C)

subject to x ∈ C1
prd on [a, b]T, u ∈ Cprd on [a, ρ(b)]T, and

x∆(t) = f(t, x(t), u(t)), t ∈ [a, ρ(b)]T,

ϕ(x(a), x(b)) = 0.
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These two problems are formulated in the framework of dynamic equations on time scales.
We refer to [4, 5] for basic notation and terminology in this recent theory.

Problems (C) and (C) differ in the presence or absence of the forward shift σ(t) in
the state variable xσ(t) := x(σ(t)) or x(t), respectively, appearing both in the objective
functional and the equation of motion. Although the problem (C) has been much more
preferred in the literature, in [11, Section 3] it was proven that it is equivalent to problem
(C) via a transformation involving the implicit function theorem. In addition, in [16] it
was shown that the second order optimality conditions for both problems (C) and (C)
lead to a linear time scale dynamic system

x∆ = A(t) x + B(t) u, u∆ = C(t) x + D(t) u, t ∈ [a, ρ(b)]T. (S)

System (S) is called a time scale symplectic system (or a Hamiltonian system), since its
coefficients satisfy the identity

ST(t) J + J S(t) + µ(t) ST(t)J S(t) = 0 for all t ∈ [a, ρ(b)]T, (1.1)

where

S(t) :=

(

A(t) B(t)
C(t) D(t)

)

, J :=

(

0 I

−I 0

)

. (1.2)

Condition (1.1) yields that the fundamental matrix of system (S) is symplectic, which is
the defining property for the continuous time linear Hamiltonian systems and the discrete
time symplectic systems. It is known that system (S) has the equivalent form

x∆ = −DT(t) xσ + BT(t) uσ, u∆ = CT(t) xσ − AT(t) uσ, t ∈ [a, ρ(b)]T, (1.3)

see [6, 8]. In the discrete time theory, system (1.3) is called a time-reversed symplectic

system, see the pioneer work [3].
In this paper we consider a general time-reversed symplectic dynamic system

x∆ = A(t) xσ + B(t) uσ, u∆ = C(t) xσ + D(t) uσ, t ∈ [a, ρ(b)]T, (S)

whose coefficients satisfy the identity

ST(t)J + J S(t) − µ(t) ST(t)J S(t) = 0 for all t ∈ [a, ρ(b)]T, (1.4)

where the matrix J is defined in (1.2) and

S(t) :=

(

A(t) B(t)
C(t) D(t)

)

. (1.5)

In the analogy with the discrete time theory we show that, rather than system (S), it
is the system (S) in terms of which the natural second order optimality conditions for
problem (C) should be formulated. This is nicely demonstrated by a series of new results
which we derive for the quadratic forms (suppressing the argument t)

Q(η, q) := ηT CT (I + µA) η + 2 µ ηTCTB q + qT (I + µDT ) B q,

η ∈ C1
prd[a, b]T, q ∈ Cprd[a, ρ(b)]T, with

η∆(t) = A(t) η(t) + B(t) q(t), t ∈ [a, ρ(b)]T,











(1.6)
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and
Q(η, q) := ηT CT (I − µA) η − 2 µ ηTCT B q + qT (I − µDT ) B q,

η ∈ C1
prd[a, b]T, q ∈ Cprd[a, ρ(b)]T, with

η∆(t) = A(t) ησ(t) + B(t) qσ(t), t ∈ [a, ρ(b)]T











(1.7)

corresponding to systems (S) and (S), respectively. This way we complete and clarify
the relationship between various quadratic functionals considered in [16, Section 4]. We
establish a generalization of the discrete Reid roundabout theorem in [3, Theorem 1] to
the time-reversed symplectic system (S) on arbitrary time scales. Such a result can be
regarded as an analog of the corresponding Reid roundabout theorems for nabla time
scale symplectic systems in [12, Theorem 8.1] and system (S) in [9, Theorem 6.1]. As a
consequence we also prove the exact relation between the time scale quadratic functionals
involving Q and Q.

2. Jacobi, Hamiltonian, and symplectic systems for problem (C)

In this section we motivate the time scale symplectic system (S) and the quadratic
form Q through their origin in the variational theory over time scales. In [16, Section 4]
and [13, Section 4.2], it is shown that the Jacobi system for the nonlinear optimal control
problem (C) has the form

η∆ = A(t) η + B(t) v, q∆ = −AT(t) qσ + P (t) η + Q(t) v,

−BT(t) qσ + QT(t) η + R(t) v = 0,

}

t ∈ [a, ρ(b)]T. (J)

Here the coefficient matrices are determined by the data of problem (C). We recall that
η and v are the variations of the state x and control u from problem (C) and that q is the
momentum variable. Throughout the paper we are given the dimensions m, n ∈ N with
m ≤ n.

Notation 2.1 (Jacobi system (J)). The Cprd matrix functions A, B, P , Q, R on [a, ρ(b)]T,

the C1
prd vectors η, q on [a, b]T, and the Cprd vector v on [a, ρ(b)]T have the following

dimensions: A, P ∈ Rn×n, B, Q ∈ Rn×m, R ∈ Rm×m, and η, q ∈ Rn, v ∈ Rm. In addition,

P and R are symmetric, I + µA is invertible, and we define the Cprd matrices Ã ∈ Rn×n

and S ∈ Rm×m on [a, ρ(b)]T by

Ã := (I + µA)−1, S := R − µBTÃ
T

Q.

Moreover, if the matrix R is invertible, we define the matrix T ∈ Rn×n by

T := I − µÃBR−1QT .

With system (J) we consider the quadratic form

ω(η, v) := ηT P η + 2 ηTQ v + vTR v,

η ∈ C1
prd[a, b]T, v ∈ Cprd[a, ρ(b)]T, with

η∆(t) = A(t) η(t) + B(t) v(t), t ∈ [a, ρ(b)]T.











(2.1)
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When the matrix R is invertible, Jacobi system (J) can be written as the linear Hamil-
tonian system

η∆ = A(t) η + B(t) qσ, q∆ = C(t) η − AT(t) qσ, t ∈ [a, ρ(b)]T. (H)

The coefficients in system (H) have the following properties.

Notation 2.2 (Hamiltonian system (H)). The Cprd matrix functions A, B, C on [a, ρ(b)]T

and the C1
prd vectors η, q on [a, b]T have the following dimensions: A, B, C ∈ Rn×n and

η, q ∈ Rn. In addition, B and C are symmetric, I + µA is invertible, and we define the
Cprd matrix Ã ∈ Rn×n on [a, ρ(b)]T by

Ã := (I + µA)−1.

In the definitions of T and Ã in Notations 2.1 and 2.2 we slightly differ from [16,
Section 4], where these two matrices are transposed. The current definitions appear to be
more convenient. The quadratic form associated with system (H) has the form

Ω(η, q) := ηTC η + qT B q,

η ∈ C1
prd[a, b]T, q ∈ Cprd[a, ρ(b)]T, with

η∆(t) = A(t) η(t) + B(t) qσ(t), t ∈ [a, ρ(b)]T.











(2.2)

Note that the forward shift is now in qσ instead of the traditional shift in ησ in [16,
Section 4].

Notation 2.3 (Symplectic system (S)). The Cprd matrix functions A, B, C, D on [a, ρ(b)]T

and the C1
prd vectors η, q on [a, b]T have the following dimensions: A, B, C, D ∈ Rn×n and

η, q ∈ Rn. In addition, the matrix S ∈ R2n×2n defined in (1.5) satisfies identity (1.4).

The quadratic form Q associated with system (S) is defined in (1.7). Note that identity
(1.4) is equivalent with

S(t)J + J ST(t) − µ(t) S(t)J ST(t) = 0 for all t ∈ [a, ρ(b)]T, (2.3)

since at the right-dense points t ∈ [a, b)T equations (1.4) and (2.3) coincide, while at the
right-scattered points t ∈ [a, ρ(b)]T they are equivalent with I−µ(t) S(t) and I−µ(t) ST(t)
being symplectic. Identities (1.4) and (2.3) then reduce, respectively, to

AT + D − µ (AT D − CT B) = 0, (I − µAT ) C and (I − µDT ) B symmetric, (2.4)

AT + D − µ (D AT − C BT ) = 0, (I − µD) CT and (I − µA) BT symmetric. (2.5)

We now review the results connecting the systems (J), (H), and (S) and their quadratic
forms. These results are from [16] and [13], except of the result in Propositions 2.5, 2.8,
and 2.10 which are new. In particular, as displayed below in the three mentioned proposi-
tions, it is the natural connection of the quadratic form Ω corresponding to Hamiltonian
system (H) with the quadratic forms ω and Q that shows the importance of these objects.
For example, in [2, Section 5] it is shown that higher order Sturm–Liouville dynamic equa-
tions lead to the Hamiltonian system (H). Therefore, the variational methods based on
the corresponding quadratic forms known for the Hamiltonian and symplectic systems (H)
and (S) can now be utilized also for some types of higher order Sturm–Liouville equations
on time scales.
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Proposition 2.4 (Jacobi (J) to Hamiltonian (H)). Assume that A,B, P , Q, R, T satisfy

the conditions in Notation 2.1 with R and T invertible. Then the Jacobi system (J) is the

Hamiltonian system (H), whose coefficients

A = A− BR−1QT , B = BR−1BT , C = P − QR−1QT (2.6)

with Ã = T−1Ã satisfy the conditions in Notation 2.2.

Proof. See [16, Proposition 4.4] or [13, Formula (45)]. �

The pairs of functions (η, v) and (η, q) in definitions (2.1), (2.2), (1.6), and (1.7) of
the quadratic forms ω, Ω, Q, and Q are called respectively (A,B)-admissible, (A, B)-
admissible, (A, B)-admissible, and (A, B)-admissible. The results in Propositions 2.5, 2.8,
and 2.10 below represent the correct parallel versions to [16, Propositions 2.10, 2.11, 3.7].

Proposition 2.5 (Quadratic forms for (J) and (H)). Assume that A,B, P , Q, R satisfy

the conditions in Notation 2.1 with R invertible and let A, B, C be given by (2.6). If (η, q)
is (A, B)-admissible, then the pair (η, v) with v := R−1(BT qσ −QT η) is (A,B)-admissible,

and in this case ω(η, v) = Ω(η, qσ).

Proof. The result follows by direct calculations. �

Proposition 2.6 (Hamiltonian (H) to symplectic (S)). Assume that A, B, C satisfy the

conditions in Notation 2.2. Then the Hamiltonian system (H) is the symplectic system

(S), whose coefficients

A = ÃA, B = ÃB, C = CÃ, D = −µ CÃB − AT (2.7)

with I − µA = Ã satisfy the conditions in Notation 2.3.

Proof. The result follows by direct calculations with the aid of properties (2.4)–(2.5). �

Proposition 2.7 (Symplectic (S) to Hamiltonian (H)). Assume that A, B, C, D satisfy

the conditions in Notation 2.3. Then the the symplectic system (S) is the Hamiltonian

system (H), whose coefficients

A = (I − µA)−1A, B = (I − µA)−1 B, C = C (I − µA)−1 (2.8)

with Ã = I − µA satisfy the conditions in Notation 2.2.

Proof. The result follows by direct calculations, in which we use the properties of the
coefficients of system (S) displayed in (2.5). �

Proposition 2.8 (Quadratic forms for (H) and (S)). Assume that

(i) either A, B, C satisfy the conditions in Notation 2.2 and A, B, C, D are given by

(2.7),
(ii) or A, B, C, D satisfy the conditions in Notation 2.3 with I − µA invertible and

A, B, C are given by (2.8).

Then a pair (η, q) is (A, B)-admissible if and only if it is (A, B)-admissible, and in this

case Ω(η, qσ) = Q(ησ, qσ).

Proof. The result follows by direct calculations. �
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Combining Propositions 2.4 and 2.6 yields the transition from Jacobi system (J) to
symplectic system (S). This, however, requires the invertibility of the matrices R and T .
As the result of [16, Lemma 4.9] shows, the invertibility of the matrix S alone is a weaker
condition than the invertibility of R and T . This way, we may transform system (J) into
system (S) directly by bypassing the Hamiltonian system (H).

Proposition 2.9 (Jacobi (J) to symplectic (S)). Assume that A,B, P , Q, R, S satisfy the

conditions in Notation 2.1 with S invertible. Then the Jacobi system (J) is the symplectic

system (S), whose coefficients

A = Ã (A−BST−1QTÃ), B = ÃBST−1BT,

C = PÃ − (Q − µ PÃB) ST−1QTÃ, D = (Q − µ PÃB) ST−1BT −AT

}

(2.9)

with I − µA = Ã + µÃBST−1QTÃ satisfy the conditions in Notation 2.3. Thus, the

resulting symplectic system (S) is the Hamiltonian system (H) if and only if the matrix

R is invertible.

Proof. The result follows from [16, Theorem 4.8], when the symplectic system obtained
from [16, Theorem 4.8] is written in the time-reversed form (S), see the relation be-
tween the systems (S) and (1.3) in Section 1. The last assertion is a consequence of [16,
Lemma 4.9]. �

Proposition 2.10 (Quadratic forms for (J) and (S)). Assume that A,B, P , Q, R satisfy

the conditions in Notation 2.1 with S invertible and let A, B, C, D be given by (2.9). If

(η, q) is (A, B)-admissible, then the pair (η, v) with

v := ST−1(BT qσ − QTÃ ησ) (2.10)

is (A,B)-admissible, and in this case ω(η, v) = Q(ησ, qσ).

Proof. The result follows by direct calculations. �

From the above result we can easily deduce the relationship between the quadratic
functionals associated with systems (J) and (S). Let M ∈ Rr×2n and Γ ∈ R2n×2n be given
matrices with r ≤ 2n, which define the boundary conditions of η and the cost of the
endpoints of η. For (A,B)-admissible pairs (η, v) we define the quadratic functional

F(η, v) :=

(

η(a)
η(b)

)T

Γ

(

η(a)
η(b)

)

+

∫

b

a

ω(η, v)(t) ∆t,

and for (A, B)-admissible pairs (η, q) the quadratic functional

F(η, q) :=

(

η(a)
η(b)

)T

Γ

(

η(a)
η(b)

)

+

∫

b

a

Q(ησ, qσ)(t) ∆t. (2.11)

The quadratic functional F is the second variation of the optimal control problem (C),
see [11, Theorem 9.7]. The result below implies through the latter reference that necessary
conditions for the nonnegativity of the functional F provide at the same time necessary
optimality conditions for the optimal control problem (C).
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Corollary 2.11. Assume that A,B, P , Q, R satisfy the conditions in Notation 2.1 with S

invertible and let A, B, C, D be given by (2.9). If the functional F is nonnegative, then the

functional F is nonnegative as well. That is, if F(η, v) ≥ 0 for every (A,B)-admissible

pair (η, v) with

M

(

η(a)
η(b)

)

= 0, (2.12)

then F(η, q) ≥ 0 for every (A, B)-admissible pair (η, q) satisfying (2.12).

Proof. If (η, q) is (A, B)-admissible and satisfies (2.12), then Proposition 2.10 yields that
(η, v) with v given by (2.10) is (A,B)-admissible and F(η, q) = F(η, v) ≥ 0, by our
assumption. �

3. Reid roundabout theorem for symplectic system (S)

In this section we derive the so-called Reid roundabout theorem for the time-reversed
symplectic system (S). In addition, we establish the exact connection between the qua-
dratic functionals involving the forms Q and Q associated with systems (S) and (S),
respectively.

Identity (1.4) implies that the Wronskian matrix of any two solutions of system (S) is
constant on [a, b]T, that is, if Z = (X, U) and Z̃ = (X̃, Ũ) are two 2n× k solutions of (S),
then

ZT(t)J Z̃(t) = XT(t) Ũ(t) − UT(t) X̃(t) ≡ C on [a, b]T,

where C ∈ Rk×k is a constant matrix. A solution Z = (X, U) of (S) is called a conjoined
basis if Z(t) ∈ R2n×n and ZT(t)JZ(t) ≡ 0 on [a, b]T.

With system (S) we consider the Riccati matrix dynamic equation

R[W ](t) = 0, t ∈ [a, ρ(b)]T, R[W ] := W∆ − C − D W σ + W (A + B W σ), (R)

and the quadratic functional F over (A, B)-admissible pairs (η, q) introduced in (2.11).
We say that the functional F is positive, if F(η, q) > 0 for every (A, B)-admissible (η, q)
satisfying (2.12) and η 6≡ 0. In particular, we are interested in the zero endpoints case for
which M = I and Γ = 0, i.e., endpoints constraint (2.12) has the form η(a) = 0 = η(b).
In this case, the functional F will be denoted by F0, that is,

F0(η, q) :=

∫

b

a

Q(ησ, qσ)(t) ∆t. (3.1)

Next we present the first result of this section, compare with [13, Theorem 3.1] and [12,
Theorem 8.1], in which we characterize the positivity of the functional F0 over the zero
endpoints.

Theorem 3.1 (Reid roundabout theorem for system (S)). The following are equivalent.

(i) The functional F0 is positive.

(ii) There exists a conjoined basis (X, U) of (S) with X(t) is invertible on [a, b]T and

Xσ(t) X−1(t) B(t) ≥ 0 for all t ∈ [a, ρ(b)]T.

(iii) There exists a symmetric solution W (t) on [a, b]T of the Riccati equation (R) with

P(t) := B(t) − µ(t) [DT(t) − BT(t) W (t)] B(t) ≥ 0 for all t ∈ [a, ρ(b)]T. (3.2)

EJQTDE, Proc. 9th Coll. QTDE, 2012 No. 15, p. 7



In the literature there are several other characterizations of the positivity of a quadratic
functional. For the functional F0, one can prove such conditions in terms of the principal

solution (X̂, Û) of (S) at t = b with nondecreasing kernel of X̂(t) on [a, b]T, certain
perturbed quadratic functionals, and the implicit Riccati equations, see [7,8,10,12]. Also,
the result of Theorem 3.1 can be derived for more general endpoint constraints by the
standard time scales methods e.g. in [7,9,12]. Observe that in the discrete case the result
of Theorem 3.1 provides yet another two equivalent conditions to the list in [3, Theorem 1].
With respect to this reference we note that our functional F0 has the opposite sign than
the corresponding time-reversed functional in [3, Theorem 1(vi)].

We emphasize that the transformation of the coefficients of system (S) into a standard
symplectic system (S) displayed in (3.6) below does not yield the functional F0, but
rather a different functional with η and q in its argument instead of the required ησ and
qσ. Therefore, a direct proof of Theorem 3.1 is essentially needed. First we present an
important tool.

Lemma 3.2 (Picone identity). Assume that W (t) on [a, b]T is a symmetric solution of

the Riccati matrix equation (R). Then for any (A, B)-admissible z = (η, q) we have

Q(zσ)(t) = [ηT(t) W (t) η(t)]∆ + [wσ(t)]T P(t) wσ(t) on [a, ρ(b)]T, (3.3)

where w := q − Wη on [a, ρ(b)]T and P is defined in (3.2). In addition, we have

ησ − µP wσ = [I − µ (DT − BT W )] η on [a, ρ(b)]T. (3.4)

Proof. The (A, B)-admissibility of z implies that η = (I − µA) ησ − µB qσ. Formula (3.3)
then follows by direct calculations from the time scales product rule for (ηT Wη)∆ =
(η∆)T Wη +(ησ)T (W∆ησ +Wη∆) with the aid of the Riccati equation (R), the symmetry
of W , and identity (2.4)(i). Formula (3.4) is also proven by direct calculations, in which
the identity

[I − µ (DT − BT W )] [I − µ (A + B W σ)] = I − µ2 BT R[W ] on [a, ρ(b)]T (3.5)

is utilized, compare with [15, Lemma 3.6]. �

Proof of Theorem 3.1. The implication “(i) ⇒ (ii)” is proven in a similar way as in [9,
Theorem 6.1]. The implication “(ii) ⇒ (iii)” is based on the Riccati substitution W :=
UX−1 on [a, b]T. Finally, the implication “(iii) ⇒ (i)” follows from the Picone identity in
Lemma 3.2. �

Next we establish the second main result of this section, which relates the positivity
of the quadratic functionals corresponding to time scale symplectic systems (S) and (S).
Parallel to Notation 2.3 we specify the conditions for coefficients of system (S).

Notation 3.3 (Symplectic system (S)). The Cprd matrix functions A, B, C, D on [a, ρ(b)]T

and the C1
prd vectors η, q on [a, b]T have the following dimensions: A, B, C, D ∈ Rn×n and

η, q ∈ Rn. In addition, the matrix S ∈ R2n×2n defined in (1.2) satisfies identity (1.1).

Similarly to the definition of the functional F0 in (3.1) we put

F0(η, q) :=

∫

b

a

Q(η, q)(t) ∆t
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over (A, B)-admissible (η, q) satisfying η(a) = 0 = η(b), where the quadratic form Q is
defined in (1.6). The relationship between the coefficients of systems (S) and (S) is given
by the following formulas, see (1.3). For t ∈ [a, ρ(b)]T we have

S(t) = J ST(t)J =

(

−DT(t) BT(t)
CT(t) −AT(t)

)

, (3.6)

S(t) = J ST(t)J =

(

−DT(t) BT(t)
CT(t) −AT(t)

)

. (3.7)

The following result is a generalization of the discrete time result in [3, Theorem 1(i),
(vi)] to arbitrary time scales.

Theorem 3.4 (Quadratic forms for (S) and (S)). Assume that the coefficients in systems

(S) and (S) satisfy the conditions in Notations 2.3 and 3.3 and that they are related by the

formulas in (3.6)–(3.7). Then the functional F0 is positive if and only if the functional

F0 is positive.

Proof. By Theorem 3.1, we know that the positivity of F0 is equivalent with condition (iii)
in Theorem 3.1. This means, by the formulas in (3.7), that the function W (t) satisfies
the equation

W∆ = C + D W − W σ(A + B W ), on [a, ρ(b)]T. (3.8)

In addition, from (3.5) we know that the matrices

I − µ (DT − BT W ) = I + µ (A + B W ) and I − µ (A + B W σ) = I + µ (DT − BT W σ)

are inverses of each other. Therefore, the matrix

P := [I + µ (DT − BT W σ)] B = [I − µ (A + B W σ)] P [I − µ (A + B W σ)]T ≥ 0

on [a, ρ(b)]T. Hence, we showed that the function W (t) satisfies the Riccati equation
condition in [9, Theorem 6.1]. Since the converse from (3.8) and P ≥ 0 on [a, ρ(b)]T to
condition (iii) in Theorem 3.1 is done quite similarly, we have by [9, Theorem 6.1] the
stated equivalence of the positivity of the functionals F0 and F0. �

Remark 3.5. Note that the proof of Theorem 3.4 is much simpler than the corresponding
proof of the discrete time statement in [3, Theorem 1(i), (vi)]. On the other hand, one
direction in the proof above can be shown by the same method as in [3, Theorem 1]. For
convenience, we use in the calculations the matrix K := ( 0 0

I 0 ) ∈ R2n×2n. With this matrix
the (A, B)-admissibility or (A, B)-admissibility of z = (η, q) reads as (Kz)∆ = K S zσ or
(Kz)∆ = K S z, respectively. Moreover, the quadratic forms Q and Q are

Q(zσ) = (zσ)T (STK + K S − µ STK S) zσ, Q(z) = zT (STK + K S + µ STK S) z.

Assume that F0 is positive. Let z = (η, q) be (A, B)-admissible with η(a) = 0 = η(b)
and η 6≡ 0. Define z := (I + µS)−1 zσ on [a, ρ(b)]T, and z(b) := 0 if b is left-scattered.
Then from (Kz)∆ = K S zσ we get upon the multiplication by µ that Kzσ−Kz = µK S zσ.
Thus, Kz = K (I − µS) zσ. But since by (3.6) we have (I + µS)−1 = I − µS, it follows
that Kz = K (I + µS)−1 zσ = Kz on [a, ρ(b)]T, and hence on [a, b]T. Therefore, the first
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components of z and z are identical, with the result that Kz ∈ C1
prd. In turn, since the

identity (I − µS)−1 = −J (I − µST )J holds, we get

(Kz)∆ = (Kz)∆ = K S zσ = K S (I + µS) z = K S (I − µS)−1 z

= −K SJ (I − µST )J z = −K(SJ − µ SJ ST )J z

(2.3)
= KJ STJ z

(3.6)
= K S z

on [a, ρ(b)]T. This shows that z is (A, B)-admissible, so that our assumption implies
F0(z) > 0. If we now prove that Q(zσ) = Q(z), then F0(z) = F0(z) > 0 follows. To this
end we fix an arbitrary t ∈ [a, ρ(b)]T. If t is right-dense, then µ(t) = 0 and so from (2.4)
and (1.1) we have B, C, B, C symmetric, D = −AT , and D = −AT at this point t. In
addition, formula (3.6) yields that S = S at t, while from the definition of z in which now
µ = 0 we get z = z at t. Consequently, if t is right-dense, then

Q(z) = zT (STK + K S) z = zT (STK + K S) z = Q(z) = Q(zσ).

If t is right-scattered, then µ(t) > 0, and at t we have

µ Q(z) = zT [(I + µST )K (I + µS) −K ] z

= zT (I + µST ) [K − (I + µST )−1K (I + µS)−1] (I + µS) z

= (zσ)T [K − (I − µST )K (I − µS)] zσ = µ Q(zσ).

Therefore, Q(z) = Q(zσ) and we conclude that the functional F0 is positive as well. Note
that the converse statement cannot be proven by the same method on general time scales.
This is due to the fact that the corresponding “definition” of the (A, B)-admissible pair z

in terms of a given (A, B)-admissible z has the form of zσ := (I + µS) z on [a, ρ(b)]T with
z(a) = 0 if a is right-scattered, which does not provide a correct formula for z, but rather
a formula for zσ. This approach does work only on purely discrete time scales as in [3].

4. Conclusion

In this paper we demonstrated the utility of the time-reversed symplectic dynamic
system (S) in the theory of optimal control problems on time scales. We showed that,
rather than the usual system (S), the time-reversed system (S) is more convenient for the
optimal control problem (C), since it naturally preserves the structure of the associated
quadratic forms. We obtained the Reid roundabout theorem for the time-reversed system
(S) and as its consequence we also established the exact connection between the quadratic
functionals associated with the time-reversed symplectic system (S) and the standard
symplectic system (S).
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